Existence and Stability in Optimization Problems

Part of the Springer Monographs in Mathematics book series (SMM)


A central question in optimization is to know whether an optimal solution exists. Associated with this question is the stability problem. A classical result states that a lower semicontinuous function attains its minimum over a compact set. The compactness hypothesis is often violated in the context of extremum problems, and thus the need for weaker and more realistic assumptions. This chapter develops several fundamental concepts and tools revolving around asymptotic functions to derive existence and stability results for general and convex minimization problems.


Convex Function Proper Function Relative Interior Asymptotic Direction Convex Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag New York, Inc. 2003

Personalised recommendations