Skip to main content

Conclusions

One-carbon reactions play large roles in the two major pathways for methane formation in nature. Several of the enzymes catalyzing these reactions have novel features, contributing to a larger understanding of biochemistry and microbial biology. The crystal structures for many of these enzymes are known, providing insight into the reaction mechanisms. The entire sequence of the genomes of several CO2-reducing and acetatefermenting methanoarchaea have been published or are nearing completion, an advance that will surely lead to the identification of still more novel proteins and enzymes involved in these pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Afting C, Hochheimer A, Thauer RK. 1998. Function of H2-forming methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum in coenzyme F420 reduction with H2. Arch Microbiol 169:206–10.

    Article  CAS  PubMed  Google Scholar 

  • Afting C, Kremmer E, Brucker C, et al. 2000. Regulation of the synthesis of H2-forming methylenetetrahydromethanopterin dehydrogenase (Hmd) and of HmdII and HmdIII in Methanothermobacter marburgensis. Arch Microbiol 174: 225–32.

    Article  CAS  PubMed  Google Scholar 

  • Alber BE, Colangelo CM, Dong J, et al. 1999. Kinetic and spectroscopic characterization of the gamma carbonic anhydrase from the methanoarchaeon Methanosarcina thermophila. Biochemistry 38:13119–28.

    Article  CAS  PubMed  Google Scholar 

  • Allen JR, Clark DD, Krum JG, Ensign SA. 1999. A role for coenzyme M (2-mercaptoethanesulfonic acid) in a bacterial pathway of aliphatic epoxide carboxylation. Proc Natl Acad Sci USA 96:8432–7.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Bartoschek S, Vorholt JA, Thauer RK, et al. 2000. N-carboxymethanofuran (carbamate) formation from methanofuran and CO2 in methanogenic archaea. Thermodynamics and kinetics of the spontaneous reaction. Eur J Biochem 267: 3130–8.

    Article  CAS  PubMed  Google Scholar 

  • Bult CJ, White O, Olsen GJ, et al. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273:1058–73.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Buss KA, Cooper DR, Ingram-Smith C, et al. 2001. Urkinase: structure of acetate kinase, a member of the ASKHA superfamily of phosphotransferases. J Bacteriol 183:680–6.

    Article  CAS  PubMed  Google Scholar 

  • Buurman G, Shima S, Thauer RK. 2000. The metal-free hydrogenase from methanogenic archaea: evidence for a bound cofactor. FEBS Lett 485:200–4.

    Article  CAS  PubMed  Google Scholar 

  • Ermler U, Grabarse W, Shima S, et al. 1997. Crystal structure of methyl-coenzyme M reductase: the key enzyme of biological methane formation. Science 278:1457–62.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Ferry JG. 1999. Enzymology of one-carbon metabolism in methanogenic pathways. FEMS Microbiol Rev 23:13–38.

    Article  CAS  PubMed  Google Scholar 

  • Gottschalk G, Thauer RK. 2001. The Na+ translocating methyltransferase complex from methanogenic. Archaea Biochim Biophys Acta 1505:28–36.

    Article  CAS  Google Scholar 

  • Grabarse WG, Mahlert F, Shima S, et al. 2000. Comparison of three methylcoenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J Mol Biol 303:329–44.

    Article  CAS  PubMed  Google Scholar 

  • Grabarse W, Vaupel M, Vorholt JA, et al. 1999. The crystal structure of methenyltetrahydromethanopterin cyclohydrolase from the hyperthermophilic archaeon Methanopyrus kandleri. Structure Fold Des 7:1257–68.

    Article  CAS  PubMed  Google Scholar 

  • Hippler B, Thauer RK. 1999. The energy conserving methyltetrahydromethanopterin:coenzyme M methyltransferase complex from methanogenic archaea: function of the subunit MtrH. FEBS Lett 449:165–8.

    Article  CAS  PubMed  Google Scholar 

  • Ingram-Smith C, Barber RD, Ferry JG. 2000. The role of histidines in the acetate kinase from Methanosarcina thermophila. J Biol Chem 275:33765–70.

    Article  CAS  PubMed  Google Scholar 

  • Iverson TM, Alber BE, Kisker C, et al. 2000. A closer look at the active site of gamma-carbonic anhydrases: high resolution crystallographic studies of the carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39:9222–31.

    Article  CAS  PubMed  Google Scholar 

  • Johnson JL, Bastian NR, Schauer NL, et al. 1991. Identification of molybdopterin guanine dinucleotide in formate dehydrogenase from Methanobacterium formicicum. FEMS Microbiol Lett 77:2–3.

    Article  Google Scholar 

  • Kisker C, Schindelin H, Alber BE, et al. 1996. A left-handed beta-helix revealed by the crystal structure of a carbonic anhydrase from the archaeon Methanosarcina thermophila. EMBO J 15:2323–30.

    CAS  PubMed  Google Scholar 

  • Maden BEH. 2000. Tetrahydrofolate and tetrahydromethanopterin compared: functionally distinct carriers in C-1 metabolism. Biochem J 350:609–29.

    Article  CAS  PubMed  Google Scholar 

  • Murakami E, Ragsdale SW. 2000. Evidence for intersubunit communication during acetyl-CoA cleavage by the multienzyme CO dehydrogenase/acetyl-CoA synthase complex from Methanosarcina thermophila. Evidence that the beta subunit catalyzes C-C and C-S bond cleavage. J Biol Chem 275:4699–707.

    Article  CAS  PubMed  Google Scholar 

  • Schafer G, Engelhard M, Muller V. 1999. Bioenergetics of the Archaea. Microbiol Mol Biol Rev 63:570–620.

    CAS  PubMed  Google Scholar 

  • Selmer T, Kahnt J, Goubeaud M, et al. 2000. The biosynthesis of methylated amino acids in the active site region of methyl-coenzyme M reductase. J Biol Chem 275:3755–60.

    Article  CAS  PubMed  Google Scholar 

  • Shima S, Warkentin E, Grabarse W, et al. 2000. Structure of coenzyme F420 dependent methylenetetrahydromethanopterin reductase from two methanogenic Archaea. J Mol Biol 300:935–50.

    Article  CAS  PubMed  Google Scholar 

  • Singh-Wissmann K, Ingram-Smith C, Miles RD, Ferry JG. 1998. Identification of essential glutamates in the acetate kinase from Methanosarcina thermophila. J Bacteriol 180:1129–34.

    CAS  PubMed  Google Scholar 

  • Singh-Wissmann K, Miles RD, Ingram-Smith C, Ferry JG. 2000. Identification of essential arginines in the acetate kinase from Methanosarcina thermophila. Biochemistry 39:3671–7.

    Article  CAS  PubMed  Google Scholar 

  • Smith D, Doucette-Stamm RLA, Deloughery C, et al. 1997. Complete genome sequence of Methanobacterium thermoautotrophicum DH: functional analysis and comparative genomics. J Bacteriol 179:7135–55.

    CAS  PubMed  Google Scholar 

  • Smith KS, Ferry JG. 1999. A plant-type (beta-class) carbonic anhydrase in the thermophilic methanoarchaeon Methanobacterium thermoautotrophicum. J Bacteriol 181:6247–53.

    CAS  PubMed  Google Scholar 

  • Smith KS, Cosper NJ, Stalhandske C, et al. 2000. Structural and kinetic characterization of an archaeal beta-class carbonic anhydrase. J Bacteriol 182:6605–13.

    Article  CAS  PubMed  Google Scholar 

  • Smith KS, Jakubzick C, Whittam TC, Ferry JG. 1999. Carbonic anhydrase is an ancient enzyme widespread in prokaryotes. Proc Natl Acad Sci USA 96:15184–9.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Strop P, Smith KS, Iverson TM, et al. 2001. Crystal structure of the “cab”-type beta class carbonic anhydrase from the archaeon Methanobacterium thermoau totrophicum. J Biol Chem 276:10299–305.

    Article  CAS  PubMed  Google Scholar 

  • Thauer RK. 1998. Biochemistry of methanogenesis: a tribute to Marjory Stephenson Microbiology 144:2377–406.

    CAS  Google Scholar 

  • Tripp BC, Ferry JG. 2000. A structure-function study of a proton transport pathway in a novel gamma-class carbonic anhydrase from Methanosarcina thermophila. Biochemistry 39:9232–40.

    Article  CAS  PubMed  Google Scholar 

  • Vorholt JA, Chistoserdova L, Stolyar SM, et al. 1999. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–7.

    CAS  PubMed  Google Scholar 

  • Vorholt JA, Vaupel M, Thauer RK. 1996. A polyferredoxin with eight [4Fe-4S] clusters as a subunit of molybdenum formylmethanofuran dehydrogenase from Methanosarcina barkeri. Eur J Biochem 236:309–17.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Hagemeier CH, Chistoserdova L, Lidstrom ME, et al. 2000. Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–9.

    Article  CAS  PubMed  Google Scholar 

  • Pomper BK, Vorholt JA, Chistoserdova L, et al. 1999. A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1. Eur J Biochem 261:475–80.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ferry, J.G. (2003). One-Carbon Metabolism in Methanogenic Anaerobes. In: Ljungdahl, L.G., Adams, M.W., Barton, L.L., Ferry, J.G., Johnson, M.K. (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, NY. https://doi.org/10.1007/0-387-22731-8_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-22731-8_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95592-6

  • Online ISBN: 978-0-387-22731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics