Skip to main content

Influence of Rotational Cues on the Neural Processing of Gravito-Inertial Force

  • Chapter
Levels of Perception

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Angelaki, D. (1998). Three dimensional organization of otolith-ocular reflexes in rhesus monkeys. III. Responses to translation. J. Neurophysiol., 80: 680–695.

    CAS  PubMed  Google Scholar 

  • Angelaki, D. and Hess, B. (1994). Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. J. Neurophysiol., 71: 1222–1249.

    CAS  PubMed  Google Scholar 

  • Angelaki, D., McHenry, M., Dickman, J. D., Newlands, S. and Hess, B. (1999). Computation of inertial motion: neural strategies to resolve ambiguous otolith information. J. Neurosci., 19: 316–327.

    CAS  PubMed  Google Scholar 

  • Angelaki, D., Wei, M. and Merfeld, D. (2001). Vestibular discrimination of gravity and translational acceleration. Ann. New York Acad. Sci., 942: 114–127.

    Article  CAS  Google Scholar 

  • Asch, S. and Witkin, H. (1948). Studies in space orientation: I. Perception of the upright with displaced visual fields. J. Exp. Psych., 38: 325–337.

    CAS  Google Scholar 

  • Baarsma, E. and Collewijn, H (1975). Eye movements due to linear accelerations in the rabbit. J. Physiol., 245: 227–247.

    CAS  PubMed  Google Scholar 

  • Baloh, R., Beykirch, K., Honrubia, V. and Yee, R. (1988). Eye movements induced by linear acceleration on a parallel swing. J. Neurophysiol., 60: 2000–2013.

    CAS  PubMed  Google Scholar 

  • Benson, A. (1974). Modification of the response to angular accelerations by linear accelerations. In H. Kornhuber (ed.), Handbook of Sensory Physiology. Volume VI, Vestibular System Part 2: Psychophysics, Applied Aspects and General Interpretations, pp. 281–320. New York: Springer-Verlag.

    Google Scholar 

  • Benson, A. and Bodin, M. (1966). Comparison of the effect of the direction of the gravitational acceleration on post-rotational responses in yaw, pitch, and roll. Aerospace Med., 37: 889–897.

    CAS  PubMed  Google Scholar 

  • Benson, A. J., Spencer, M. B. and Stott, J. R. (1986). Thresholds for the detection of the direction of whole-body, linear movement in the horizontal plane. Aviat. Space Environ. Med., 57: 1088–96.

    CAS  PubMed  Google Scholar 

  • Borah, J., Young, L. R. and Curry, R. E. (1988). Optimal estimator model for human spatial orientation. Annals New York Acad. Sci., 545: 51–73.

    CAS  Google Scholar 

  • Brandt, T., Dichgans, J. and Buchle, W. (1974). Motion habituation: inverted self-motion perception and optokinetic after-nystagmus. Exp. Brain Res., 21: 337–352.

    Article  CAS  PubMed  Google Scholar 

  • Brandt, T., Dichgans, J. and Koenig, E. (1973). Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res., 16: 476–491.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter-Smith, T. R., Futamura, R. G. and Parker, D. E. (1995). Inertial acceleration as a measure of linear vection: an alternative to magnitude estimation. Percept. Psychophys., 57: 35–42.

    CAS  PubMed  Google Scholar 

  • Citek, K. and Ebenholtz, S. (1996). Vertical and horizontal eye displacement during static pitch and roll postures. J. Vestib. Res., 6: 213–228.

    Article  CAS  PubMed  Google Scholar 

  • Clark, B. and Graybiel, A. (1963). Contributing factors in the perception of the oculogravic illusion. Am. J. Psych., 76: 18–27.

    Article  CAS  Google Scholar 

  • Clark, B. and Graybiel, A. (1966). Factors contributing to the delay in the perception of the oculogravic illusion. Am. J. Pysch., 79: 377–388.

    Article  CAS  Google Scholar 

  • Curthoys, I. (1996). The delay of the oculographic illusion. Brain Res. Bull., 40: 407–412.

    Article  CAS  PubMed  Google Scholar 

  • Darlot, C., Zupan, L., Etard, O., Denise, P. and Maruani, A. (1996). Computation of inverse dynamics for the control of movements. Biol. Cybern.. 75: 173–186.

    Article  CAS  PubMed  Google Scholar 

  • Dichgans, J., Held, R., Young, L. R. and Brandt, T. (1972). Moving visual scenes influence the apparent direction of gravity. Science, 178: 1217–1219.

    CAS  PubMed  Google Scholar 

  • Droulez, J. and Darlot, C. (1989). The geometric and dynamic implications of the coherence constraints in three-dimensional sensorimotor interactions. In M. Jeannerod (ed.), Attention and Performance XIII, pp. 495–526. New York: Erlbaum.

    Google Scholar 

  • Foster, D. and Bischof, W. (1991). Thresholds from psychometric functions: superiority of bootstrap to incremental and probit variance estimators. Psych. Bull., 109: 152–159.

    Article  Google Scholar 

  • Galiana, H. and Outerbridge, J. (1984). A bilateral model for central neural pathways in the vestibulo-ocular reflex. J. Neurophysiol., 51: 210–241.

    CAS  PubMed  Google Scholar 

  • Gelb, A. (1974). Applied Optimal Estimation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Glasauer, S. (1992). Interaction of semicircular canals and otoliths in the processing structure of the subjective zenith. Ann. New York Acad. Sci., 656: 847–849.

    CAS  Google Scholar 

  • Glasauer, S. and Merfeld, D. (1997). Modelling three dimensional vestibular responses during complex motion stimulation. In M. Fetter, H. Misslisch, D. Tweed and T. Halswanter (eds.), Three-Dimensional Kinematics of Eye, Head, and Limb Movements, pp. 389–400, Amsterdam: Harwood Academic Publishers GMBH.

    Google Scholar 

  • Glasauer, S. and Mittelstaedt, H. (1992). Determinants of orientation in microgravity. Acta Astronautica, 27: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, J. and Fernandez, C. (1982). Eye movements and vestibular-nerve responses produced in the squirrel monkey by rotations about an Earth-horizontal axis. Exp. Brain Res., 46: 393–402.

    Article  CAS  PubMed  Google Scholar 

  • Grant, J. and Best, W. (1986). Mechanics of the otolith organ — dynamic response. Ann. Biomed. Engineer., 14: 241–256.

    CAS  Google Scholar 

  • Graybiel, A. and Brown, R. (1951). The delay in visual reorientation following exposure to a change in direction of resultant force on a human centrifuge. J. Gen. Psych., 45: 143–150.

    Article  Google Scholar 

  • Green, A. and Galiana, H. (1998). Hypothesis for shared central processing of canal and otolith signals. J. Neurophys., 80: 2222–2228.

    CAS  Google Scholar 

  • Guedry, F. (1965). Orientation of the rotation-axis relative to gravity; its influence on nystagmus and the sensation of rotation. Acta Otolaryngol., 60: 30–49.

    PubMed  Google Scholar 

  • Hain, T. C. (1986). A model of the nystagmus induced by off vertical axis rotation. Biol. Cyber., 54: 337–350.

    Article  CAS  Google Scholar 

  • Held, R., Dichgans, J. and Bauer, J. (1975). Characteristics of moving visual scenes influencing spatial orientation. Vis. Res., 15: 357–365.

    Article  CAS  PubMed  Google Scholar 

  • Hess, B. J. and Angelaki, D. E. (1999). Oculomotor control of primary eye position discriminates between translation and tilt. J. Neurophysiol., 81: 394–398.

    CAS  PubMed  Google Scholar 

  • Holly, J. E. (2000). Baselines for three-dimensional perception of combined linear and angular self-motion with changing rotational axis. J. Vestib. Res., 10: 163–178.

    CAS  PubMed  Google Scholar 

  • Howard, I. P. and Childerson, L. (1994). The contribution of motion, the visual frame, and visual polarity to sensations of body tilt. Perception, 23: 753–762.

    CAS  PubMed  Google Scholar 

  • Howard, I. P. and Heckmann, T. (1989). Circular vection as a function of the relative sizes, distances, and positions of two competing visual displays. Perception, 18: 657–665.

    CAS  PubMed  Google Scholar 

  • Huang, J. and Young, L. R. (1988). Visual field influence on manual roll and pitch stabilization. Aviation, Space, and Environ. Med., 59: 611–619.

    CAS  Google Scholar 

  • Kuo, A. D. (1997). An optimal control model of human balance: can it provide theoretical insight to neural control of movement? Proc. American Control Conference, FA08, pp. 4–8. Albuquerque, NM: IEEE.

    Google Scholar 

  • Kuo, A. D. and Henry, S. M (1997). Adaptive filter model of vestibulo-ocular reflex accounts for velocity storage. Soc. for Neurosci., 18: 509.

    Google Scholar 

  • Lansberg, M., Guedry, F. and Graybiel, A. (1965). Effect of changing resultant linear acceleration relative to the subject on nystagus generated by angular acceleration. Aero. Med., 36: 456–460.

    Google Scholar 

  • Mayne, R. (1974). A systems concept of the vestibular organs. In H. Kornhuber (Ed.), Handbook of Sensory Physiology, Vol. VI. Vestibular System, Part 2. Psychophysics, Applied Aspects and General Interpretations, pp. 493–580. New York: Springer-Verlag

    Google Scholar 

  • McCabe, B. (1964). Nystagmus response of the otolith organs. Laryngoscope, 74: 372–381.

    CAS  PubMed  Google Scholar 

  • McRuer, D. and Weir, D. (1969). Theory of manual vehicular control. Ergonomics, 12: 599–633.

    CAS  PubMed  Google Scholar 

  • Merfeld, D. M. (1990). Spatial orientation in the squirrel monkey: an experimental and theoretical investigation. Ph.D. Thesis, MIT.

    Google Scholar 

  • Merfeld, D. M. (1995a). Modeling human vestibular responses during eccentric rotation and off vertical axis rotation. Acta Oto-Laryngologica (Supp.), 520: 354–359.

    Google Scholar 

  • Merfeld, D. M. (1995b). Modeling the vestibulo-ocular reflex of the squirrel monkey during eccentric rotation and roll tilt. Exp. Brain Res., 106: 123–134.

    CAS  PubMed  Google Scholar 

  • Merfeld, D. (1996). Effect of space flight on ability to sense and control roll tilt: human neurovestibular studies on SLS-2. J. Appl. Physiol., 81: 50–57.

    CAS  PubMed  Google Scholar 

  • Merfeld, D., Teiwes, W., Clarke, A., Scherer, H. and Young, L. R. (1996). The dynamic contributions of the otolith organs to human ocular torsion. Exp. Brain Res., 110: 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Merfeld, D. M. and Young, L. R. (1995). The vestibulo-ocular reflex of the squirrel mon-key during eccentric rotation and roll tilt. Exp. Brain Res., 106: 111–122.

    CAS  PubMed  Google Scholar 

  • Merfeld, D. M., Young, L. R., Oman, C. and Shelhamer, M. (1993a). A multi-dimensional model of the effect of gravity on the spatial orientation of the monkey. J. Vest. Res., 3: 141–161.

    CAS  Google Scholar 

  • Merfeld, D. M., Young, L. R., Paige, G. Tomko, D. (1993b). Three dimensional eye movements of squirrel monkeys following post-rotatory tilt. J. Vestib. Res., 3: 123–139.

    CAS  PubMed  Google Scholar 

  • Merfeld, D. M. and Zupan, L. H. (2002). Neural Processing of Gravito-Inertial Cues in Humans. III. Modeling tilt and translation responses. J. Neurophysiol., 87: 819–833.

    CAS  PubMed  Google Scholar 

  • Merfeld, D. M., Zupan, L. H. and Gifford, C. A. (2001). Neural Processing of gravitoinertial cues in humans. II. Influence of the semicircular canals during eccentric rotation. J. Neurophysiol., 85: 1648–1660.

    CAS  PubMed  Google Scholar 

  • Merfeld, D. M., Zupan, L. and Peterka, R. (1999). Humans use internal models to estimate gravity and linear acceleration. Nature, 398: 615–618.

    Article  CAS  PubMed  Google Scholar 

  • Mergner, T. and Becker, W. (1990). Perception of horizontal self-rotation: multisensory and cognitive aspects. In R. Warren and A. Wertheim (eds.), Perception & Control of Self-Motion, pp. 219–263. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Minor, L. and Goldberg, J. (1990). Influence of static head position on the horizontal nystagmus evoked by caloric, rotational and optokinetic stimulation in the squirrel monkey. Exp. Brain Res., 82: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Niven, J., Hixson, W. and Correia, M. (1966). Elicitation of horizontal nystagmus by periodic linear acceleration. Acta Otolaryngologica, 62: 429–441.

    CAS  Google Scholar 

  • Oman, C. (2002). Human Visual Orientation in Weightlessness. In L. Harris and M. Jenkin (eds.), Levels of Perception. New York: Springer Verlag. This volume.

    Google Scholar 

  • Ormsby, C. M. and Young, L. R. (1977). Integration of semicircular canal and otolith information for multisensory orientation stimuli. Math. Biosci., 34: 1–21.

    Article  Google Scholar 

  • Paige, G. (1985). Caloric responses after horizontal canal inactivation. Acta Otolaryngol, 100: 321–327.

    CAS  PubMed  Google Scholar 

  • Paige, G. (1989). The influence of target distance on eye movement responses during vertical linear motion. Exp. Brain Res., 77: 585–593.

    Article  CAS  PubMed  Google Scholar 

  • Paige, G. and Tomko, D. (1991). Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J. Neurophysiol., 65: 1170–1182.

    CAS  PubMed  Google Scholar 

  • Raphan, T., Cohen, B. and Henn, V. (1981). Effects of gravity on rotatory nystagmus in monkeys. Ann. NY Acad. Sci., 374: 44–55.

    CAS  PubMed  Google Scholar 

  • Raphan, T., Matsuo, V. and Cohen, B. (1977). A velocity storage mechanism responsible for optokinetic nystagmus (OKN), optokinetic after-nystagmus (OKAN) and vestibular nystagmus. In R. Baker and A. Berthoz (eds.), Control of Gaze by Brain Stem Neurons, Developments in Neuroscience, pp. 37–47. Elsevier/North Holland Biomedical Press.

    Google Scholar 

  • Robinson, D. (1977). Vestibular and optokinetic symbiosis: an example of explaining by modelling. In R. Baker and A. Berthoz (eds.), Control of Gaze by Brain Stem Neurons, Developments in Neuroscience, pp. 49–58. Elsevier/North-Holland Biomedical Press.

    Google Scholar 

  • Schor, C. M., Lakshminarayanan, V. and Narayan, V. (1984). Optokinetic and vection responses to apparent motion in man. Vis. Res., 24: 1181–1187.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, C., Busettini, C. and Miles, F. (1989). Ocular responses to linear motion are inversely proportional to viewing distance. Science, 245: 1394–1396.

    CAS  PubMed  Google Scholar 

  • Schwarz, C. and Miles, F. (1991). Ocular responses to translation and their dependence on viewing distance. I. Motion of the observer. J. Neurophysiol., 66: 851–864.

    CAS  PubMed  Google Scholar 

  • Seidman, S., Telford, L. and Paige, G. (1998). Tilt perception during dynamic linear acceleration. Exp. Brain Res., 119: 307–314.

    Article  CAS  PubMed  Google Scholar 

  • Skipper, J. and Barnes, G. (1989). Eye movements induced by linear acceleration are modified by visualisation of imaginary targets. Acta Otolaryngologica (Supp.), 468: 289–293.

    Article  CAS  Google Scholar 

  • Spiegel, M. (1972). Moving coordinate systems. In Theory and Problems of Theoretical Mechanics with an Introduction to Lagrange’s Equations and Hamiltonian Theory, pp. 144–159. New York: Schaum Publishing Company.

    Google Scholar 

  • Stephenson, S. B. (1993). Influence of the visual field on manual roll and lateral stabilization. M.Sc. Thesis, MIT, Boston, MA.

    Google Scholar 

  • Stockwell, C. and Guedry, F. (1970). The effect of semicircular canal stimulation during tilting on the subsequent perception of the visual vertical. Acta Oto-Laryngologica, 70: 170–175.

    CAS  PubMed  Google Scholar 

  • Telford, L., Seidman, S. and Paige, G. (1997). Dynamics of squirrel monkey linear vestibuloocular reflex and interactions with fixation distance. J. Neurophysiol., 78: 1775–1790.

    CAS  PubMed  Google Scholar 

  • Vieville, T. and Faugeras, O. (1990). Cooperation of the inertial and visual systems. In T. Henderson (ed.), Traditional and Non-traditional Robotic Sensors, Berlin: Springer-Verlag.

    Google Scholar 

  • von Holst, E. and Grisebach, E. (1951). Einfluss des Bogengangssystems auf die “subjektiv” Lotrechte beim Menschen. Naturwissenschaften, 38: 67–68.

    Article  Google Scholar 

  • Waespe, W. and Henn, V. (1977). Neuronal activity in the vestibular nuclei of the alert monkey during vestibular and optokinetic stimulation. Exp. Brain Res., 27: 523–538.

    Article  CAS  PubMed  Google Scholar 

  • Wall, C. (1987). Eye movements induced by gravitational force and by angular acceleration: their relationship. Acta Otolaryngologica, 104: 1–6.

    Google Scholar 

  • Wall, C., Merfeld, D. and Zupan, L. (1999). Effects of static orientation upon human optokinetic afternystagmus. Acta Otolaryngologica, 119: 16–23.

    Google Scholar 

  • Wearne, S., Raphan, T. and Cohen, B. (1999). Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. J. Neurophysiol., 81: 2175–2190.

    CAS  PubMed  Google Scholar 

  • Wilson, V. and Melvill Jones, G. (1979). Mammalian Vestibular Physiology. New York: Plenum.

    Google Scholar 

  • Wrigley, W., Hollister, W. and Denhard, W. (1969). Gyroscopic Theory, Design, and Instrumentation. Cambridge, MA: MIT Press.

    Google Scholar 

  • Young, L. R. (1967). Effects of linear acceleration on vestibular nystagmus. Proc. 3rd Symposium on the Role of the Vestibular Organs in Space Exploration, NASA SP-152, pp. 383–391. US Government Printing Office: Washington, DC.

    Google Scholar 

  • Young, L. R. (1984). Handbook of Physiology, Oxford: Oxford University Press.

    Google Scholar 

  • Zacharias, G. L. and Young, L. R. (1981). Influence of combined visual and vestibular cues on human perception and control of horizontal rotation. Exp. Brain Res., 41: 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, W., King, W. M., Tang, B. and Newlands, S. (1998). Characteristics of angular and linear motion signals in the macaque vestibular nuclei. Society for Neurosci., 24: 1744.

    Google Scholar 

  • Zhou, W., Tang, B. and King, W. M. (2000). Vestibular neurons encode linear translation and head tilt with respect to gravity. Society for Neurosci., 26: 1491.

    Google Scholar 

  • Zupan, L. (1995). Modélisation du Réflexe Vestibulo-Oculaire et Prédiction des Cinétoses. Ph.D. thesis, Ecole Nationale Supérieure des Télécommunications.

    Google Scholar 

  • Zupan, L., Droulez, J., Darlot, C., Denise, P. and Maruani, A. (1994). Modelization of vestibulo-Ooular reflex (VOR) and motion sickness prediction. In M. Marinaro and P. G. Morasso (Eds.), International Congress on Application of Neural Networks, pp. 106–109. Sorrento, Italy: Springer-Verlag.

    Google Scholar 

  • Zupan, L. and Merfeld, D. M. (2002). Neural processing of gravito-inertial cues in humans: IV. Influence of visual rotational cues during roll optokinetic stimulation. J. Neurophysiol., submitted.

    Google Scholar 

  • Zupan, L., Merfeld, D. M. and Darlot, C. (2002). Using sensory weighting to model the influence of canal, otolith and visual cues on spatial orientation and eye movements. Biol. Cyber., 86: 209–230.

    Article  CAS  Google Scholar 

  • Zupan, L., Peterka, R. and Merfeld, D. M. (2000). Neural processing of gravito-inertial cues in humans: I. Influence of the semicircular canals following post-rotatory tilt. J. Neurophysiol., 84: 2001–2015.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Merfeld, D.M., Zupan, L.H. (2003). Influence of Rotational Cues on the Neural Processing of Gravito-Inertial Force. In: Harris, L., Jenkin, M. (eds) Levels of Perception. Springer, New York, NY. https://doi.org/10.1007/0-387-22673-7_18

Download citation

  • DOI: https://doi.org/10.1007/0-387-22673-7_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95525-4

  • Online ISBN: 978-0-387-22673-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics