Skip to main content

Conclusion

Some aspects of the proposed Rbr/Rbo oxidative stress defense system in D. vulgaris resemble those recently suggested for oxidative stress protection in the anaerobic hyperthermophilic archaeon Pyrococcus furiosus(Jenney et al. 1999). Pyrococcus furiosus contains an Nlr-like protein with superoxide reductase activity as well as an Rbr, the genes for which are tandemly located. The microorganismic segregation of SOD/catalase between aerobes and anaerobes appears to be less distinct than for Rbo/Rbr, which, as noted above, have so far been found only in air-sensitive microbes (Kirschvink et al. 2000). The latter segregation suggests that the Rbo/Rbr oxidative stress protection system is well suited to protection of anaerobic life in an aerobic world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alban PS, Krieg NR. 1998. A hydrogen peroxide resistant mutant of Spirillum volutans has NADH peroxidase activity but no increased oxygen tolerance. Can J Microbiol 44:87–91.

    Article  CAS  Google Scholar 

  • Alban PS, Popham DL, Rippere KE, Krieg NR. 1998. Identification of a gene for a rubrerythrin/nigerythrin-like protein from Sprillum volutans by using amino acid sequence data from mass spectrometry and NH2-terminal sequencing. J Appl Microbiol 85:875–82.

    Article  CAS  PubMed  Google Scholar 

  • Bielski BHJ, Cabelli D. 1991. Highlights of current research involving superoxide and perhydroxyl radicals in aqueous solution. Int J Radiat Biol 59:291–319.

    Article  CAS  PubMed  Google Scholar 

  • Brumlik MJ, Voordouw G. 1989. Analysis of the transcriptional unit encoding the genes for rubredoxin (rub) and a putative rubredoxin oxidoreductase (rbo) in Desulfovibrio vulgaris (Hildenborough). J Bacteriol 171:4996–5004.

    CAS  PubMed  Google Scholar 

  • Bsat N, Herbig A, Casillas-Martinez L, et al. 1998. Bacillus subtilis contains multiple Fur homologues: identification of the iron uptake (Fur) and peroxide regulon (PerR) repressors. Mol Microbiol 29:189–98.

    Article  CAS  PubMed  Google Scholar 

  • Chung H-J, Choi J-H, Kim E-J, et al. 1999. Negative regulation of the gene for Fe-containing superoxide dismutase by an Ni-responsive factor in Streptomyces coelicolor. J Bacteriol 181:7381–4.

    CAS  PubMed  Google Scholar 

  • Coehlo AV, Matias P, Fülop V, et al. 1997. Desulfoferrodoxin structure determined by MAD phasing and refinement to 1.9-Å reveals a unique combination of a tetrahedral FeS4 centre with a square pyramidal FeSN4 centre. J Biol Inorg Chem 2:680–9.

    Article  Google Scholar 

  • Coulter ED, Emerson JP, Kurtz DM, Jr, Cabelli DE. 2000a. Superoxide reactivity of rubredoxin oxidoreductase (desulfoferrodoxin) from Desulfovibrio vulgaris: a pulse radiolysis study. J Am Chem Soc 122:11555–6.

    Article  CAS  Google Scholar 

  • Coulter ED, Shenvi NV, Beharry Z, et al. 2000b. Rubrerythrin-catalyzed substrate oxidation by dioxygen and hydrogen peroxide. Inorg Chim Acta 297:231–4.

    Article  CAS  Google Scholar 

  • Coulter ED, Shenvi NV, Kurtz DM, Jr. 1999. NADH peroxidase activity of rubrerythrin. Biochem Biophys Res Commun 255:317–23.

    Article  CAS  PubMed  Google Scholar 

  • Cypionka H. 2000. Oxygen respiration by Desulfovibrio species. Annu Rev Microbiol 54:827–48.

    Article  CAS  PubMed  Google Scholar 

  • Das A, Coulter ED, Kurtz DM Jr, Ljungdahl LG. 2001. Five-gene cluster in Clostridium thermoaceticum consisting of two divergent operons encoding rubredoxin oxidoreductase-rubredoxin and rubrerythrin-type A flavoprotein-high-molecular-weight Rubredoxin. J Bacteriol 183:1560–7.

    Article  CAS  PubMed  Google Scholar 

  • Deckers HM, Voordouw G. 1996. The dcr gene family of Desulfovibrio: implications from the sequence of dcrH and phylogenetic comparison with other mcp genes. Antonie Leeuwenhoek 70:21–9.

    Article  CAS  PubMed  Google Scholar 

  • deMaré F, Kurtz DM Jr, Nordlund P. 1996. The structure of Desulfovibrio vulgaris rubrerythrin reveals a unique combination of rubredoxin-like FeS4 and ferritin-like diiron domains. Nat Struct Biol 3:539–46.

    Article  PubMed  Google Scholar 

  • Dos Santos WG, Pacheco I, Liu MY, et al. 2000. Purification and characterization of an iron superoxide dismutase and a catalase from the sulfate-reducing bac-terium Desulfovibrio gigas. J Bacteriol 182:796–804.

    Article  PubMed  Google Scholar 

  • Fu R, Voordouw G. 1997. Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Microbiology 143:1815–26.

    Article  CAS  PubMed  Google Scholar 

  • Frazão C, Silva G, Gomes CM, et al. 2000. Structure of a dioxygen reduction enzyme from Desulfovibrio gigas. Nat Struct Biol 7:1041–5.

    Article  PubMed  Google Scholar 

  • Gort AS, Imlay JA. 1998. Balance between endogenous superoxide stress and antioxidant defenses. J Bacteriol 180:1402–10.

    CAS  PubMed  Google Scholar 

  • Hatchikian CE, LeGall J, Bell GR. 1977. Significance of superoxide dismutase and catalase activities in the strict anaerobes, sulfate-reducing bacteria. In: Michael AM, McCord JM, Fridovich I, editors. Superoxide and superoxide dismutase. New York: Academic Press. p 159–72.

    Google Scholar 

  • Imlay KRC, Imlay JA. 1996. Cloning and analysis of sodC, encoding the copper-zinc superoxide dismutase of Escherichia coli. J Bacteriol 178:2564–71.

    CAS  PubMed  Google Scholar 

  • Jenney FE Jr, Verhagen MJM, Cui X, Adams MWW. 1999. Anaerobic microbes: oxygen detoxification without superoxide dismutase Science. 286:306–9.

    CAS  Google Scholar 

  • Johnson MS, Zhulin IB, Gapuzan ME, Taylor BL. 1997. Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J Bacteriol 179:5598–601.

    CAS  PubMed  Google Scholar 

  • Jurica MS, Stoddard BL. 1998. Mind your B’s and R’s: bacterial chemotaxis, signal transduction and protein recognition. Structure 6:809–13.

    Article  CAS  PubMed  Google Scholar 

  • Kirschvink JL, Gaidos EJ, Bertani LE, et al. 2000. Paleoproterozoic snowball earth: extreme climatic and geochemical global change and its biological consequences. Proc Nat Acad Sci USA 97:1400–5.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Liochev SI, Fridovich I. 1997. A mechanism for complementation of the sodA sodBdefect in Escherichia coli by overproduction of the rbo gene product (desulfo-ferrodoxin) from Desulfoarculus baarsii. J Biol Chem 272:25573–5.

    Article  CAS  PubMed  Google Scholar 

  • Loewen PC, Klotz MG, Hassett DJ. 2000. Catalase-an “old” enzyme that continues to surprise us. ASM News 66:76–82.

    Google Scholar 

  • Lombard M, Fontecave M, Touati D, Niviere V. 2000. Reaction of the desulfoferrodoxin from Desulfoarculus baarsii with superoxide anion. Evidence for a superoxide reductase activity. J Biol Chem 275:115–21.

    Article  CAS  PubMed  Google Scholar 

  • Lumppio HL, Shenvi NV, Garg RP, et al. 1997. A rubrerythrin operon and nigerythrin gene in Desulfovibrio vulgaris (Hildenborough). J Bacteriol 179:4607–15.

    CAS  PubMed  Google Scholar 

  • Lumppio HL, Shenvi NV, Summers AO, et al. 2001. Rubrerythrin and rubredoxin oxidoreductase in Desulfovibrio vulgaris. A novel oxidative stress protection system. J Bacteriol 183:101–8.

    Article  CAS  PubMed  Google Scholar 

  • Marschall C, Frenzel P, Cypionka H. 1993. Influence of oxygen on sulfate reduction and growth of sulfate-reducing bacteria. Arch Microbiol 159:168–73.

    Article  CAS  Google Scholar 

  • Moura I, Tavares P, Moura JJ, et al. 1990. Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center. J Biol Chem 265:21596–602.

    CAS  PubMed  Google Scholar 

  • Mowbray SL, Sandgren MO. 1998. Chemotaxis receptors: a progress report on structure and function. J Struct Biol 124:257–75.

    Article  CAS  PubMed  Google Scholar 

  • Pianzzola MJ, Soubes M, Touati D. 1996. Overproduction of the rbo gene product from Desulfovibrio species suppresses all deleterious effects of lack of superoxide dismutase in Escherichia coli. J Bacteriol 178:6736–42.

    CAS  PubMed  Google Scholar 

  • Pierik AJ, Wolbert RBG, Portier GL, et al. 1993. Nigerythrin and rubrerythrin from Desulfovibrio vulgaris each contain two mononuclear iron centers and two dinuclear iron clusters. Eur J Biochem 212:237–45.

    Article  CAS  PubMed  Google Scholar 

  • Rocha ER, Smith CJ. 1998. Characterization of a peroxide-resistant mutant of the anaerobic bacterium Bacteroides fragilis. J Bacteriol 180:5906–12.

    CAS  PubMed  Google Scholar 

  • Sayle R, Milner-White EJ. 1995. RASMOL-Biomolecular graphics for all. Trends Biochem Sci 20:374–6.

    Article  CAS  PubMed  Google Scholar 

  • Silva G, Oliveira S, Gomes CM, et al. 1999. Desulfovibrio gigas neelaredoxin. A novel superoxide dismutase integrated in a putative oxygen sensory operon of an anaerobe. Eur J Biochem 259:235–43.

    Article  CAS  PubMed  Google Scholar 

  • Stenkamp RE. 1994. Dioxygen and hemerythrin. Chem Rev 94:715–26.

    Article  CAS  Google Scholar 

  • Storz G, Imlay JA. 1999. Oxidative stress. Curr Opin Microbiol 2:188–94.

    Article  CAS  PubMed  Google Scholar 

  • Touati D. 2000. Iron and oxidative stress in bacteria. Arch Biochem Biophys 373: 1–6.

    Article  CAS  PubMed  Google Scholar 

  • van Niel EWJ, Gottschal JC. 1998. Oxygen consumption by Desulfovibrio strains with and without polyglucose. Appl Environ Microbiol 64:1034–9.

    PubMed  Google Scholar 

  • Voordouw JK, Voordouw G. 1998. Deletion of the rbo gene increases the oxygen sensitivity of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Appl Environ Microbiol 64:2882–7.

    CAS  PubMed  Google Scholar 

  • Xiong J, Kurtz DM Jr, Ai J, Sanders-Loehr J. 2000. A hemerythrin-like domain in a bacterial chemotaxis protein. Biochemistry 39:5117–25.

    Article  CAS  PubMed  Google Scholar 

  • Zámocky M, Koller F. 1999. Understanding the structure and function of catalases: clues from molecular evolution and in vitro mutagenesis. Prog Biophys Mol Biol 72:19–66.

    Article  PubMed  Google Scholar 

  • Zou P-J, Borovok I, Ortiz de Orué Lucana D, et al. 1999. The mycelium-associated Streptomyces reticuli catalase-peroxidase, its gene and regulation by FurS. Microbiology 145:549–59.

    Article  CAS  PubMed  Google Scholar 

Suggested Reading

  • Deckers HM, Voordouw G. 1994. Identification of a large family of genes for putative chemoreceptor proteins in an ordered library of the Desulfovibrio vulgaris Hildenborough genome. J Bacteriol 176:351–8.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kurtz, D.M. (2003). Oxygen and Anaerobes. In: Ljungdahl, L.G., Adams, M.W., Barton, L.L., Ferry, J.G., Johnson, M.K. (eds) Biochemistry and Physiology of Anaerobic Bacteria. Springer, New York, NY. https://doi.org/10.1007/0-387-22731-8_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-22731-8_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95592-6

  • Online ISBN: 978-0-387-22731-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics