Skip to main content

Approximability of NP-Optimization Problems

  • Chapter
  • 740 Accesses

Abstract

Probably every computer science student knows the short comics story from the introduction of the fundamental textbook by Garey and Johnson [35]. It indicates in a pictorial way why an a priori seemingly theoretical concept as the notion of NP-completeness has been so successful. Till today, the first attempt of every student, researcher, algorithm designer with a new problem for which he can’t find a polynomial-time algorithm immediately is to try proving that it is NP-complete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Ajtai. Recursive construction for 3-regular expanders. In 28th Annual Symposium on Foundations of Computer Science, pages 295–304, 1987.

    Google Scholar 

  2. N. Alon. Eigenvalues and expanders. Comb, 6(2):83–96, 1986.

    MATH  Google Scholar 

  3. S. Arora. The approximability of NP-hard problems. In 28th Annual Symposium on Theory of Computing, pages 337–348, 1998.

    Google Scholar 

  4. S. Arora. Porynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. JACM, 45(5):753–782, Sept. 1998.

    Article  MATH  Google Scholar 

  5. S. Arora, D. Karger, and M. Karpinski. Polynomial time approximation schemes for dense instances of graph problems. JCSS, 2000, to appear. Preliminary version in STOC’95.

    Google Scholar 

  6. S. Arora and C. Lund. Hardness of approximations. In D. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems. PWS Publishing Company, 1995.

    Google Scholar 

  7. S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and the hardness of approximation problems. JACM, 45(3):501–555, 1998. Preliminary version in FOCS’92.

    Article  MATH  MathSciNet  Google Scholar 

  8. S. Arora and S. Safra. Probabilistic checking of proofs: a new characterization of NP. JACM, 45(1):70–122, 1998. Preliminary version in FOCS’92.

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela, and M. Protasi. Complexity and Approximation. Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  10. L. Babai. Trading group theory for randomness. In Proceedings of the 17th Annual Symposium on Theory of Computing, pages 421–429, 1985.

    Google Scholar 

  11. L. Babai. Transparent proofs and limits to approximations. In First European Congress of Mathematicians, pages 31–91. Birkhäuser, Basel, 1994.

    Chapter  Google Scholar 

  12. L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic time. In Proceedings of the 23rd Annual Symposium on Theory of Computing, pages 21–31, 1991.

    Google Scholar 

  13. L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity, 1:3–40, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  14. L. Babai and S. Moran. Arthur-Merlin games: a randomized proof system, and a hierarchy of complexity classes. JCSS, 36:254–276, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  15. M. Bellare, S. Goldwasser, and M. Sudan. Free bits, PCPs and nonapproximability — Towards tight results. SIAMCOMP, 27:804–915, 1998. Preliminary version in FOCS’95.

    Article  MATH  Google Scholar 

  16. M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson.Multi-prover interactive proofs: How to remove intractability assumptions. In Proceedings of the 20th Annual Symposium on Theory of Computing, pages 113–131, 1988.

    Google Scholar 

  17. P. Berman and M. Karpinski. On some tighter inapproximability results. In 24th International Colloquium on Automata, Languages and Programming, LNCS1644, pages 200–209, Berlin, 1999. Springer-Verlag.

    Chapter  Google Scholar 

  18. M. Bern and P. Plassmann. The Steiner problem with edge lengths 1 and 2. InfLet, 32:171–176, 1989.

    MATH  MathSciNet  Google Scholar 

  19. A. Blum and D. Karger.An Õ(n 3/14)-coloring algorithm for 3-colorable graphs. InfLet, 61:49–53, 1997.

    MathSciNet  Google Scholar 

  20. A. Borodin and R. El-Yaniv. Online Computation and Competitive Analysis. Cambridge University Press, 1998.

    MATH  Google Scholar 

  21. A. Condon. The complexity of the max word problem and the power of one-way interactive proof systems. Computational Complexity, 3:292–305, 1993. Preliminary version in STACS’91.

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Cook. The complexity of theorem-proving procedure. In 3rd Annual Symposium on Foundations of Computer Science, pages 151–158. IEEE, 1971.

    Google Scholar 

  23. P. Crescenzi. A short guide to approximation preserving reductions. In 12th Annual Conference on Computational Complexity, pages 262–273, 1997.

    Google Scholar 

  24. P. Crescenzi, V. Kann, R. Silvestri, and L. Trevisan. Structure in approximation classes. SIAM Journal on Computing, 28:1759–1782, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  25. P. Crescenzi and A. Panconesi. Completeness in approximation classes. Information and Computation, 93:241–262, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  26. P. Crescenzi, R. Sivestri, and L. Trevisan. To weight or not to weight: where is the question? In 4th Israel Symposium on Theory of Computing and Systems, pages 68–77, 1996.

    Google Scholar 

  27. P. Crescenzi and L. Trevisan.On approximation scheme preserving reducibility and its applications. Theory of Computing Systems, 33:1–16, 2000.

    MATH  MathSciNet  Google Scholar 

  28. U. Feige. A threshold of ln n for approximating set cover. JACM, 45(4):634–652, 1998. Preliminary version in STOC’96.

    Article  MATH  MathSciNet  Google Scholar 

  29. U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Interactive proofs and the hardness of approximating cliques. JACM, 43(2):268–292, 1996.Preliminary version in FOCS’91.

    Article  MATH  Google Scholar 

  30. U. Feige and J. Kilian. Zero knowledge and the chromatic number. JCSS, 57(2):187–199, 1998.Preliminary version in CCC’96.

    Article  MATH  MathSciNet  Google Scholar 

  31. M. Garey, R. Graham, and D. Johnson.Worst case analysis of memory allocation algorithms. In Proceedings of the 4th Annual Symposium on Theory of Computing, pages 143–150, 1972.

    Google Scholar 

  32. M. Garey and D. Johnson. Approximation algorithms for combinatorial problems: an annotated bibliography. In J. Traub, editor, Algorithms and Complexity: New Directions and Recent Results, pages 41–52. Academic Press, New York, 1976.

    Google Scholar 

  33. M. Garey and D. Johnson. Strong NP-completeness results: motivation, examples, and implications. JACM, 25:499–508, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  34. M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. TCS, 1:237–267, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  35. M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY, 1979.

    MATH  Google Scholar 

  36. O. Goldreich. Modern cryptography, probabilistic proofs and pseudo-randomness. Springer-Verlag, Berlin, 1999.

    Book  MATH  Google Scholar 

  37. S. Goldwasser, S. Micali, and C. Rackoff.The knowledge complexity of interactive proof-systems. SIAMCOMP, 418:186–208, 1989.

    Article  MathSciNet  Google Scholar 

  38. R. Graham. Bounds for certain multiprocessing anomalies. Bell System Technical Journal, 45:1563–1581, 1966.

    Article  Google Scholar 

  39. J. Håstad. Clique is hard to approximate within n 1-ε. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science, pages 627–636, 1996.

    Google Scholar 

  40. J. Håstad. Some optimal inapproximability results. In Proceedings of the 29th Annual Symposium on Theory of Computing, pages 1–10, 1997.

    Google Scholar 

  41. V. Heun, W. Merkle, and U. Weigand. Proving the PCP-Theorem. In E. Mayr, H. Prömel, and A. Steger, editors, Lectures on Proof Verification and Approximation Algorithms, pages 83–160. Springer-Verlag, Berlin, 1998.

    Chapter  Google Scholar 

  42. S. Hougardy, H. Prömel, and A. Steger. Probabilistically checkable proofs and their consequences for approximation algorithms. DM, 136:175–223, 1994.

    MATH  Google Scholar 

  43. D. Johnson. Approximation algorithms for combinatorial problems. JCSS, 9:256–278, 1974.

    Article  MATH  Google Scholar 

  44. N. Kahale. Expander Graphs. PhD thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institut of Technology, 1993.

    Google Scholar 

  45. H. Karloff and U. Zwick. A 7/8-approximation algorithm for MAX3SAT? In 38th Annual Symposium on Foundations of Computer Science, pages 406–415, 1997. Remark: According to the authors Conjectures 4.3 and 4.5 are now proven.

    Chapter  Google Scholar 

  46. R. Karp. Reducibility among combinatorial problems. In J. Thatcher and R. Miller, editors, Complexity of Computer Computations, pages 85–103. Plenum Press, New York, 1972.

    Chapter  Google Scholar 

  47. S. Khanna, N. Linial, and S. Safra. On the hardness of approximating the chromatic number. In Proceedings of the 2nd Israel Symposium on Theory of Computing and Systems, pages 250–260, Natanya, Israel, 1993. IEEE Comp. Soc. Press.

    Chapter  Google Scholar 

  48. S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syntactic versus computational views of approximability. SIAMCOMP, 28:164–191, 1998.Preliminary Version in FOCS’94.

    Article  MATH  MathSciNet  Google Scholar 

  49. Leighton and Rao. Multicommodity max-flow min-cut theorems and their use in designing approximation algorithms. JACM, 46:787–832, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  50. L. Levin. Universal search problems (in Russian). Problemy Peredaci Informatsii, 9:115–116, 1973.

    MATH  Google Scholar 

  51. L. Levin. Universal search problems (in Russian). 1973. English translation in Problems of Information Transmission 9:265–266.

    Google Scholar 

  52. L. Lovasz.On the ratio of the optimal integral and fractional covers. Discrete Mathematics, 13:383–390, 1975.

    Article  MATH  MathSciNet  Google Scholar 

  53. E. Mayr, H. Prömel, and A. Steger, editors. Lectures on Proof Verification and Approximation Alg orithms. LNCS1367. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  54. R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

    Book  MATH  Google Scholar 

  55. C. Papadimitriou and K. Steiglitz. Combinatorial Optimization. Algorithms and Complexity. Prentice-Hall, 1982.

    MATH  Google Scholar 

  56. C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity classes. JCSS, 43:425–440, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  57. H. Prömel and A. Steger. The Steiner Tree Problem. A Tour Through Graphs, Algorithms and Complexity. Vieweg Verlag, Wiesbaden, 2001, to appear.

    Google Scholar 

  58. R. Raz. A parallel repetition theorem. SIAMCOMP, 27:763–803, 1998.Preliminary version in STOC’95.

    Article  MATH  MathSciNet  Google Scholar 

  59. G. Robins and Z. A. Improved Steiner tree approximation in graphs. In Proceedings 11th Symposium on Discrete Algorithms, pages 770–779, 2000.

    Google Scholar 

  60. S. Sahni and T. Gonzales. P-complete approximation problems. JACM, 23:555–565, 1976.

    Article  MATH  Google Scholar 

  61. L. Trevisan. Reductions and (Non)-Approximability. PhD thesis, Computer Science Department, University of Rome “La Sapienza”, 1997.

    Google Scholar 

  62. L. Trevisan. Interactive and probabilistic proof-checking. Annals of Pure and Applied Logic, 2000, to appear.

    Google Scholar 

  63. L. Trevisan, G. Sorkin, M. Sudan, and D. Williamson. Gadgets, approximation, and linear programming. In Proceedings of the 37th Symposium on Foundations of Computer Science, pages 617–626, 1996.

    Google Scholar 

  64. K. N. U. Feige, R. Krauthgamer. Approximating minimum bisection size. In 30th Annual Symposium on Theory of Computing, pages 530–536, 2000.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Steger, A. (2003). Approximability of NP-Optimization Problems. In: Reed, B.A., Sales, C.L. (eds) Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics / Ouvrages de mathématiques de la SMC. Springer, New York, NY. https://doi.org/10.1007/0-387-22444-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-22444-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9268-2

  • Online ISBN: 978-0-387-22444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics