Skip to main content

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban PS, Popham DL, Rippere KE, Krieg NR. 1988. Identification of a gene for a rubrerythrin/nigerythrin-like protein in Spirillum volutans by using amino acid sequence data from mass spectrometry and NH2-terminal sequencing. J App Microbiol 85:875–82.

    Article  Google Scholar 

  • Andreesen JR, Schaupp A, Neurauter C, et al. 1973. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and synthesis of acetate from CO2. J Bacteriol 114:743–51.

    CAS  PubMed  Google Scholar 

  • Arendsen AF, Soliman MQ, Ragsdale SW. 1999. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum. J Bacteriol 181:1489–95.

    CAS  PubMed  Google Scholar 

  • Aufurth S, Schagger H, Müller V. 2000. Identification of subunits a, b, and c1 from Acetobacterium woodii Na+-F1F0-ATPase. Subunits c1, c2, and c3 constitute a mixed c-oligomer. J Biol Chem 275:33297–301.

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Liu M-Y, LeGall J, et al. 1993. Purification and characterization of an NADH-rubredoxin oxidoreductase involved in the utilization of oxygen by Desulfovibrio gigas. Eur J Biochem 216:443–8.

    Article  CAS  PubMed  Google Scholar 

  • Das A, Ljungdahl LG. 2000. The primary structure of the atp operon encoding the F1F0 ATP synthase from Clostridium pasteurianum. Growth and metabolism of acetogenic bacteria in the presence of oxygen. Abstracts of the 100th general meeting of the American Society for Microbiology. Washington, DC: American Society for Microbiology. p 374.

    Google Scholar 

  • Das A, Coulter ED, Kurtz DM Jr, Ljungdahl LG. 2001. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operon encoding rubredoxin oxidoreductase-rubredoxin and rubrerythrin-type A flavoproteon-high molecular weight rubredoxin. J Bacteriol 183:1560–7.

    Article  CAS  PubMed  Google Scholar 

  • Das A, Hugenholtz J, Van Halbeek H, Ljungdahl LG. 1989. Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoaceticum and Clostridium thermoautotrophicum. J Bacteriol 171:5823–9.

    CAS  PubMed  Google Scholar 

  • Das A, Ivey DM, Ljungdahl LG. 1997. Purification and reconstitution into proteoliposomes of the F1F0 ATP synthase from obligately anaerobic bacterium Clostridium thermoautotrophicum. J Bacteriol 179:1714–20.

    CAS  PubMed  Google Scholar 

  • Das A, Ljungdahl LG. 1997. Composition and primary structure of the F1F0 ATP synthase from the obligately anaerobic bacterium Clostridium thermoaceticum. J Bacteriol 179:3746–55.

    CAS  PubMed  Google Scholar 

  • Deckers-Hebestreit G, Altendorf K. 1996. The F1F0-type ATP synthases of bacteria: structure and function of the F0 complex. Annu Rev Microbiol 50:791–824.

    Article  CAS  PubMed  Google Scholar 

  • Diekert G, Wohlfarth G. 1994. Energetics of acetogenesis from Q units. In: Drake HL, editor. Acetogenesis. New York: Chapman & Hall. p 157–79.

    Google Scholar 

  • Doukov TI, Iverson TM, Seravalli J, et al. 2002. A Ni-Fe-Cu center in a bifunctional carbon monoxide/acetyl-CoA synthase. Science 298:567–72.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Drake HL. 1984. Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J Bacteriol 150:702–9.

    Google Scholar 

  • Drake HL. 1994. Acetogenesis, acetogenic bacteria, and the acetyl-CoA “Wood/Ljungdahl pathway”: past and current perspectives. In: Drake HL, editor. Acetogenesis. New York: Chapman & Hall. p 3–60.

    Google Scholar 

  • Foster DL, Fillingame RH. 1979. Energy-transducing H+-ATPase of Escherichia coli: purification, reconstitution and subunit composition. J Biol Chem 254:8230–6.

    CAS  PubMed  Google Scholar 

  • Fröstl JM, Seifritz C, Drake HL. 1996. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoaceticum and Clostridium thermoautotrophicum. J Bacteriol 178:4597–603.

    PubMed  Google Scholar 

  • Gomes CM, Silva G, Oliviera S, et al. 1997. Studies on redox centers of the terminal oxidase from Desulfovibio gigas and evidence for its interaction with rubredoxin. J Biol Chem 272:22502–8.

    Article  CAS  PubMed  Google Scholar 

  • Gomes CM, Vicente JB, Wasserfallen A, Teixeira M. 2000. Spectroscopic studies and characterization of a novel electron-transfer chain from Escherichia coli involving a flavorubredoxin and its flavoprotein reductase partner. Biochemistry 39:16230–7.

    Article  CAS  PubMed  Google Scholar 

  • Heise R, Müller V, Gottschalk G. 1992. Presence of a Na+-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem 206:553–7.

    Article  CAS  PubMed  Google Scholar 

  • Hugenholtz J, Ljungdahl LG. 1989. Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum. J Bacteriol 171:2873–5.

    CAS  PubMed  Google Scholar 

  • Hugenholtz J, Ljungdahl LG. 1990. Amino acid transport in membrane vesicles of Clostridium thermoautotrophicum. FEMS Microbiol Lett 69:117–22.

    Article  CAS  Google Scholar 

  • Hugenholtz J, Ivey DM, Ljungdahl LG. 1987. Carbon monoxide driven electron transport in Clostridium thermoautotrophicum membranes. J Bacteriol 169: 5845–7.

    CAS  PubMed  Google Scholar 

  • Hugenholtz J, Morgan TV, Ljungdahl LG. 1989. EPR studies of electron transport in membranes of Clostridium thermoautotrophicum. Abstracts of the 89th general meeting of the American Society for Microbiology. Washington, DC: American Society for Microbiology. p 269.

    Google Scholar 

  • Ivey DM. 1986. Generation of energy during CO2 fixation in acetogenic bacteria [dissertation]. Athens: University of Georgia

    Google Scholar 

  • Ivey DM, Ljungdahl LG. 1986. Purification and characterization of the F1-ATPase from Clostridium thermoaceticum. J Bacteriol 165:252–7.

    CAS  PubMed  Google Scholar 

  • Jenney FE Jr, Verhagen MF, Cui X, Adams MW. 1999. Anaerobic microbes: oxygen detoxification without superoxide dismutase. Science 286:306–9.

    Article  CAS  PubMed  Google Scholar 

  • Karnholtz A, Küsel K, Gö§ner A, et al. 2002. Tolerance and metabolic response of acetogenic bacteria toward oxygen. Appl Env Microbiol 68:1005–9.

    Article  Google Scholar 

  • Lehmann Y, Meile L, Teuber M. 1996. Rubrerythrin from Clostridium perfringens:cloning of the gene, purification of the protein, and characterization of its superoxide dismutase function. J Bacteriol 178:7152–8.

    CAS  PubMed  Google Scholar 

  • Lin JT, Stewart V. 1998. Nitrate assimilation by bacteria. Adv Microbiol Physiol 39:1–30.

    Article  CAS  Google Scholar 

  • Ljungdahl LG. 1986. The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–50.

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl LG. 1994. Biochemistry and energetics of acetogenesis and the acetyl-CoA pathway. In: Drake HL, editor. Acetogenesis. New York: Chapman & Hall, p 63–87.

    Google Scholar 

  • Lombard M, Fontecave M, Touati D, Niviere V. 2000. Reaction of the desulfoferredoxin from Desulfovibrio baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem 275:115–21.

    Article  CAS  PubMed  Google Scholar 

  • Lorenzen J, Steinwachs S, Unden G. 1994. DMSO respiration by the anaerobic bacterium Wolinella succinogenes. Arch Microbiol 162:277–81.

    Article  CAS  PubMed  Google Scholar 

  • McEwan AG, Benson N, Bonnet TC, et al. 1991. Bacterial dimethyl sulfoxide reductases and nitrate reductases. Biochem Soc Trans 19:605–8.

    CAS  PubMed  Google Scholar 

  • Müller V, Gottschalk G. 1994. The sodium ion cycle in acetogenic and methanogenic bacteria: generation and utilization of a primary electrochemical sodium ion gradient. In: Drake HL, editor. Acetogenesis. New York: Chapman & Hall. p 127–56.

    Google Scholar 

  • Pianzzola MJ, Soubes M, Touati D. 1996. Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol 178:6736–42.

    CAS  PubMed  Google Scholar 

  • Ragsdale SW. 1991. Enzymology of acetyl-CoA pathway of CO2 fixation. Crit Rev Biochem Mol Biol 26:261–300.

    Article  CAS  PubMed  Google Scholar 

  • Ragsdale SW, Kumar M. 1996. Nickel-containing carbon monoxide dehydroge nase/acetyl-CoA synthase. Chem Rev 96:2515–39.

    Article  CAS  PubMed  Google Scholar 

  • Rahlfs S, Aufurth S, Müller V. 1999. The Na+-F1F0-ATPase operon from Acetobacterium woodii: operon structure and presence of multiple copies of atpE, which encode proteolipids of 8-and 18-kDa. J Biol Chem 274:33999–4004.

    Article  CAS  PubMed  Google Scholar 

  • Redlinger J, Müller V. 1994. Purification of ATP synthase from Acetobacterium woodii and identification as a Na+-translocating F1F0 type enzyme. Eur J Biochem 223:275–83.

    Article  Google Scholar 

  • Romao CV, Liu MY, LeGall J, et al. 1999. The superoxide dismutase activity of desulfoferrodoxin from Desulfovibrio desulfuricans ATCC 2777 4. Eur J Biochem 261:438–43.

    Article  CAS  PubMed  Google Scholar 

  • Seifritz C, Daniel SL, Gößner A, Drake HL. 1993. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum. J Bacteriol 175:8008–13.

    CAS  PubMed  Google Scholar 

  • Senior AE. 1988. ATP synthesis by oxidative phosphorylation. Physiol Rev 68:177–231.

    CAS  PubMed  Google Scholar 

  • Thauer RK, Jungermann K, Decker K. 1977. Energy conservation in chemotrophic bacteria. Bacteriol Rev 41:100–80.

    CAS  PubMed  Google Scholar 

  • Voodrouw JK, Voodrouw G. 1998. Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulvovibrio vulgaris Hildenborough. Appl Environ Microbiol 64:2882–7.

    Google Scholar 

  • Wasserfallen A, Huber K, Leisinger T. 1995. Purification and structural characterization of a flavoprotein induced by iron limitation in Methanobacterium thermoautotrophicum Marburg. J Bacteriol 177:2436–41.

    CAS  PubMed  Google Scholar 

  • Wood HG, Ljungdahl LG. 1991. Autotrophic character of the acetogenic bacteria. In: Shively JM, Barton LL, editors. Variations of autotrophic life. New York: Academic Press. p 201–50.

    Google Scholar 

  • Yang S-S, Ljungdahl LG, Dervartanian DV, Watt GD. 1980. Isolation of two rubredoxins from Clostridium thermoaceticum. Biochim Biophys Acta 590:24–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Das, A., Ljungdahl, L.G. (2003). Electron-Transport System in Acetogens. In: Ljungdahl, L.G., Adams, M.W., Barton, L.L., Ferry, J.G., Johnson, M.K. (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, NY. https://doi.org/10.1007/0-387-22731-8_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-22731-8_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95592-6

  • Online ISBN: 978-0-387-22731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics