Skip to main content

The Architecture of the Heart: Myocyte Organization and the Cardiac Extracellular Matrix

  • Chapter
Interstitial Fibrosis in Heart Failure

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 253))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Costa, K.D., J. Holmes, and A.D. McCulloch, Modeling cardiac mechanical properties in three dimensions. Phil Trans R Soc Lond, 2001. A359: p. 1233–1250.

    Google Scholar 

  2. Bishop, J.E. and G. Lindahl, Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res, 1999. 42: p. 27–44.

    Article  PubMed  CAS  Google Scholar 

  3. Mall, F.P., On the muscular architecture of the ventricles of the human heart. Am J Anat, 1911. 11: p. 211–266.

    Article  Google Scholar 

  4. Robb, J.S. and R.C. Robb, The normal heart. Anatomy and physiology of the structural units. Am Heart J, 1942. 23: p. 455–467.

    Article  Google Scholar 

  5. Torrent-Guasp, F.F., W.F. Whimster, and K. Redmann, A silicone rubber mould of the heart. Technol Health Care, 1997. 5: p. 13–20.

    PubMed  CAS  Google Scholar 

  6. Lev, M. and C.S. Simkins, Architecture of the human ventricular myocadium. Technique for study using a modification of the Mall-MacCallum method. Lab Invest, 1956. 5: p. 396–409.

    PubMed  CAS  Google Scholar 

  7. Streeter, D.D., Jr. and D.L. Bassett, An engineering analysis of myocardial fiber orientation in pig’s left ventricle in systole. Anat Rec, 1966. 155: p. 503–511.

    Article  Google Scholar 

  8. Nielsen, P.M., et al., Mathematical model of geometry and fibrous structure of the heart. Am J Physiol, 1991. 260: p. H1365–78.

    PubMed  CAS  Google Scholar 

  9. Streeter, D.D., Jr., et al., Fiber orientation in the canine left ventricle during diastole and systole. Circ Res, 1969. 24: p. 339–47.

    PubMed  Google Scholar 

  10. Ross, M.A. and D.D. Streeter, Jr., Nonuniform subendocardial fiber orientation in the normal macaque left ventricle. Eur J Cardiol, 1975. 3: p. 229–47.

    PubMed  CAS  Google Scholar 

  11. Fox, C.C. and G.M. Hutchins, The architecture of the human ventricular myocardium. Johns Hopkins Med J, 1972. 130: p. 289–99.

    PubMed  CAS  Google Scholar 

  12. Greenbaum, R.A., et al., Left ventricular fibre architecture in man. Br Heart J, 1981.45: p. 248–63.

    PubMed  CAS  Google Scholar 

  13. Feneis, H., Das Gefuge des Herzmuskels bei Systole und Diastole. Morph Jahrb, 1943. 89: p. 371–406.

    Google Scholar 

  14. Hort, W., Untersuchungen uber die Muskelfaserdehnung und das Gefuge des Myokards in der rechten Herzkammerwand des Meerschweinchens. Virchows Arch Pathol Anat Physiol Klin Med, 1957. 329: p. 649–731.

    Google Scholar 

  15. Hort, W., Makroskopische und mikrometrische Untersuchungen am Myokard verschieden stark gefullter linker Kammern. Virchows Arch Path Anat, 1960. 333: p. 523–564.

    CAS  Google Scholar 

  16. Weitz, G., Uber das unterschiedliche Verhalten der lage der Herzmuskelfasern in kontrahiertem und dilatierem Zustand. Med Klin Munich, 1951. 46: p. 1031–1032.

    Google Scholar 

  17. Grimm, A.F., K. V. Katele, and H.L. Lin, Fiber bundle direction in the mammalian heart. An extension of the “nested shells” model. Basic Res Cardiol, 1976. 71: p. 381–8.

    PubMed  CAS  Google Scholar 

  18. LeGrice, I. J., et al., Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am J Physiol, 1995. 269: p. H571–82.

    PubMed  CAS  Google Scholar 

  19. Olivetti, G., et al., Side-to-side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ Res, 1990. 67: p. 23–34.

    PubMed  CAS  Google Scholar 

  20. Spotnitz, H.M., et al., Cellular basis for volume related wall thickness changes in the rat left ventricle. J Mol Cell Cardiol, 1974. 6: p. 317–31.

    Article  PubMed  CAS  Google Scholar 

  21. Weisman, H.F., et al., Cellular mechanisms of myocardial infarct expansion. Circulation, 1988. 78: p. 186–201.

    PubMed  CAS  ISI  Google Scholar 

  22. Abrahams, C., J.S. Janicki, and K.T. Weber, Myocardial hypertrophy in Macaca fascicularis. Structural remodeling of the collagen matrix. Lab Invest, 1987. 56: p. 676–83.

    PubMed  CAS  Google Scholar 

  23. Bashey, R.I., A. Martinez-Hernandez, and S.A. Jimenez, Isolation, characterization, and localization of cardiac collagen type VI. Associations with other extracellular matrix components. Circ Res, 1992. 70: p. 1006–17.

    PubMed  CAS  Google Scholar 

  24. Spach, M.S. and P.C. Dolber, Relating extracellular potentials and their derivatives to anisotropic propagation at a microscopic level in human cardiac muscle. Evidence for electrical uncoupling of side-to-side fiber connections with increasing age. Circ Res, 1986. 58: p. 356–71.

    PubMed  CAS  Google Scholar 

  25. Caulfield, J.B. and T.K. Borg, The collagen network of the heart. Lab Invest, 1979. 40: p. 364–72.

    PubMed  CAS  Google Scholar 

  26. Robinson, T.F., L. Cohen-Gould, and S.M. Factor, Skeletal framework of mammalian heart muscle. Arrangement of inter-and pericellular connective tissue structures. Lab Invest, 1983. 49: p. 482–98.

    PubMed  CAS  Google Scholar 

  27. Robinson, T.F., et al., Morphology, composition, and function of struts between cardiac myocytes of rat and hamster. Cell Tissue Res, 1987. 249: p. 247–55.

    Article  PubMed  CAS  Google Scholar 

  28. Robinson, T.F., et al., Coiled perimysial fibers of papillary muscle in rat heart: morphology, distribution, and changes in configuration. Circ Res, 1988. 63: p. 577–92.

    PubMed  CAS  Google Scholar 

  29. Robinson, T.F., et al., Structure and function of connective tissue in cardiac muscle: collagen types I and III in endomysial struts and pericellular fibers. Scanning Microsc, 1988. 2: p. 1005–15.

    PubMed  CAS  ISI  Google Scholar 

  30. MacKenna, D.A., J.H. Omens, and J.W. Covell, Left ventricular perimysial collagen fibers uncoil rather than stretch during diastolic filling. Basic Res Cardiol, 1996. 91: p. 111–22.

    Article  PubMed  CAS  Google Scholar 

  31. Hanley, P.J., et al., 3-Dimensional configuration of perimysial collagen fibres in rat cardiac muscle at resting and extended sarcomere lengths. J Physiol, 1999. 517: p. 831–7.

    Article  PubMed  CAS  Google Scholar 

  32. Bishop, J.E. and G.J. Laurent, Collagen turnover and its regulation in the normal and hypertrophying heart. Eur Heart J, 1995. 16: p. 38–44.

    PubMed  CAS  Google Scholar 

  33. Medugorac, I. and R. Jacob, Characterisation of left ventricular collagen in the rat. Cardiovasc Res, 1983. 17: p. 15–21.

    Article  PubMed  CAS  Google Scholar 

  34. Weber, K.T., et al., Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res, 1988. 62: p. 757–65.

    PubMed  CAS  Google Scholar 

  35. Borg, T.K., et al., Morphological and chemical characteristics of the connective tissue network during normal development and hypertrophy. J Mol Cell Cardiol, 1986.18: p. 247.

    Google Scholar 

  36. Borg, T.K., R.E. Gay, and L.D. Johnson, Changes in the distribution of fibronectin and collagen during development of the neonatal rat heart. Coll Relat Res, 1982. 2: p. 211–8.

    PubMed  CAS  Google Scholar 

  37. Borg, T.K., et al., Alteration of the connective tissue network of striated muscle in copper deficient rats. J Mol Cell Cardiol, 1985. 17: p. 1173–83.

    PubMed  CAS  Google Scholar 

  38. Light, N. and A.E. Champion, Characterization of muscle epimysium, perimysium and endomysium collagens. Biochem J, 1984. 219: p. 1017–26.

    PubMed  CAS  Google Scholar 

  39. Weber, K.T. and C.G. Brilla, Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation, 1991. 83: p. 1849–65.

    PubMed  CAS  ISI  Google Scholar 

  40. Stevens, C., et al., Ventricular mechanics in diastole: material parameter sensitivity. J Biomech, 2003. 36: p. 737–48.

    Article  PubMed  Google Scholar 

  41. Streeter, D.D., Jr., Gross morphology and fiber geometry of the heart In: Handbook of Physiology, edited by R.M. Berne. N.S.a.S.R.G. Baltimore: American Physiological Society, Williams and Wilkins Company, 1979: p. 61–112.

    Google Scholar 

  42. Arts, T., et al., Relating myocardial laminar architecture to shear strain and muscle fiber orientation. Am J Physiol, 2001. 280: p. H2222–9.

    CAS  Google Scholar 

  43. Young, A. A., et al., Extended confocal microscopy of myocardial laminae and collagen network. J Microsc, 1998. 192: p. 139–50.

    PubMed  CAS  Google Scholar 

  44. Dolber, P.C. and M.S. Spach, Conventional and confocal fluorescence microscopy of collagen fibers in the heart. J Histochem Cytochem, 1993. 41: p. 465–9.

    PubMed  CAS  Google Scholar 

  45. Robinson, T.F., S.M. Factor, and E.H. Sonnenblick, The heart as a suction pump. Sci Am, 1986. 254: p. 84–91.

    Article  PubMed  CAS  Google Scholar 

  46. Granzier, H. and S. Labeit, Cardiac titin: an adjustable multi-functional spring. J Physiol, 2002. 541: p. 335–42.

    Article  PubMed  CAS  Google Scholar 

  47. Arts, T., R.S. Reneman, and P.C. Veenstra, A model of the mechanics of the left ventricle. Ann Biomed Eng, 1979. 7: p. 299–318.

    PubMed  CAS  Google Scholar 

  48. Arts, T., et al., Relation between left ventricular cavity pressure and volume and systolic fiber stress and strain in the wall. Biophys J, 1991. 59: p. 93–102.

    Article  PubMed  CAS  Google Scholar 

  49. Ingels, N.B., Jr., Myocardial fiber architecture and left ventricular function. Technol Health Care, 1997. 5: p. 45–52.

    PubMed  Google Scholar 

  50. Omens, J.H., K.D. May, and A.D. McCulloch, Transmural distribution of three-dimensional strain in the isolated arrested canine left ventricle. Am J Physiol, 1991. 261: p. H918–28.

    PubMed  CAS  Google Scholar 

  51. Costa, K.D., et al., Laminar fiber architecture and three-dimensional systolic mechanics in canine ventricular myocardium. Am J Physiol, 1999. 276: p. H595–607.

    PubMed  CAS  Google Scholar 

  52. Takayama, Y., K.D. Costa, and J.W. Covell, Contribution of laminar myofiber architecture to load-dependent changes in mechanics of LV myocardium. Am J Physiol, 2002. 282: p. H1510–20.

    CAS  Google Scholar 

  53. Waldman, L.K., et al., Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res, 1988. 63: p. 550–62.

    PubMed  CAS  Google Scholar 

  54. LeGrice, I.J., Y. Takayama, and J.W. Covell, Transverse shear along myocardial cleavage planes provides a mechanism for normal systolic wall thickening. Circ Res, 1995. 77: p. 182–93.

    PubMed  CAS  Google Scholar 

  55. Dokos, S., et al., Shear properties of passive ventricular myocardium. Am J Physiol, 2002. 283: p. H2650–9.

    CAS  Google Scholar 

  56. Spach, M.S., P.C. Dolber, and J.F. Heidlage, Influence of the passive anisotropic properties on directional differences in propagation following modification of the sodium conductance in human atrial muscle. A model of reentry based on anisotropic discontinuous propagation. Circ Res, 1988. 62: p. 811–32.

    PubMed  CAS  Google Scholar 

  57. Hooks, D.A., et al., Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ Res, 2002. 91: p. 331–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

LeGrice, I., Pope, A., Smaill, B. (2005). The Architecture of the Heart: Myocyte Organization and the Cardiac Extracellular Matrix. In: Villarreal, F.J. (eds) Interstitial Fibrosis in Heart Failure. Developments in Cardiovascular Medicine, vol 253. Springer, New York, NY. https://doi.org/10.1007/0-387-22825-X_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-22825-X_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22824-2

  • Online ISBN: 978-0-387-22825-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics