Skip to main content

Skeletal Fragility in the Elderly

  • Chapter
Book cover Geriatric Medicine

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymous. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94:646–650.

    Google Scholar 

  2. Shane E, Rivas M, Staron MB, et al. Fracture after cardiac transplantation: a prospective longitudinal study. J Clin Endocrinol Metab. 1996;81:1740–1746.

    PubMed  CAS  Google Scholar 

  3. Shane E, Rivas M, McMahon DJ, et al. Bone loss and turnover after cardiac transplantation. J Clin Endocrinol Metab. 1997;82:1497–1506.

    PubMed  CAS  Google Scholar 

  4. Epstein S. Post transplantation bone disease: the role of immunosuppressive agents on the skeleton. J Bone Miner Res. 1996;11:1–7.

    PubMed  CAS  Google Scholar 

  5. Adebanjo OA, Blair H, Moonga BS, et al. Osteoclastic overactivity, cortical bone loss, reduced bone formation and muscle dysfunction in calcineurin A a deficient mice [abstract]. Proc Annu Meet Am Soc Bone Miner Res. 2000; 22:S189 (1203).

    Google Scholar 

  6. Looker AC, Orwoll ES, Johnston CC Jr, et al. Prevalence of low femoral bone density in older US adults from NHANES III. J Bone Miner Res. 1997;12:1761–1768.

    PubMed  CAS  Google Scholar 

  7. NIH Consensus Conference. Osteoporosis prevention, diagnosis and therapy. JAMA 2001;285:785–795.

    Google Scholar 

  8. Cooper C. Epidemiology of osteoporosis. Osteoporos Int 1999; Suppl 2:S2–S8.

    Google Scholar 

  9. Melton LJ III. Epidemiology of hip fractures: implications of the exponential increase with age. Bone. 1996;18(suppl 3): 121S–125S.

    PubMed  Google Scholar 

  10. Melton LJ III. How many women have osteoporosis now? J Bone Miner Res. 1995;10:175–177.

    PubMed  Google Scholar 

  11. Ray NF, Chan JK, Thamer M, et al. Medical expenditures for the treatment of osteoporotic fractures in the United States in 1995: report from the National Osteoporosis Foundation. J Bone Miner Res. 1997:12:24–35.

    PubMed  CAS  Google Scholar 

  12. Cooper C, Campion G, Melton LJ III. Hip fractures in the elderly: a worldwide projection. Osteoporosis Int. 1992; 2:285–289.

    CAS  Google Scholar 

  13. Bilezikian JP. Osteoporosis in men. J Clin Endocrinol Metabol. 1999;84:3431–3434.

    CAS  Google Scholar 

  14. Seeman B, Melton LJ, ’Fallon WM, et al. Risk factors for spinal osteoporosis in men. Am J Med 1983;75:977–983.

    PubMed  CAS  Google Scholar 

  15. Kelepouris N, Harper KD, Gannon F, et al. Severe osteoporosis in men. Ann Intern Med. 1995;123:452–460.

    PubMed  CAS  Google Scholar 

  16. DeLaet CEDH, VanHout BA, Burger H, et al, Hip fracture prediction in elderly men and women: validation in the Rotterdam Study. J Bone Miner Res. 1998;13: 1587–1593.

    PubMed  Google Scholar 

  17. Orwoll ES, Oviatt SK, McClung MR, et al. The rate of bone mineral loss in normal men and the effects of calcium and cholecalciferol supplementation. Ann Intern Med. 1990;112:29–34.

    PubMed  CAS  Google Scholar 

  18. Saag KG, Emkey R, Schnitzer TJ, et al. Alendronate for the prevention and treatment of glucocorticoid-induced osteoporosis. N Engl J Med. 1998;339:292–299.

    PubMed  CAS  Google Scholar 

  19. Reid DM, Hughes RA, Laan R, et al. Efficacy and safety of daily risedronate in the treatment of corticosteroid-induced osteoporosis in men and women: a randomized trial. J Bone Miner Res. 2000;15:1006–1013.

    PubMed  CAS  Google Scholar 

  20. Orwoll E, Ettinger M, Weiss, et al. Alendronate for the treatment of osteoporosis in men. N Engl J Med. 2000;343: 604–610.

    PubMed  CAS  Google Scholar 

  21. Seeman E. Osteoporosis in men: epidemiology, pathophysiology, and treatment possibilities. Am J Med. 1993;95 (suppl 5A):25S–28S.

    Google Scholar 

  22. Ribot C, Tremollieres F, Pouilles JM. Can we detect women with low bone mass using clinical risk factors? Am J Med. 1995;98:52S–55S.

    PubMed  CAS  Google Scholar 

  23. Cummings SR, Nevitt MC, Browner WS, et al. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med. 1995;332:767–773.

    PubMed  CAS  Google Scholar 

  24. Fulton JP. New guidelines for the prevention and treatment of osteoporosis. National Osteoporosis Foundation. Med Health R I. 1999;82:110–111.

    PubMed  CAS  Google Scholar 

  25. Williams AR, Weiss NS, Ure CL, et al. Effect of weight, smoking, and estrogen use on the risk of hip and forearm fractures in post-menopausal women. Obstet Gynecol. 1982;60:695–699.

    PubMed  CAS  Google Scholar 

  26. Heaney RP, Gallagher IC, Johnston CC, et al. Calcium nutrition and bone health in the elderly. Am J Clin Nutr. 1982;36:986–1013.

    PubMed  CAS  Google Scholar 

  27. Cummings SR. Epidemiology of osteoporotic fractures: selected topics. In: Roche AF, ed. Osteoporosis: Current Concepts. Report of the 7th Ross Conference on Medical Research. Columbus, OH: Ross Laboratories; 1987:3–8.

    Google Scholar 

  28. Slemenda CW, Hui SL, Longcope C, et al. Predictors of bone mass in perimenopausal women. Ann Intern Med. 1990;112:96–101.

    PubMed  CAS  Google Scholar 

  29. Hui SL, Slemenda CW, Johnston CC. Baseline measurement of bone mass predicts fracture in white women. Ann Intern Med. 1989;111:355–361.

    PubMed  CAS  Google Scholar 

  30. Cummings SR, Black DM, Nevitt MC, et al. Appendicular bone mass and age predict hip fracture in women. JAMA. 1990;263:665–668.

    PubMed  CAS  Google Scholar 

  31. Wasnich RD, Ross PD, Heilbrun LK, et al. Prediction of postmenopausal fracture risk with use of bone mineral measurements. Am J Obstet Gynecol. 1985;153:745–751.

    PubMed  CAS  Google Scholar 

  32. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. The Study of Osteoporotic Fractures Research Group. Lancet. 1993; 341:72–75.

    PubMed  CAS  Google Scholar 

  33. Faulkner KG, Cummings SR, Black D, et al. Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. J Bone Miner Res. 1993;8: 1211–1217.

    PubMed  CAS  Google Scholar 

  34. Ross PD, Davis JW, Epstein R, et al. Pre-existing fractures and bone mass predict vertebral fracture incidence in women. Ann Intern Med. 1991;114:919–923.

    PubMed  CAS  Google Scholar 

  35. Wasnich R. Bone mass measurement: prediction of risk. Am J Med. 1993;95(suppl 5A):6S–10S.

    PubMed  CAS  Google Scholar 

  36. Nevitt MC, Cummings SR, and Study of Osteoporotic Fractures Research Group. Type of fall and risk of hip and wrist fractures. J Am Geriatr Soc. 1993;41:1226–1234.

    PubMed  CAS  Google Scholar 

  37. Nguyen TV, Blangero J, Eisman JA. Perspective: genetic epidemiologic approaches to the search for osteoporosis genes. J Bone Miner Res. 2000;15:392–401.

    PubMed  CAS  Google Scholar 

  38. Ryan PJ, Blake G, Herd R, et al. A clinical profile of back pain and disability in patients with osteoporosis. Bone. 1994; 15:27–30.

    PubMed  CAS  Google Scholar 

  39. Kanis JA, Pitt FA. Epidemiology of osteoporosis. Bone. 1992;13:S7–S15.

    PubMed  Google Scholar 

  40. Cooper C, Atkinson EJ, Jacobsen SJ, et al. Population-based study of survival after osteoporotic fractures. Am J Epidemiol. 1993;137:1001–1005.

    PubMed  CAS  Google Scholar 

  41. Riggs BL, Wahner HW. Bone densitometry and clinical decision-making in osteoporosis [editorial]. Ann Intern Med. 1988;108:293–295.

    PubMed  CAS  Google Scholar 

  42. Johnston CC Jr, Slemenda CW, Melton LJ III. Clinical use of bone densitometry. N Engl J Med. 1991;324:1105–1109.

    PubMed  Google Scholar 

  43. Mazess RB, Barden H, Ettinger M, et al. Bone density of the radius, spine, and proximal femur in osteoporosis. J Bone Miner Res. 1988;3:13–18.

    PubMed  CAS  Google Scholar 

  44. Chestnut CH. The imaging and quantitation of bone by radiographic and scanning methodologies. In: Coe FL, Favus MJ, eds. Disorders of Bone and Mineral Metabolism. New York: Raven Press;1992:447–448.

    Google Scholar 

  45. Kanis JA, Melton LJ III, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137–1141.

    PubMed  CAS  Google Scholar 

  46. Gardener MJ, Hardy JA. Some effects of within-person variability in epidemiologic studies. J Chronic Dis. 1973: 781–795.

    Google Scholar 

  47. Cummings SR, Palermo L, Browner W, et al. Monitoring osteoporosis therapy with bone densitometry: misleading changes and regression to the mean. JAMA. 2000;283: 1318–1321.

    PubMed  CAS  Google Scholar 

  48. Pacifici R, Rupich R, Griffin M, et al. Dual energy radiography vs. quantitative computer tomography for the diagnosis of osteoporosis. J Clin Endocrinol Metab. 1990;70: 705–710.

    PubMed  CAS  Google Scholar 

  49. Gluer CC. Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The international quantitative ultrasound consensus group. J Bone Miner Res. 1997;12:1280–1288.

    PubMed  CAS  Google Scholar 

  50. Faulkner KG, Von Stetten E, Miller P. Discordance in patient classification using T scores. J Clin Densitom. 1999; 2:343.

    PubMed  CAS  Google Scholar 

  51. National Institutes of Health Consensus Development Conference Statement. Osteoporosis Prevention, Diagnosis and Therapy, vol 17, no. 1. Bethesda: National Institutes of Health; 2000.

    Google Scholar 

  52. Riis BJ, Hansen MA, Jensen AM, et al. Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture: a 15 year follow-up study. Bone. 1996: 19:9–12.

    PubMed  CAS  Google Scholar 

  53. van Daele PLA, Seibel MJ, Burger H, et al. Case control analysis of bone resorption markers, disability, and hip fracture risk: the Rotterdam study. Br Med J. 1996; 312:482–483.

    Google Scholar 

  54. Garnero P, Hausherr E, Chapuy MC, et al. Markers of bone resorption predict hip fracture in elderly women: the EPIDOS prospective study. J Bone Miner Res. 1996; 11:1531–1538.

    PubMed  CAS  Google Scholar 

  55. Riggs BL, Melton LJ III, O’Fallon WM. Drug therapy for vertebral fractures in osteoporosis: evidence that decreases in bone turnover and increases in bone mass both determine antifracture efficacy. Bone. 1996;18:197S–201S.

    PubMed  CAS  Google Scholar 

  56. van Daele PLA, Seibel MJ, Burger H, et al. Evidence for uncoupling of bone formation and bone resorption in women with hip fractures: a prospective study. Osteoporosis Int. 1996;6(suppl 1):S199.

    Google Scholar 

  57. Melton LJ III, Khosla S, Atkinson EJ, et al. Relationship of bone turnover to bone density and fractures. J Bone Miner Res. 1997;12:1083–1091.

    PubMed  Google Scholar 

  58. Garnero P, Dargent-Molina P, Hans D, et al. Do markers of bone resorption add to bone mineral density and ultrasonographic heel measurement for the prediction of hip fracture in elderly women? The EPIDOS prospective study. Osteoporosis Int. 1998;8:563–569.

    CAS  Google Scholar 

  59. Miller PD, Baran DT, Bilezikian JP, et al. Practical clinical application of biochemical markers of bone turnover. J Clin Densitom. 1999;2:323–342.

    PubMed  CAS  Google Scholar 

  60. Broadus AE. Mineral balance and homeostasis. In: Favus MJ III, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Philadelphia: Lippincott-Raven; 1996:57–63.

    Google Scholar 

  61. Heaney RP. Nutritional factors in osteoporosis. Annu Rev Nutr. 1993;13:287–316.

    PubMed  CAS  Google Scholar 

  62. Dawson-Hughes B. Calcium supplementation and bone loss: a review of controlled clinical trials. Am J Clin Nutr. 1991;54:274S–280S.

    PubMed  CAS  Google Scholar 

  63. Reid IR, Ames RW, Evans MC, et al. Effect of calcium supplementation on bone loss in postmenopausal women. N Engl J Med. 1993;328:460–464.

    PubMed  CAS  Google Scholar 

  64. Aloia JF, Vaswani A, Yeh JK, et al. Calcium supplementation with and without hormone replacement therapy to prevent postmenopausal bone loss. Ann Intern Med. 1994; 120:97–103.

    PubMed  CAS  Google Scholar 

  65. Chapuy MC, Arlot ME, Duboeuf F, et al. Vitamin D3 and calcium to prevent hip fractures in elderly women. N Engl J Med. 1992;327:1637–1642.

    PubMed  CAS  Google Scholar 

  66. McKenna MJ. Differences in vitamin D status between countries in young adults and elderly. Am J Med. 1992; 93:69–77.

    PubMed  CAS  Google Scholar 

  67. Heaney RP, Rocker RR, Saville PD. Calcium balance and calcium requirement in middle aged women. Am J Clin Nutr. 1977;30:1603–1611.

    PubMed  CAS  Google Scholar 

  68. Srinivasan S, Gross TS. Canalicular fluid flow induced by bending of a long bone. Med Engl Phys. 2000;22:127–133.

    CAS  Google Scholar 

  69. Chestnut CH. Bone mass and exercise. Am J Med. 1993; 95(5A):34S–36S.

    Google Scholar 

  70. Dalsky GP, Stocke KS, Ehsani AA, et al. Weight bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med. 1988;108:824–828.

    PubMed  CAS  Google Scholar 

  71. Krall EA, Dawson-Hughes B. Walking is related to bone density and rate of bone loss. Am J Med. 1994;96:20–26.

    PubMed  CAS  Google Scholar 

  72. Drinkwater BD, Nilson KC, Chestnut CH. Bone mineral content of amenorrheic and eumenorrheic athletes. N Engl J Med. 1984;311;277–281.

    PubMed  CAS  Google Scholar 

  73. Drinkwater BL. Exercise in the prevention of osteoporosis. Osteoporosis Int. 1993;1:S169–S171.

    Google Scholar 

  74. Boonekamp PM, Lowik CW, van der Wee-Pals LJ, et al. Enhancement of the inhibitory action of APD on the transformation of osteoclast precursors into resorbing cells after dimethylation of the amino group. J Bone Miner Res. 1987;2:29–42.

    CAS  Google Scholar 

  75. Hughes DE, Wright KR, Uy HL, et al. Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res. 1995;10:1478–1487.

    PubMed  CAS  Google Scholar 

  76. van Beek E, Hoekstra M, van de Ruit M, et al. Structural requirements for bisphosphonate actions in vitro. J Bone Miner Res. 1994;9:1875–1882.

    PubMed  CAS  Google Scholar 

  77. Rogers MJ, Xiong X, Brown RJ, et al. Structure-activity relationships of new heterocycle-containing bisphosphonates as inhibitors of bone resorption and as inhibitors of growth of Dictyostelium discoideum amoebae. Mol Pharmacol. 1995;47:398–402.

    PubMed  CAS  Google Scholar 

  78. Benford HL, Frith JC, Auriola S. et al. Farnesol and geranylgeraniol prevent activation of caspases by aminobisphosphonates: biochemical evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol. 1999;56:131–140.

    PubMed  CAS  Google Scholar 

  79. Watts NB, Harris ST, Genant HK, et al. Intermittent cyclical etidronate treatment of postmenopausal osteoporosis. N Engl J Med. 1990;332:75–79.

    Google Scholar 

  80. Papapoulos SE. The role of bisphosphonates in the prevention and treatment of osteoporosis. Am J Med. 1993;95(suppl 5A):48S–52S.

    PubMed  CAS  Google Scholar 

  81. Harris ST, Watts NB, Jackson RD, et al. Four-year study of intermittent cyclic etidronate treatment of postmenopausal osteoporosis: three years of blinded therapy followed by one year of open therapy. Am J Med. 1993;95: 557–567.

    PubMed  CAS  Google Scholar 

  82. Storm T, Thamsborg G, Steiniche T, et al. Effect of intermittent cyclical etidronate therapy on bone mass and fracture rate in women with postmenopausal osteoporosis. N Engl J Med. 1990;332:1265–1271.

    Google Scholar 

  83. Miller PD, Watts NB, Licata AA, et al. Cyclic etidronate in the treatment of postmenopausal osteoporosis: efficacy and safety after seven years of treatment. Am J Med. 1997; 103:468–476.

    PubMed  CAS  Google Scholar 

  84. Watts NB. Treatment of osteoporosis with bisphosphonates. Endocrinol Metab Clin N Am. 1998;27:419–439.

    CAS  Google Scholar 

  85. Thiebaud D, Burckhardt P, Melchior J, et al. Two years’ effectiveness of intravenous pamidronate (APD) versus oral fluoride for osteoporosis occurring in postmenopause. Osteoporosis Int. 1994;4:76–83.

    CAS  Google Scholar 

  86. Peretz A, Body J, Dumon JC, et al. Cyclic pamidronate infusions in postmenopausal osteoporosis. Maturitas. 1996; 25:69–75.

    PubMed  CAS  Google Scholar 

  87. Pecherstorfer M, Ludwig H, Schlosser, et al. Administration of the bisphosphonate ibandronate (BM21.0955) by intravenous bolus injection. J Bone Miner Res. 1996;11: 587–1593.

    PubMed  CAS  Google Scholar 

  88. Liberman UA, Weiss SR, Bröll J, et al. Effect of treatment with oral alendronate on bone mineral density and fracture incidence in postmenopausal osteoporosis. N Engl J Med. 1995;333:1437–1444.

    PubMed  CAS  Google Scholar 

  89. Eastell R. Treatment of postmenopausal osteoporosis. N Engl J Med. 1998;338:736–746.

    PubMed  CAS  Google Scholar 

  90. Black DM, Cummings SR, Karpf DB, et al. Randomized trial effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet. 1996;348:1535–1541.

    PubMed  CAS  Google Scholar 

  91. Hosking D, Chilvers CE, Christiansen C, et al. Prevention of bone loss with alendronate in postmenopausal women under 60 years of age. Early postmenopausal intervention study group. N Engl J Med. 1998;338;8:485–492.

    PubMed  CAS  Google Scholar 

  92. Tonino RP, Menunier PJ, Emkey RD, et al. Long-term (seven year) efficacy and safety of alendronate in the treatment of osteoporosis in postmenopausal women. Osteoporos Int. 2000;11(suppl 2):S202.

    Google Scholar 

  93. Struys A, Snelder AA, Mulder H. Cyclical etidronate reverses bone loss of the spine and proximal femur in patients with established corticosteroid-induced osteoporosis. Am J Med. 1995;99:235–242.

    PubMed  CAS  Google Scholar 

  94. Luckey M, Insogna K, Gilchrist N, et al. Therapeutic equivalence of alendronate 35 mg once weekly and 5 mg daily in the prevention of postmenopausal osteoporosis. Osteoporos Int. 2000;11(suppl 2):S209.

    Google Scholar 

  95. Schnitzer T, Bone HG, Crepaldi G, et al. Therapeutic equivalence of alendronate 70 mg once-weekly and alendronate 10 mg daily in the treatment of osteoporosis. Alendronate once-weekly study group. Aging (Milano). 2000;12:1–12.

    CAS  Google Scholar 

  96. Rossini M, Gatti D, Braga V, et al. Effects of two intermittent alendronate regimens in the treatment of postmenopausal osteoporosis. Osteoporos Int. 2000;11(suppl 2): S170.

    Google Scholar 

  97. Wimalawansa SJ. A four-year randomized controlled trial of hormone replacement and bisphosphonate, alone or in combination, in women with postmenopausal osteoporosis. Am J Med. 1998;104:219–226.

    PubMed  CAS  Google Scholar 

  98. Lindsay R, Cosman F, Lobo RA, et al. Addition of alendronate to ongoing hormone replacement therapy in the treatment of osteoporosis: a randomized, controlled clinical trial. J Clin Endocrinol Metab. 1999;84:3076–3081.

    PubMed  CAS  Google Scholar 

  99. Heaney RE, Recker RR, Saville PD. Menopausal changes in bone remodeling. J Lab Clin Med. 1978;92:964–970.

    PubMed  CAS  Google Scholar 

  100. Lindsay R. Osteoporosis. Clin Geriatr Med. 1988;4:411–430.

    PubMed  CAS  Google Scholar 

  101. Nachtigall LE, Nachtigall RH, Nachtigall RD. Estrogen replacement therapy. I: A 10 year prospective study in the relationship of osteoporosis. Obstet Gynecol. 1979;53:277–284.

    PubMed  CAS  Google Scholar 

  102. Lindsay R, Hart DM, MacLean A, et al. Bone response to termination of estrogen treatment. Lancet. 1978;1:1325–1327.

    PubMed  CAS  Google Scholar 

  103. Rickard DJ, Subramaniam M, Spelsberg TC. Molecular and cellular mechanisms of estrogen action on the skeleton. J Cell Biochem. 1999; Suppl 32–33:123–132.

    Google Scholar 

  104. Oursler MJ, Osdoby P. Pyfferoen J, et al. Avian osteoclasts as estrogen target cells. Proc Natl Acad Sci USA. 1991; 88:6613–6617.

    PubMed  CAS  Google Scholar 

  105. Gray TK, Flyn TC, Gray KM. et al. 17β-Estradiol acts directly on the clonal osteoblast line UMR 106. Proc Natl Acad Sci USA. 1987;84:6267–6271.

    PubMed  CAS  Google Scholar 

  106. Eriksen EF, Colvard DS, Berg NJ, et al. Evidence of estrogen receptors in normal human osteoblast-like cells. Science. 1988;241:84–86.

    PubMed  CAS  Google Scholar 

  107. Komm BS, Terpening CM, Benz DJ, et al. Estrogen binding, receptor mRNA, and biologic response in osteoblast-like osteosarcoma cells. Science. 1988;241: 84.

    Google Scholar 

  108. Ernst M, JK Heath, Rodan GA. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin-like growth factor-i,and parathyroid hormonestimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology. 1989;125: 825–833.

    PubMed  CAS  Google Scholar 

  109. Lin HY, Harris TL, Flannery NS, et al. Expression cloning of an adenylate cyclase-coupled calcitonin receptor. Science. 1991;254:1022–1024.

    PubMed  CAS  Google Scholar 

  110. Tabibzadeh S. Santhanan U, May L, et al. Cytokineinduced production of IFN-α2/IL-6 by freshly explanted human endometrial stroma cells: modulation by estradiol-17β. J Immunol. 1989;142:3134–3139.

    PubMed  CAS  Google Scholar 

  111. Girasole G, Jilka RL, Passeri G, et al. 17β-Estradiol inhibits interleukin-6 production by bone marrow stromal derived stromal cells and osteoblasts in vitro: a potential mechanism for the anti-osteoporotic effect of estrogen. J Clin Investig. 1992;89:883–891.

    PubMed  CAS  Google Scholar 

  112. Horowitz MC. Cytokines and estrogen in bone antiosteoporotic effects. Science. 1993;206:626–627.

    Google Scholar 

  113. Cenci S, Weitzmann MN, Gentile MA, et al. M-CSF neutralization and egr-1 deficiency prevent ovariectomyinduced bone loss. J Clin Investig 2000;105:1279–1287.

    PubMed  CAS  Google Scholar 

  114. Shevde NK, Bendixen AC, Dienger KM, et al. Estrogens suppress RANK ligand-induced osteoclast differentiation via a stromal cell independent mechanism involving c-Jun repression. Proc Natl Acad Sci USA. 2000;97:7829–7834.

    PubMed  CAS  Google Scholar 

  115. Kiel D, Felson D, Anderson J, et al. Hip fracture and the use of estrogens in postmenopausal women: the Framingham Study. N Engl J Med. 1987;317:1169–1174.

    PubMed  CAS  Google Scholar 

  116. Ettinger B, Genant HK, Cann CE. Long term estrogen therapy prevents bone loss and fracture. Ann Intern Med. 1985;102:319–324.

    PubMed  CAS  Google Scholar 

  117. Hutchinson TA, Polansky JM, Feinstein AR. Postmenopausal oestrogens protect against fracture of the hip and distal radius. Lancet. 1979;2:705–709.

    PubMed  CAS  Google Scholar 

  118. Kreiger N, Kelsey JL, Holford TR. An epidemiological study of hip fracture in postmenopausal women. Am J Epidemiol. 1982;116:141–148.

    PubMed  CAS  Google Scholar 

  119. Smith DM, Khairi MRA, Johnston CC. The loss of bone mineral with aging and its relationship to risk of fracture. J Clin Investig. 1975;56:311–318.

    PubMed  CAS  Google Scholar 

  120. Weiss NS, Ure CL, Ballard JH, et al. Decreased risk of fractures of the hip and lower forearm with postmenopausal use of estrogen. N Engl J Med. 1980;303: 1195–1198.

    PubMed  CAS  Google Scholar 

  121. Maxim P. Ettinger B, Spitalny GM. Fracture protection provided by long term estrogen treatment. Osteoporosis Int. 1995;5:23–29.

    CAS  Google Scholar 

  122. Lindsay R, Thome JF. Estrogen treatment of patients with established osteoporosis. Obstet Gynecol. 1990;76:290–295.

    PubMed  CAS  Google Scholar 

  123. Lufkin EG, Wahner HW, O’Fallon WM, et al. Treatment of postmenopausal osteoporosis with transdermal estrogen. Ann Intern Med. 1992;117:1–9.

    PubMed  CAS  Google Scholar 

  124. Marx CW, Daily GE, Cheney C, et al. Do estrogens improve bone mineral density in osteoporotic women over age 65? J Bone Miner Res. 1992;7:1275–1279.

    PubMed  CAS  Google Scholar 

  125. Ettinger B, Grady D. The waning effect of postmenopausal estrogen therapy on osteoporosis. N Engl J Med. 1993;329: 1192–1193.

    PubMed  CAS  Google Scholar 

  126. Felson DT, Zhang Y, Hannan MT, et al. Effect of postmenopausal estrogen therapy on bone density in elderly women. N Engl J Med. 1993;329:1141–1146.

    PubMed  CAS  Google Scholar 

  127. Recker, RR, Davies M, Dowd R, et al. The effect of low dose continuous estrogen and progesterone therapy with calcium and Vitamin D on bone in elderly women. Ann Intern Med. 1999;130:897–904.

    PubMed  CAS  Google Scholar 

  128. Lobo RA. Cardiovascular complications of estrogen replacement therapy. Obstet Gynecol. 1990;75(suppl):18S–25S.

    PubMed  CAS  Google Scholar 

  129. Barrett-Connor E, Bush TL. Estrogen and coronary heart disease in women. JAMA. 1991;265:1861–1867.

    PubMed  CAS  Google Scholar 

  130. Stampfer MJ, Colditz GA, Willett WC, et al. Postmenopausal estrogen therapy and cardiovascular disease: ten year follow-up from the Nurses’ Health Study. N Engl J Med. 1991;325:756–762.

    PubMed  CAS  Google Scholar 

  131. Hulley S, Grady D, Bush T, et al. Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. JAMA. 1998;208:605–613.

    Google Scholar 

  132. Yaffe K, Sawaya G, Lieberburg I, Grady D. Estrogen therapy in postmenopausal women: effects on cognitive function and dementia. JAMA. 1998;279:688–695.

    PubMed  CAS  Google Scholar 

  133. Grodstein F, Newcomb PA, Stampfer MJ. Postmenopausal hormone therapy and the risk of colorectal cancer: a review and meta-analysis. Am J Med. 1999;106:574–582.

    PubMed  CAS  Google Scholar 

  134. Shapiro S, Kelley JP, Rosenberg L. Risk of localized and widespread endometrial cancer in relation to recent and discontinued use of conjugated estrogens. N Engl J Med. 1985;313:969–972.

    PubMed  CAS  Google Scholar 

  135. Gambrell RD, Massey FM, Castaneda TA, et al. Reduced incidence of endometrial cancer among postmenopausal women treated with progestogens. J Am Geriatr Soc. 1979; 27:389–394.

    PubMed  Google Scholar 

  136. Grady D, Rubin SM, Petitti DB, et al. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann Intern Med. 1992;117:1016–1037.

    PubMed  CAS  Google Scholar 

  137. Steinberg KK, Thacker SB, Smith SJ, et al. A metaanalysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA. 1991;265:1985–1990.

    PubMed  CAS  Google Scholar 

  138. Colditz GA, Hankinson SE, Hunter DJ, et al. The use of estrogens and progestins and the risk of breast cancer in postmenopausal women. N Engl J Med. 1995;332:1589–1593.

    PubMed  CAS  Google Scholar 

  139. Colditz GA, Stampfer MJ, Willett WC, et al. Postmenopausal hormone use and the risk of breast cancer: 12 year follow-up of the Nurses’ Health Study. In: Mann RD, ed. Hormone Replacement Therapy and Breast Cancer Risk. Carnforth, England: Parthenon; 1992:63–77.

    Google Scholar 

  140. Schairer C, Lubin J, Troisi R, et al. Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA. 2000;283:485–491.

    PubMed  CAS  Google Scholar 

  141. Ross RK, Paganini-Hill A, Wan PC, et al. Effect of hormone replacement therapy on breast cancer risk: estrogen versus estrogen plus progestin. J Natl Cancer Inst. 2000;92(4):328–332.

    PubMed  CAS  Google Scholar 

  142. Ettinger B, Pressman A. Effect of age on reasons for initiation and discontinuation of hormone replacement therapy. Menopause. 1999;6:282–289.

    PubMed  CAS  Google Scholar 

  143. Bjorn I, Backstrom T. Drug-related negative side effects is a common reason for poor compliance in hormone replacement therapy. Maturitas. 1999;32:77–86.

    PubMed  CAS  Google Scholar 

  144. Balfour JA, Goa KL. Raloxifene. Drugs Aging. 1998;12: 335–341.

    PubMed  CAS  Google Scholar 

  145. Spencer CP, Morris EP, Rymer JM. Selective estrogen receptor modulators: women’s panacea for the next millenium Am J Obstet Gynecol. 1999;180:763–770.

    PubMed  CAS  Google Scholar 

  146. Delmas PD, Bjarnason NH, Mitlak BH, et al. Effects of raloxifene on bone density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N Engl J Med. 1997;337:1641–1647.

    PubMed  CAS  Google Scholar 

  147. Ettinger B, Black D, Mitlak B, et al. Reduction of vertebral fracture risk in postmenopausal women with osteoporosis treated with raloxifene. JAMA. 1999;282:637–645.

    PubMed  CAS  Google Scholar 

  148. Cummings SR, Black D, Barrett-Connor E, et al. The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple outcomes of raloxifene evaluation. JAMA. 1999;281:2189–2197.

    PubMed  CAS  Google Scholar 

  149. Anderson RE, Schraer H, Gay CV. Ultrastructural immunocytochemical localization of carbonic anhydrase in normal and calcitonin-treated chick osteoclasts. Anat Rec. 1982;204:9–20.

    PubMed  CAS  Google Scholar 

  150. Akisaka T, Gay CV. Ultracytochemical evidence for a proton-pump adenosine triphosphatase in chick osteoclasts. Cell Tissue Res. 1986;24:507–512.

    Google Scholar 

  151. Chambers TJ, Fuller K, Darby JA. Hormonal regulation of acid phosphatase release by osteoclasts disaggregated from neonatal rat bone. J Cell Physiol. 1987;132:92–96.

    Google Scholar 

  152. Moonga BS, Moss DW, Patchell A, et al. Intracellular regulation of enzyme release from rat osteoclasts and evidence for a functional role in bone resorption. J Physiol. 1990;429:29–45.

    PubMed  CAS  Google Scholar 

  153. Yumita S, Nicholson GC, Rowe DJ, et al. Biphasic effect of calcitonin on tartrate-resistant acid phosphatase activity in isolated rat osteoclasts. J Bone Miner Res. 1991;6: 591–597.

    PubMed  CAS  Google Scholar 

  154. Offermanns S, Iida-Klein A, Segre GV, et al. G alpha q family members couple parathyroid hormone (PTH)/PTH-related peptide and calcitonin receptors to phospholipase C in COS-7 cells. Mol Endocrinol. 1996;10:566–574.

    PubMed  CAS  Google Scholar 

  155. Zaidi M. Calcium “receptors” on eukaryotic cells with special reference to the osteoclast. Biosci Rep. 1990;10: 493–507.

    PubMed  CAS  Google Scholar 

  156. Moonga BS, Alam AS, Bevis PJR, et al. Regulation of cytosolic free calcium in isolated osteoclasts by calcitonin. J Endocrinol. 1992;132:241–249.

    PubMed  CAS  Google Scholar 

  157. Muff R, Dambacher MA, Fischer IA. Formation of neutralizing antibodies during intranasal synthetic salmon calcitonin treatment of postmenopausal osteoporosis. Osteoporosis Int. 1991;1:72–75.

    CAS  Google Scholar 

  158. Gruber HE, Ivey IL, Bayhuk DL, et al. Long term calcitonin therapy in postmenopausal osteoporosis. Metabolism. 1984;33:295–303.

    PubMed  CAS  Google Scholar 

  159. Mazzuoli GF, Passeri M, Gennari C, et al. Effects of salmon calcitonin in postmenopausal osteoporosis: a controlled double-blind clinical study. Calcif Tissue Int. 1986;38:3–8.

    PubMed  CAS  Google Scholar 

  160. Reginster JY. Calcitonin for prevention and treatment of osteoporosis. Am J Med. 1993;95(suppl 5A):44S–47S.

    PubMed  CAS  Google Scholar 

  161. Overgaard K, Hansen MA, Jensen SB, et al. Effect of salmon calcitonin given intranasally on bone mass and fracture rates in established osteoporosis: a dose-response study. Br Med J. 1992;305:56–61.

    Google Scholar 

  162. McDermott MT, Kidd GS. The role of calcitonin in the development and treatment of osteoporosis. Endocr Rev. 1987;8:377–390.

    PubMed  CAS  Google Scholar 

  163. Kanis IA, Johaell O, Gullberg B, et al. Evidence for efficacy of drugs affecting bone metabolism in preventing hip fracture. Br Med J. 1992;305:1124–1128.

    CAS  Google Scholar 

  164. Rico H, Hernandez ER, Revilla, et al. Salmon calcitonin reduces vertebral fracture rate in post-menopausal crush fracture syndrome. J Bone Miner Res. 1992;16:131–138.

    CAS  Google Scholar 

  165. Silverman SL, Chestnut C, Andriano K, et al. Salmon calcitonin nasal spray reduces risk of vertebral fracture(s) in established osteoporosis and has continuous efficacy with prolonged treatment accrued 5 year world wide data of the PROOF study. Bone. 1998;23(suppl 5):S174.

    Google Scholar 

  166. Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15:13–19.

    PubMed  CAS  Google Scholar 

  167. Dempster DW. The contribution of trabecular architecture to cancellous bone quality. J Bone Miner Res. 2000;15:20–23.

    PubMed  CAS  Google Scholar 

  168. Sambrook PB, Ingham J, Kelly P. Prevention of corticosteroid osteoporosis: a comparison of calcium, calcitriol and calcitonin. N Engl J Med. 1993;328:1747–1752.

    PubMed  CAS  Google Scholar 

  169. Shane E, Rodino MA, McMahon DJ, et al. Prevention of bone loss after heart transplantation with antiresorptive therapy: a pilot study. J Heart Lung Transplant. 1998;17: 1089–1096.

    PubMed  CAS  Google Scholar 

  170. Riggs BL, Hodgson SF, O’Fallon WM, et al. Effect of fluoride treatment on the fracture rate in postmenopausal women with osteoporosis. N Engl J Med. 1990;322:802–809.

    PubMed  CAS  Google Scholar 

  171. Kleerekoper M, Peterson EL, Nelson DA, et al. A randomized trial of sodium fluoride as a treatment for postmenopausal osteoporosis. Osteoporosis Int. 1991;1: 155–161.

    CAS  Google Scholar 

  172. Pak CYC, Sakhaee K, Adams-Huet B, et al. Treatment of postmenopausal osteoporosis with slow-release sodium fluoride: final report of a randomized controlled trial. Ann Intern Med. 1995;123:401–408.

    PubMed  CAS  Google Scholar 

  173. Wu Y, Kumar R. Parathyroid hormone regulates transforming growth factor beta 1 and beta 2 synthesis in osteoblasts via divergent signaling pathways. J Bone Miner Res. 2000;15:879–884.

    PubMed  CAS  Google Scholar 

  174. Sanders JL, Stern PH. Protein kinase C involvement in interleukin-6 production by parathyroid hormone and tumor necrosis factor-alpha in UMR-106 osteoblastic cells. J Bone Miner Res. 2000;15:885–893.

    PubMed  CAS  Google Scholar 

  175. Takai H, Kanematsu M, Yano K, et al. Transforming growth factor-beta stimulates the production of osteoprotegerin/osteoclastogenesis inhibitory factor by bone marrow stromal cells. J Biol Chem. 1998;273:27091–27096.

    PubMed  CAS  Google Scholar 

  176. Wrana JL, Overall CM, Sodek J. Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. Eur J Biochem. 1991;197:519–528.

    PubMed  CAS  Google Scholar 

  177. Wrana JL, Kubota T, Zhang Q, et al. Regulation of transformation-sensitive secreted phosphoprotein (SPPI/osteopontin) expression by transforming growth factor-beta. Comparisons with expression of SPARC (secreted acidic cysteine-rich protein). Biochem J. 1991;273:523–531.

    PubMed  CAS  Google Scholar 

  178. Riggs BL. Formation stimulating regimens other than sodium fluoride. Am J Med. 1993;95(suppl 5A):62S–68S.

    PubMed  CAS  Google Scholar 

  179. Finkelstein JS, Klibanski A, Arnold A, et al. Prevention of estrogen deficiency related bone loss with human PTH: a randomized controlled trial. JAMA. 1998;280:1067–1073.

    PubMed  CAS  Google Scholar 

  180. Gowen M, Stroup GB, Dodds RA, et al. Antagonizing the parathyroid calcium receptor stimulates parathyroid hormone secretion and bone formation in osteopenic rats. J Clin Investig. 2000;105:1595–1604.

    PubMed  CAS  Google Scholar 

  181. Ishii H, Wada M, Furuya Y, et al. Daily intermittent decreases in serum levels of parathyroid hormone have an anabolic-like action on the bones of uremic rats with lowturnover bone and osteomalacia. Bone. 2000;26:175–182.

    PubMed  CAS  Google Scholar 

  182. Slovik DM, Adams JS, Neer RM, et al. Deficient production of 1,25-dihydroxy vitamin D in elderly osteoporotic patients. N Engl J Med. 1981;305:372–374.

    PubMed  CAS  Google Scholar 

  183. Brandi ML. New treatment strategies: ipriflavone, strontium, vitamin D metabolites and analogs. Am J Med 1993;95(suppl 5A):69S–74S.

    PubMed  CAS  Google Scholar 

  184. Heikinheimo RJ, Inkovaara JA, Hurju EJ, et al. Annual injection of vitamin D and fractures of aged bones. Calcif Tissue Int. 1992;51:105–110.

    PubMed  CAS  Google Scholar 

  185. Fisher JE, Rogers MJ, Halasy JM, et al. Alendronate mechanism of action: geranylgeraniol, an intermediate in the mevalonate pathway, prevents inhibition of osteoclast formation, bone resorption, and kinase activation in vitro. Proc Natl Acad Sci USA. 1999;96(1):133–138.

    PubMed  CAS  Google Scholar 

  186. Mundy G, Garrett R, Harris S, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286:1946–1949.

    PubMed  CAS  Google Scholar 

  187. Chung YS, Lee MD, Lee SK, et al. HMG-CoA Reductase Inhibitors increase BMD in type 2 diabetes mellitus patients. J Clin Endocrinol Metab. 2000;85:1137–1142.

    PubMed  CAS  Google Scholar 

  188. Wang PS, Solomon DH, Mogun H, Avorn J. HMG-CoA reductase inhibitors and the risk of hip fractures in elderly persons. JAMA. 2000;283:3211–3216.

    PubMed  CAS  Google Scholar 

  189. Meier CR, Schlienger RG, Kraenzlin ME, et al. HMG-CoA reductase inhibitors and the risk of fractures. JAMA. 2000;283:3205–3210.

    PubMed  CAS  Google Scholar 

  190. Heath H, Hodgson SF, Kennedy MA. Primary hyperparathyroidism. Incidence, morbidity and potential economic impact in a community. N Engl J Med. 1980;302:189–193.

    PubMed  Google Scholar 

  191. Solomon BL, Schaaf M, Smallridge RC. Psychologic symptoms before and after parathyroid surgery. Am J Med. 1994;96:101–106.

    PubMed  CAS  Google Scholar 

  192. Mallette LE. Primary hyperparathyroidism: clinical and biochemical features. Medicine. 1974;53:127–146.

    PubMed  CAS  Google Scholar 

  193. Karpati G, Frame B. Neuropsychiatric disorders in primary hyperparathyroidism. Arch Neurol. 1964;10:387–397.

    PubMed  CAS  Google Scholar 

  194. Clarke OH, Wilkes W, Siperstein AE, et al. Diagnosis and management of asymptomatic hyperparathyroidism: safety, efficacy, and deficiencies in our knowledge. J Bone Miner Res. 1991;6:135–142.

    Google Scholar 

  195. Consensus Development Conference Panel 1991. Diagnosis and management of asymptomatic primary hyperparathyroidism: consensus development conference statement. Ann Intern Med. 1991;114:593–597.

    Google Scholar 

  196. Scholz DA, Purnell DC. Asymptomatic primary hyperparathyroidism: 10-year prospective study. Mayo Clin Proc. 1981;56:473–478.

    PubMed  CAS  Google Scholar 

  197. Silverberg SJ, Shane E, Jacobs TP, et al. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med. 1999;341: 1249–1255.

    PubMed  CAS  Google Scholar 

  198. Chen H, Sokoll LJ, Udelsman R. Outpatient minimally invasive parathyroidectomy: combination of sestamibi-SPECT localization, cervical block anesthesia, and intraoperative parathyroid hormone assay. Surgery. 1999;126: 1016–1021.

    PubMed  CAS  Google Scholar 

  199. Lo Gerfo P. Bilateral neck exploration for parathyroidectomy under local anesthesia: a viable technique for patients with coexisting thyroid disease without sestamibi scanning. Surgery. 1999;126:1011–1014.

    PubMed  Google Scholar 

  200. McDermott MT, Perloff JJ, Kidd CS. Effect of mild asymptomatic primary hyperparathyroidism on bone mass in women with and without estrogen replacement therapy. J Bone Miner Res. 1994;9:509–514.

    PubMed  CAS  Google Scholar 

  201. Cosman F, Shen V. Xie F, et al. Estrogen protection against bone resorbing effects of parathyroid hormone infusion. Ann Intern Med. 1993;118:337–343.

    PubMed  CAS  Google Scholar 

  202. Silverberg SJ, Bone HG III, Marriott TB, et al. Short-term inhibition of parathyroid hormone secretion by a calcium-receptor agonist in patients with primary hyperparathyroidism. N Engl J Med. 1997;337:1506–1510.

    PubMed  CAS  Google Scholar 

  203. Singer FR, Wallach S. Paget’s Disease of Bone. New York: Elsevier; 1991.

    Google Scholar 

  204. Hosking DJ. Advances in the management of Paget’s disease of bone. Drugs. 1990;40:829–840.

    PubMed  CAS  Google Scholar 

  205. Patel S, Stone MD, Coupland C, et al. Determinants of remission of Paget’s disease of bone. J Bone Miner Res. 1993;8:1467–1473.

    PubMed  CAS  Google Scholar 

  206. Reginster JY, Treves R, Renier JC, et al. Efficacy and tolerability of a new formulation of oral tiludronate in the treatment of Paget’s disease of bone. J Bone Miner Res. 1994;9:615–619.

    PubMed  CAS  Google Scholar 

  207. Singer FR, Fredericks RS, Minkin C. Salmon calcitonin therapy for Paget’s disease of bone. The problem of acquired clinical resistance. Arthritis Rheum. 1980;23: 1143–1154.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Inzerillo, A., Iqbal, J., Troen, B., Meier, D.E., Zaidi, M. (2003). Skeletal Fragility in the Elderly. In: Geriatric Medicine. Springer, New York, NY. https://doi.org/10.1007/0-387-22621-4_44

Download citation

  • DOI: https://doi.org/10.1007/0-387-22621-4_44

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95514-8

  • Online ISBN: 978-0-387-22621-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics