Skip to main content

Function and Assembly of Electron-Transport Complexes in Desulfovibrio vulgaris Hildenborough

  • Chapter
Biochemistry and Physiology of Anaerobic Bacteria
  • 510 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beliaev AS, Saffarini DA. 1998. Shewanella putrfaciens mtrB encodes and outer membrane protein required for Fe(III) and Mn(IV) reduction. J Bacteriol. 180: 6292–7.

    CAS  PubMed  Google Scholar 

  • Berg BL, Li J, Heider J, Stewart V. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K12. J. Biol Chem 266:22380–5.

    CAS  PubMed  Google Scholar 

  • Berks BC. 1996. A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 22:393–404.

    Article  CAS  PubMed  Google Scholar 

  • Bilous PT, Cole ST, Anderson WF, Weiner JH. 1988. Nucleotide sequence of the dmsABC operon encoding the anaerobic dimethylsulfoxide reductase of Escherichia coli. Mol Microbiol 2:785–95.

    Article  CAS  PubMed  Google Scholar 

  • Bokrantz M, Gutmann M, Körtner C, et al. 1991. Cloning and nucleotide sequence of the structural genes encoding the formate dehydrogenase of Wolinella succinogenes. Arch Microbiol 156:119–28.

    Article  Google Scholar 

  • Dolla A, Pohorelic BKJ, Voordouw JK, Voordouw G. 2000. Deletion of the hmc-operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough hampers hydrogen metabolism and low-redox potential niche establishment. Arch Microbiol 174:143–51.

    Article  CAS  PubMed  Google Scholar 

  • Hatchikian EC, Magro, Forget N, et al. 1999. Carboxy-terminal processing of the large subunit of [Fe] hydrogenase from Desulfovibrio desulfuricans ATTC 7757. J Bacteriol 181:2947–52.

    CAS  PubMed  Google Scholar 

  • Higuchi Y, Yagi T, Yasuoka N. 1997. Unusual ligand structure in Ni-Fe active center and an additional Mg site in hydrogenase revealed by high resolution X-ray structure analysis. Structure 5:1671–80.

    Article  CAS  PubMed  Google Scholar 

  • Keon RG, Voordouw G. 1996. Identification of the HmcF and topology of the HmcB subunit of the Hmc complex of Desulfovibrio vulgaris. Anaerobe 2:231–8.

    Article  CAS  Google Scholar 

  • Keon RG, Fu R, Voordouw G. 1997. Deletion of two downstream genes alters expression of the hmc operon of Desulfovibrio vulgaris subsp. vulgarisHildenborough. Arch Microbiol 167:376–83.

    Article  CAS  PubMed  Google Scholar 

  • Klenk HP, Clayton RA, Tomb J, et al. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364–70.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lissolo T, Choi, ES, LeGall J, Peck HD Jr. 1986. The presence of multiple intrinsic nickel-containing hydrogenases in Desulfovibrio vulgaris Hildenborough. Biochem Biophys Res Commun 139:701–8.

    Article  CAS  PubMed  Google Scholar 

  • Malki S, De Luca G, Fardeau ML, et al. 1997. Physiological characteristics and growth behavior of single and double hydrogenase mutants of Desulfovibrio fructosovorans. Arch Microbiol 167:38–45.

    Article  CAS  PubMed  Google Scholar 

  • Malki S, Saimmaime I, De Luca G, et al. 1995. Characterization of an operon encoding an NADP-reducing hydrogenase in Desulfovibrio fructosovorans. J Bacteriol 177:2628–36.

    CAS  PubMed  Google Scholar 

  • Matias PM, Coelho R, Pereira IA, et al. 1999. The primary and three-dimensional structures of a nine haem cytochrome c from Desulfovibrio desulfuricans ATCC 27774 reveal a new member of the Hmc family. Structure 7:119–30.

    Article  CAS  PubMed  Google Scholar 

  • Nicolet Y, Piras C, Legrand D, et al. 1999. Desulfovibrio desulfuricans iron hydrogenase: the structure shows unusual coordination to an active site Fe binuclear center. Structure 7:13–23.

    Article  CAS  PubMed  Google Scholar 

  • Odom JM, Peck HD Jr. 1981. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio sp. FEMS Microbiol Lett 12:47–50.

    Article  CAS  Google Scholar 

  • Peck HD Jr. 1993. Bioenergetic strategies of the sulfate-reducing bacteria. In: Odom JM, Singleton R Jr, editors. The sulfate-reducing bacteria: contemporary perspectives. New York: Springer-Verlag. p 41–76.

    Google Scholar 

  • Pereira IAC, Romao CV, Xavier AV, et al. 1998. Electron transfer between hydrogenases and mono-and multiheme cytochromes in Desulfovibrio spp. J Biol Inorg Chem 3:494–8.

    Article  CAS  Google Scholar 

  • Peters JW, Lanzilotta WN, Lemon BJ, Seefeldt LC. 1998. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Ã…ngstrom resolution. Science282:1853–8.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Pohorelic BKJ, Voordouw JK, Lojou E, et al. 2002. Effects of deletion of genes encoding Fe-only hydrogenase of Desulfovibrio vulgaris Hildenhorough on hydrogen and lactate metabolism. J Bacteriol 184:679–686.

    Article  CAS  PubMed  Google Scholar 

  • Prickril BC, Czechowski MH, Przybyla AE, et al. 1986. Putative signal peptide on the small subunit of the periplasmic hydrogenase from Desulfovibrio vulgaris. J Bacteriol 167:722–5.

    CAS  PubMed  Google Scholar 

  • Rapp-Giles BJ, Caselot L, English RS, et al. 2000. Cytochrome c3 mutants of Desulfvibrio desulfuricans. Appl Environ Microbiol 66:671–7.

    Article  CAS  PubMed  Google Scholar 

  • Rodrigue A, Chanal A, Beck K, et al. 1999. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274:13223–8.

    Article  CAS  PubMed  Google Scholar 

  • Rossi M, Pollock WBR, Reij MW, et al. 1993. The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J Bacteriol 175:4699–711.

    CAS  PubMed  Google Scholar 

  • Sargent F, Bogsch EG, Stanley NR, et al. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J 17: 3640–50.

    Article  CAS  PubMed  Google Scholar 

  • Sargent F, Stanley NR, Berks BC, Palmer T. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274:36073–82.

    Article  CAS  PubMed  Google Scholar 

  • Settles AM, Yonetani A, Baron A, et al. 1997. Sec-independent protein translocation by the maize Hcf106 protein, Science278:1467–1470.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Van den Berg WAM, van Dongen, WMAM, Veeger C. 1991. Reduction of the amount of periplasmic hydrogenase in Desulfovibrio vulgaris (Hildenborough) with antisense RNA: direct evidence for an important role of this hydrogenase in lactate metabolism. J Bacteriol 173:3688–94.

    PubMed  Google Scholar 

  • Van Dongen W, Hagen W, van den Berg W, Veeger C. 1988. Evidence for an unusual mechanism of membrane translocation of the periplasmic hydrogenase of Desulfovibrio vulgaris (Hildenborough), as derived from expression in Escherichia coli. FEMS Microbiol Lett 50:5–9.

    Article  Google Scholar 

  • Volbeda A, Charon M-H, Piras C, et al. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature 373:580–7.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Voordouw G. 1995. The genus Desulfovibrio: the centennial. Appl Environ Microbiol 61:2813–19.

    CAS  PubMed  Google Scholar 

  • Voordouw G. 2000. A universal system for the transport of redox proteins: early roots and latest developments. Biophys Chem 86:131–40.

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G, Brenner S. 1985. Nucleotide sequence of the gene encoding the hydrogenase from Desulfovibrio vulgaris (Hildenborough). Eur J Biochem 148:515–20.

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G, Niviere V, Ferris FG, et al. 1990. Distribution of hydrogenase genes in Desulfovibrio spp. and their use in identification of species from the oil field environment. Appl Environ Microbiol 56:3748–54.

    CAS  PubMed  Google Scholar 

  • Weiner JH, Bilous PT, Shaw GM, et al. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93: 93–101.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Voordouw, G. (2003). Function and Assembly of Electron-Transport Complexes in Desulfovibrio vulgaris Hildenborough. In: Ljungdahl, L.G., Adams, M.W., Barton, L.L., Ferry, J.G., Johnson, M.K. (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, NY. https://doi.org/10.1007/0-387-22731-8_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-22731-8_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95592-6

  • Online ISBN: 978-0-387-22731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics