Skip to main content

Part of the book series: Applied Mathematical Sciences ((AMS,volume 135))

  • 1294 Accesses

Abstract

A prime characteristic of many flows of multicomponent materials is that there is uncertainty in the exact locations of the particular constituents at any particular time. For some predictions, this is not important. Often, we are concerned with more gross features of the motion. This means that, for equivalent macroscopic flows, there will be uncertainty in the locations of particular constituents for all times. For instance, consider a suspension of small particles in a liquid. If such a suspension is to be used in, for example, a falling ball viscometer, it might be mixed outside the viscometer, then placed in that device prior to the conduction of an experiment with a falling ball. In a properly conducted experiment, the particles would be approximately uniformly distributed in the fluid. However, there would be no assurance that a particular point in the fluid would contain a particle or not. Experiments conducted with nominally identical fluids in identical viscometers would yield identical gross results, even though the exact initial locations of the suspended particles in the two experiments were noticeably different. As another example, in a sedimenting suspension, the exact distribution of the locations of the particles is immaterial as long as they are reasonably “spread out.” We would not allow the particles to be lumped in some way that is not consistent with the initial conditions appropriate for the flow; neither would we allow the particles to be “paired” so that very near each particle is exactly one neighbor. A more interesting case is the set of all experiments with the same boundary conditions, and initial conditions with some (undefined) properties that we would like to associate with the mean and distribution of the particles and their velocities. We call this set an ensemble. Such ensembles are reasonable sets over which to perform averages because variations in the details of the flows are assured in all situations, while at the same time variations in the gross flows cannot occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Drew, D.A., Passman, S.L. (1999). Introduction. In: Theory of Multicomponent Fluids. Applied Mathematical Sciences, vol 135. Springer, New York, NY. https://doi.org/10.1007/0-387-22637-0_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-22637-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9227-9

  • Online ISBN: 978-0-387-22637-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics