Skip to main content

Recurrent Timing Nets for F0-based Speaker Separation

  • Chapter
Speech Separation by Humans and Machines
  • 1212 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, M., 2004. Time is precious. Science 304 (23 April): 523–524.

    Google Scholar 

  • Abeles, M., 1990. Corticonics. Cambridge University Press, Cambridge.

    Google Scholar 

  • Assmann, P.F. and Summerfield, Q., 1990. Modeling the perception of concurrent vowels: Vowels with different fundamental frequencies. J. Acoust. Soc. Am., 88: 680–697.

    Article  Google Scholar 

  • Boring, E.G., 1942. Sensation and Perception in the History of Experimental Psychology. Appleton-Century-Crofts, New York.

    Google Scholar 

  • Bregman, A.S., 1981. Asking the “what for” question in auditory perception. in, Perceptual Organization. M. Kubovy and J.R. Pomerantz (Eds.) Lawrence Erlbaum Assoc., Hillsdale, NJ, pp.99–118.

    Google Scholar 

  • Bregman, A.S., 1990. Auditory Scene Analysis: The Perceptual Organization of Sound. MIT Press, Cambridge, MA, 773 pp.

    Google Scholar 

  • Cariani, P., 1995. As if time really mattered: temporal strategies for neural coding of sensory information. Communication and Cognition-Artificial Intelligence (CC-AI), 12(1–2): 161–229 (Reprinted in: K Pribram, ed. Origins: Brain and Self-Organization, Hillsdale, NJ: Lawrence Erlbaum, 1994, 208–252.).

    Google Scholar 

  • Cariani, P., 1999. Temporal coding of periodicity pitch in the auditory system: an overview. Neural Plast, 6(4): 147–72.

    Google Scholar 

  • Cariani, P., 2001a. Neural timing nets. Neural Networks, 14(6–7): 737–753.

    Google Scholar 

  • Cariani, P., 2001b. Neural timing nets for auditory computation, in Computational Models of Auditory Function. S. Greenberg and M. Slaney (Eds.) IOS Press, Amsterdam, pp.235–249.

    Google Scholar 

  • Cariani, P., 2002. Temporal codes, timing nets, and music perception. J. New Music Res., 30(2): 107–136.

    Google Scholar 

  • Cariani, P., 2004 (in press). Temporal codes and computations for sensory representation and scene analysis. IEEE Trans.on Neural Networks, Special Issue on Temporal Coding for Neural Information Proc.

    Google Scholar 

  • Cariani, P. and Delgutte, B., 1993. Interspike interval distributions of auditory nerve fibers in response to concurrent vowels with same and different fundamental frequencies. Assoc. Res. Otolaryngology. Abs.: 373.

    Google Scholar 

  • Darwin, C.J. and Gardner, R.B., 1986. Mistuning a harmonic of a vowel: grouping and phase effects on vowel quality. J Acoust Soc Am, 79(3): 838–45.

    Article  Google Scholar 

  • de Chevigné, A., 1999. Waveform interactions and the segregation of concurrent vowels. J Acoust Soc Am, 106(5): 2959–72.

    Google Scholar 

  • de Cheveigné, A., 2004. The cancellation principle in acoustic scene analysis. This volume.

    Google Scholar 

  • de Cheveigné, A., 2004, in press. Pitch perception models. in, Pitch, C.J. Plack and A.J. Oxenham (Eds). Springer Verlag, New York.

    Google Scholar 

  • Fraisse, P., 1978. Time and rhythm perception. in, Handbook of Perception. Volume VIII. Perceptual Coding, E.C. Carterette and M.P. Friedman (Eds.) Academic Press, New York, pp.203–254.

    Google Scholar 

  • Ghitza, O., 1988. Temporal non-place information in the auditory-nerve firing patterns as a front-end for speech recognition in a noisy environment. J. Phonetics, 16: 109–123.

    Google Scholar 

  • Ghitza, O., 1992. Auditory nerve representation as a basis for speech processing. in, Advances in Speech Signal Processing, S. Furui and M.M. Sondhi (Eds.) Marcel Dekker, New York, pp.453–485.

    Google Scholar 

  • Grossberg, S., 1988. The Adaptive Brain, Vols I. and II. Elsevier, New York.

    Google Scholar 

  • Handel, S., 1989. Listening: An Introduction to the Perception of Auditory Events. MIT Press, Cambridge, 597 pp.

    Google Scholar 

  • Hartmann, W.M., 1988. Pitch perception and the segregation and Integration of auditory entities, in, Auditory Function: Neurobiological Bases of Hearing, G.M. Edelman (Ed) John Wiley & Sons, New York, pp.623–347.

    Google Scholar 

  • Irvine, D.R.F., 1986. The Auditory Brainstem. Progress in Sensory Physiology 7. Springer-Verlag, Berlin, 279 pp.

    Google Scholar 

  • Jones, M.R., 1976. Time, our lost dimension: toward a new theory of perception, attention, and memory. Psychological Review, 83(5): 323–255.

    Google Scholar 

  • Kim, D.O. and Molnar, C.E., 1979. A population study of cochlear nerve fibers: comparison of spatial distributions of average-rate and phase-locking measures of responses to single tones. J. Neurophysiol., 42(1): 16–30.

    Google Scholar 

  • Kubovy, M., 1981. Concurrent-pitch segregation and the theory of indispensable attributes. in, Perceptual Organization, M. Kubovy and J.R. Pomerantz (Eds). Lawrence Erlbaum Assoc., Hillsdale, NJ, pp.55–98.

    Google Scholar 

  • Lange, F.H., 1967. Correlation Techniques. Van Nostrand, Princeton, 464 pp.

    Google Scholar 

  • MacKay, D.M., 1962. Self-organization in the time domain. in, Self-Organizing Systems 1962, M.C. Yovitts, G.T. Jacobi and G.D. Goldstein (Eds). Spartan Books, Washington, D.C., pp.37–48.

    Google Scholar 

  • Meddis, R. and Hewitt, M.J., 1992. Modeling the perception of concurrent vowels with different fundamental frequencies. J. Acoust. Soc. Am., 91: 233–245.

    Article  Google Scholar 

  • Mellinger, D.K. and Mont-Reynaud, B.M., 1996. Scene analysis. in, Auditory Computation, H. Hawkins, T. McMullin, A.N. Popper and R.R. Fay (Eds.) Springer Verlag, New York, pp.271–331.

    Google Scholar 

  • Meyer-Eppler, W., 1953. Exhaustion methods of selecting signals from noisy backgrounds. in, Communication Theory, W. Jackson (Ed) Butterworths, London, pp. 183–194.

    Google Scholar 

  • Miller, R.R. and Barnet, R.C., 1993. The role of time in elementary associations. Current Directions in Psychological Science, 2(4): 106–111.

    Article  Google Scholar 

  • Palmer, A.R., 1988. The representation of concurrent vowels in the temporal discharge patterns of auditory nerve fibers. in, Basic Issues in Hearing, H. Duifhuis, J.W. Horst and H.P. Wit (Eds.) Academic Press, London, pp. 244–251.

    Google Scholar 

  • Palmer, A.R., 1992. Segregation of the responses to paired vowels in the auditory nerve of the guinea pig using autocorrelation. in, The Auditory Processing of Speech, S.M.E.H. (Ed) Mouton de Gruyter, Berlin, pp. 115–124.

    Google Scholar 

  • Patterson, R.D., Allerhand, M.H. and Giguere, C., 1995. Time-domain modeling of peripheral auditory processing: A modular architecture and a software platform. J. Acoust. Soc. Am., 98(4): 1890–1894.

    Article  Google Scholar 

  • Rose, J.E., Hind, J.E., Brugge, J.R. and Anderson, D.J., 1971. Some effects of stimulus intensity on response of single auditory nerve fibers of the squirrel monkey. J Neurophysiology, 34(4): 685–699.

    Google Scholar 

  • Seeker-Walker, H.E. and Searle, C.L., 1990. Time-domain analysis of auditory-nerve-fiber firing rates. J. Acoust. Soc. Am., 88(3): 1427–1436.

    Google Scholar 

  • Sinex, D.G., Sabes, S.J. and Li, H., 2002. Responses of inferior colliculus neurons to harmonic and mistuned complex tones. Hear. Res., 168: 150–62.

    Article  Google Scholar 

  • Stern, R. 2003. Signal separation motivated by auditory perception. Perspectives on Speech Separation, Montreal, October 30–November 1, 2003. http://www.ebire.org/speech-separation.

  • Summerfield, Q. and Assmann, P.F., 1991. Perception of concurrent vowels: effects of harmonic misalignment and pitch-period asynchrony. J. Acoust. Soc. Am., 89(3): 1364–1377.

    Article  Google Scholar 

  • Thatcher, R.W. and John, E.R., 1977. Functional Neuroscience, Vol. I. Foundations of Cognitive Processes. Lawrence Erlbaum, Hillsdale, NJ, 382 pp.

    Google Scholar 

  • Wang, D.L. and Brown, G.J., 1999. Separation of speech from interfering sounds based on oscillatory correlation. IEEE Trans. Neural Networks, 10(3): 684–697.

    MathSciNet  Google Scholar 

  • Young, E.D. and Sachs, M.B., 1979. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory nerve fibers. J. Acoust. Soc. Am., 66(5): 1381–1403.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Cariani, P. (2005). Recurrent Timing Nets for F0-based Speaker Separation. In: Divenyi, P. (eds) Speech Separation by Humans and Machines. Springer, Boston, MA. https://doi.org/10.1007/0-387-22794-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-22794-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-8001-2

  • Online ISBN: 978-0-387-22794-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics