Skip to main content

Szemerédi’s Regularity Lemma and Quasi-randomness

  • Chapter
Recent Advances in Algorithms and Combinatorics

Abstract

A beautiful result of Szemerédi on the asymptotic structure of graphs is his regularity lemma. Roughly speaking, this result tells us that any large graph may be written as a union of induced, random looking bipartite graphs. There are many applications of this result—the reader is urged to consult the excellent survey of Komlos and Simonovits [48] for a thorough discussion on this fundamental result.

Partially supported by MCT/CNPq through ProNEx Programme (Proc. CNPq 664107/1997-4), by CNPq (Proc. 300334/93-1 and 468516/2000-0), and by FAPESP (Proj. 96/04505-2)

Partially supported by NSF Grant 0071261

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon. Expanders, sorting in rounds and superconcentrators of limited depth. In Proceedings of the 17th Annual ACM Symposium on the Theory of Computing (STOC 85), pages 98–102, 1985.

    Google Scholar 

  2. N. Alon. Eigenvalues, geometric expanders, sorting in rounds, and Ramsey theory. Combinatorial, 6(3):207–219, 1986.

    Article  MATH  Google Scholar 

  3. N. Alon, M. Capalbo, Y. Kohayakawa, V. Rödl, A. Ruciński, and E. Szemerédi. Universality and tolerance (extended abstract). In Proceedings of the 41st IEEE Annual Symposium on Foundations of Computer Science (FOCS 2000), pages 14–21, 2000.

    Google Scholar 

  4. N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algorithmic aspects of the regularity lemma (extended abstract). In 33rd Annual Symposium on Foundations of Computer Science, pages 473–481, Pittsburgh, Pennsylvania , 1992. IEEE Comput. Soc. Press.

    Chapter  Google Scholar 

  5. N. Alon, R. A. Duke, H. Lefmann, V. Rödl, and R. Yuster. The algorithmic aspects of the regularity lemma. Journal of Algorithms, 16(1):80–109, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  6. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs, submitted, 22pp., 1999.

    Google Scholar 

  7. N. Alon, E. Fischer, M. Krivelevich, and M. Szegedy. Efficient testing of large graphs (extended abstract). In 40th Annual Symposium on Foundations ofComputer Science, pages 656–666, New York City, NY, 1999. IEEE Comput. Soc. Press.

    Google Scholar 

  8. N. Alon and J. Spencer. The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics. John Wiley & Sons, New York, 1992.

    MATH  Google Scholar 

  9. N. Alon and R. Yuster. H-factors in dense graphs. Journal of Combinatorial Theory, Series B, 66(2):269–282, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  10. L. Babai, P. Frankl, and J. Simon. Complexity classes in communication complexity theory (preliminary version). In 27th Annual Symposiumon Foundations of Computer Science, pages 337–347, Toronto, Ontario, Canada, 1986. IEEE.

    Google Scholar 

  11. B. Bollobás. Extremal graph theory. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1978.

    MATH  Google Scholar 

  12. B. Bollobás. Graph theory. Springer-Verlag, New York, 1979. An introductory course.

    Book  MATH  Google Scholar 

  13. B. Bollobás. Random graphs. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], London, 1985.

    MATH  Google Scholar 

  14. B. Bollobás. Modern graph theory. Springer-Verlag, New York, 1998.

    Book  MATH  Google Scholar 

  15. F. R. K. Chung, R. L. Graham, and R. M. Wilson. Quasi-random graphs. Combinatorica, 9(4):345–362, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  16. V. Chvátal, V. Rödl, E. Szemerédi, and W. T. Trotter. The Ramsey number of a graph with bounded maximum degree. Journal of Combinatorial Theory,Series B, 34(3):239–243, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  17. D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. J. Symbolic Comput., 9(3):251–280, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  18. W. Deuber. A generalization of Ramsey’s theorem. In A. Hajnal, R. Rado, and V. T. Sos, editors, Infinite and Finite Sets, volume 10 of ColloquiaMathematica Societatis Janos Bolyai, pages 323–332, Keszthely, 1973, 1975. North-Holland.

    Google Scholar 

  19. R. A. Duke, H. Lefmann, and V. Rödl. A fast approximation algorithm for computing the frequencies of subgraphs in a given graph. SIAM Journal onComputing, 24(3):598–620, 1995.

    Article  MATH  Google Scholar 

  20. R. A. Duke and V. Rödl. On graphs with small subgraphs of large chromatic number. Graphs and Combinatorics, 1(1):91–96, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  21. P. Erdős. Some old and new problems in various branches of combinatorics. In Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pages 19–37, Winnipeg, Man., 1979. Utilitas Math.

    Google Scholar 

  22. P. Erdös, A. Hajnal, and L. Pósa. Strong embeddings of graphs into colored graphs. In A. Hajnal, R. Rado, and V. T. Sós, editors, Infinite and Finite Sets, volume 10 of Colloquia Mathematica Societatis János Bolyai, pages 585–595, Keszthely, 1973, 1975. North-Holland.

    Google Scholar 

  23. P. Erdős and J. Spencer. Probabilistic methods in combinatorics. Akademiai Kiado, Budapest, 1974.106pp.

    Google Scholar 

  24. P. Frankl and V. Rödl. The uniformity lemma for hypergraphs. Graphs and Combinatorics, 8(4):309–312, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Frankl and V. Rödl. Extremal problems on set systems. Random Structure and Algorithms, 2002.to appear.

    Google Scholar 

  26. P. Frankl, V. Rödl, and R. M. Wilson. The number of submatrices of a given type in a Hadamard matrix and related results. J.Combin. Theory Ser. B, 44(3):317–328, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. Frieze and R. Kannan. The regularity lemma and approximation schemes for dense problems. In 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pages 12–20. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

    Google Scholar 

  28. A. Frieze and R. Kannan. Quick approximation to matrices and applications. Combinatorica, 19(2): 175–220, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  29. O. Goldreich. Combinatorial property testing (a survey). In Randomization methods in algorithm design (Princeton, NJ, 1997), pages 45–59. Amer. Math. Soc., Providence, RI, 1999.

    Google Scholar 

  30. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. In 37th Annual Symposium on Foundations of Computer Science (Burlington, VT, 1996), pages 339–348. IEEE Comput. Soc. Press, Los Alamitos, CA, 1996.

    Google Scholar 

  31. O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. Journal of the Association for Computing Machinery, 45(4):653–750, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. O. Goldreich and D. Ron. Property testing in bounded degree graphs. In 29th ACM Symposium on Theory of Computing, pages 406–419, El Paso, Texas, 1997.

    Google Scholar 

  33. O. Goldreich and D. Ron. A sublinear bipartiteness tester for bounded degree graphs. Combinatorica, 19(3):335–373, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  34. W. T. Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma. Geometric and Functional Analysis, 7(2):322–337, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  35. S. Janson, T. Luczak, and A. Rucinski. Random graphs. Wiley-Interscience, New York, 2000.

    Book  MATH  Google Scholar 

  36. Y. Kohayakawa. Szemerédi’s regularity lemma for sparse graphs. In F. Cucker and M. Shub, editors, Foundations of Computational Mathematics, pages 216–230, Berlin, Heidelberg, January 1997. Springer-Verlag.

    Chapter  Google Scholar 

  37. Y. Kohayakawa and V. Rödl. Algorithmic aspects of regularity. In G. Gonnet, D. Panario, and A. Viola, editors, LATIN’2000: Theoretical Informatics (Punta del Este, 2000), Lecture Notes in Computer Science, pages 1–17 Springer, Berlin, 2000.

    Chapter  Google Scholar 

  38. Y. Kohayakawa and V. Rödl. Regular pairs in sparse random graphs Lsubmitted, 2001.

    Google Scholar 

  39. Y. Kohayakawa and V. Rödl. Regular pairs in sparse random graphs II. in preparation, 2001.

    Google Scholar 

  40. Y. Kohayakawa, V. Rödl, and E. Szemerédi. The size-Ramsey number of graphs of bounded degree. in preparation, 2001.

    Google Scholar 

  41. Y. Kohayakawa, V. Rödl, and L. Thoma. An optimal algorithm for checking regularity (extended abstract). In Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002), 2002 to appear.

    Google Scholar 

  42. J. Komlós. The blow-up lemma. Combinatorics, Probability and Computina 8(1–2):161–176, 1999. Recent trends in combinatorics (Mátraháza, 1995).

    Article  MATH  Google Scholar 

  43. J. Komlós, G. N. Sárközy, and E. Szemerédi. Proof of a packing conjecture of Bollobás. Combin. Probab. Comput., 4(3):241–255, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  44. J. Komlós, G. N. Sárközy, and E. Szemerédi. Blow-up lemma. Combinatorica 17(1):109–123, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  45. J. Komlós, G. N. Sérközy, and E. Szemerédi. An algorithmic version of the blow-up lemma. Random Structures and Algorithms, 12(3):297–312, 1998

    Article  MATH  MathSciNet  Google Scholar 

  46. J. Komlós, G. N. Sárközy, and E. Szemerédi. On the Pósa-Seymour conjecture. J. Graph Theory, 29(3):167–176, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  47. J. Komlós, G. N. Sárközy, and E. Szemerédi. Proof of the Seymour conjecture for large graphs. Ann. Comb., 2(1):43–60, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  48. J. Komlös and M. Simonovits. Szemerédi’s regularity lemma and its applications in graph theory. In D. Miklós, V. T. Sós, and T. Szőnyi, editors Combinatorics—Paul Erdös is eighty, vol. 2 (Keszthely, 1993), volume 2 of Bolyai Society Mathematical Studies, pages 295–352. János Bolyai Mathematical Society, Budapest, 1996.

    Google Scholar 

  49. A. Lubotzky. Discrete groups, expanding graphs and invariant measures.Birkhäuser Verlag, Basel, 1994.With an appendix by Jonathan D. Rogawski.

    Book  MATH  Google Scholar 

  50. A. Lubotzky, R. Phillips, and P. Sarnak. Explicit expanders and the Ramanujan conjectures. In Proceedings of the Eighteenth Annual ACM Symposium on Theory of Computing (STOC’86), pages 240–246, Berkeley, California, 1986 ACM.

    Chapter  Google Scholar 

  51. A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combinatorica 8:261–277, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  52. J. Nešetřil and V. Rödl. Partition theory and its application. In Surveys in combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge 1979), pages 96–156. Cambridge Univ. Press, Cambridge, 1979.

    Google Scholar 

  53. V. Nikiforov. On a problem of Erdös about the local density of Kp-free graphs.submitted, 1999.

    Google Scholar 

  54. V. Rödl. The dimension of a graph and generalized Ramsey theorems. Master’s thesis, Charles University, 1973.

    Google Scholar 

  55. V. Rödl. On universality of graphs with uniformly distributed edges. Discrete Mathematics, 59(1–2):125–134, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  56. V. Rödl and A. Rucinski. Perfect matchings in ε-regular graphs and the blowup lemma. Combinatorica, 19(3):437–452, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  57. V. Rödl, A. Rucinski, and M. Wagner. An algorithmic embedding of graphs via perfect matchings. In Randomization and approximation techniques in computer science (Barcelona, 1998), pages 25–34. Springer, Berlin, 1998.

    Chapter  Google Scholar 

  58. R. Rubinfeld and M. Sudan. Robust characterizations of polynomials with applications to program testing. SIAM Journal on Computing, 25(2):252–271, Apr. 1996.

    Article  MATH  MathSciNet  Google Scholar 

  59. P. Sarnak. Some applications of modular forms. Cambridge University Press, Cambridge, 1990.

    Book  MATH  Google Scholar 

  60. E. Szemerédi. Regular partitions of graphs. In Problèmes Combinatoires et Théorie des Graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), pages 399–401, Paris, 1978. Colloques Internationaux CNRS n. 260.

    Google Scholar 

  61. A. R. Taraz. Szemerédis Regularitätslemma, Apr. 1995. Diplomarbeit, Universität Bonn, 83pp.

    Google Scholar 

  62. A. G. Thomason. Pseudorandom graphs. In Random graphs ’85 (Poznan, 1985), volume 144 of North-Holland Math. Stud., pages 307–331. North-Holland, Amsterdam-New York, 1987.

    Google Scholar 

  63. A. G. Thomason. Random graphs, strongly regular graphs and pseudorandom graphs. In C. Whitehead, editor, Surveys in Combinatorics 1987, volume 123 of London Mathematical Society Lecture Note Series, pages 173–195. Cambridge University Press, Cambridge-New York, 1987.

    Google Scholar 

  64. P. Turán. Eine Extremalaufgabe aus der Graphentheorie. Mat. Fiz. Lapok, 48:436–452, 1941. in Hungarian, with German summary.

    MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Kohayakawa, Y., Rödl, V. (2003). Szemerédi’s Regularity Lemma and Quasi-randomness. In: Reed, B.A., Sales, C.L. (eds) Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics / Ouvrages de mathématiques de la SMC. Springer, New York, NY. https://doi.org/10.1007/0-387-22444-0_9

Download citation

  • DOI: https://doi.org/10.1007/0-387-22444-0_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9268-2

  • Online ISBN: 978-0-387-22444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics