Advertisement

Concepts

Chapter
  • 175 Downloads
Part of the Springer Series on Environmental Management book series (SSEM)

Keywords

Target Population Statistical Inference Sampling Distribution Experimental Unit National Wildlife Refuge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, R., M. Morrison, K. Sinclair, D. Strickland, H. Davis, and W.L. Kendall. 1999. Studying Wind Energy/Bird Interactions: A Guidance Document. Avian Subcommittee of the National Wind Coordinating Committee, Washington, DC.Google Scholar
  2. Berger, J. 1980. Bayesian Statistics. Springer-Verlag, New York.Google Scholar
  3. Boulinier, T., J.D. Nichols, J.R. Sauer, J.E. Hines, and K.H. Pollock. 1998. Estimating species richness to make inference in community ecology: The importance of heterogeneity in species detectability as shown from capture-recapture analyses of North American Breeding Bird Survey data. Ecology 79:1018–1028.Google Scholar
  4. Brownie, C., D.R. Anderson, K.P. Burnham, and D.S. Robson. 1985. Statistical Inference from band Recovery Data: A Handbook. U.S. Department of the Interior, Fish and Wildlife Service, Res. Publ. 156, Washington, DC.Google Scholar
  5. Buckland, S.T., and P.H. Garthwaite. 1991. Quantifying precision of mark-recapture estimates using the bootstrap and related methods. Biometrics 47:255–268.Google Scholar
  6. Buckland, S.T., D.R. Anderson, K.P. Burnham, and J.L. Laake. 1993. Distance Sampling: Estimating Abundance of Biological Populations. Chapman and Hall, London.Google Scholar
  7. Buckland, S.T., K.P. Burnham, and N.H. Augustin. 1997. Model selection: An integral part of inference. Biometrics 53:603–618.Google Scholar
  8. Burnham, K.P., D.R. Anderson, and G.C. White. 1984. Estimating the effect of hunting on annual survival rates of adult mallards. J. Wildl. Manage. 48:350–361.Google Scholar
  9. Burnham, K.P., D.R. Anderson, G.C. White, C. Brownie, and K.H. Pollock. 1987. Design and Analysis Methods for Fish Survival Experiments Based on Release-Recapture. American Fisheries Society, Monograph 5. Bethesda, MD.Google Scholar
  10. Burnham, K.P., and D.R. Anderson. 1998. Model Selection and Inference: A Practical Information-Theoretic Approach. Springer-Verlag, New York.Google Scholar
  11. Chamberlain, T.C. 1897. The method of multiple working hypotheses. J. Geol. 5, 837–848. Reprinted in Science 148:754–759.Google Scholar
  12. Cherry, S. 1999. Statistical tests in publications of The Wildlife Society. Wildl. Soc. Bull. 26: 947–953.Google Scholar
  13. Cochran, W.G. 1977. Sampling techniques, 3d ed. Wiley, New York.Google Scholar
  14. Copi, I.M. 1982. Introduction to Logic. Macmillan, New York.Google Scholar
  15. Cook, R.D., and J.O. Jacobsen. 1979. A design for estimating visibility bias in aerial surveys. Biometrics 35:735–742.Google Scholar
  16. Cox, D.R. 1958. Planning of Experiments (Wiley Classics Library Edition published 1992). Wiley, New York.Google Scholar
  17. Efron, B., and G. Gong. 1983. A leisurely look at the bootstrap, the jackknife, and cross validation. Am. Stat. 37:36–48.Google Scholar
  18. Ellison, A.M. 1996. An introduction to Bayesian inference for ecological research and environmental decision-making. Ecol. Applic. 6:1036–1046.Google Scholar
  19. Fisher, R.A. 1925. Statistical Methods for Research Workers. Oliver and Boyd, London.Google Scholar
  20. Fisher, R.A. 1935. The Design of Experiments. Reprinted 1971 by Hafner, New York.Google Scholar
  21. Gerard, P.D., D.R. Smith, and G. Weerakkody. 1998. Limits of retrospective power analysis. J. Wildl. Manage. 62:801–807.Google Scholar
  22. Green, R.H. 1979. Sampling Design and Statistical Methods for Environmental Biologists. Wiley, New York.Google Scholar
  23. Hall, L.S., P.R. Krausman, and M.L. Morrison. 1997. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 25:173–182.Google Scholar
  24. Hilborn, R., and M. Mangel. 1997. The Ecological Detective. Princeton Univ. Pr., Princeton, NJ.Google Scholar
  25. Hollander, M., and D.A. Wolfe. 1973. Nonparametric Statistical Methods. Wiley, New York.Google Scholar
  26. Holling, C.S., ed. 1978. Adaptive Environmental Assessment and Management. Wiley, London.Google Scholar
  27. Hurlbert, S.H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54:187–211.Google Scholar
  28. Johnson, D.H. 1995. Statistical sirens: The allure of nonparametrics. Ecology 76:1998–2000.Google Scholar
  29. —. 1999. The insignificance of statistical significance testing. J. Wildl. Manage. 63:763–772.Google Scholar
  30. Johnson, F.A., B.K. Williams, J.D. Nichols, J.E. Hines, W.L. Kendall, G.W. Smith, and D.F. Caithamer. 1993. Developing an adaptive management strategy for harvesting waterfowl in North America. In Transactions of the North American Wildlife and Natural Resources Conference, pp. 565–583. Wildlife Management Institute, Washington, DC.Google Scholar
  31. Johnson, F.A., C.T. Moore, W.L. Kendall, J.A. Dubovsky, D.F. Caithamer, J.R., Kelley, Jr., and B.K. Williams. 1997. Uncertainty and the management of mallard harvests. J Wildlife Management 61:202–216.Google Scholar
  32. Kempthorne, O. 1966. Design and Analysis of Experiments. Wiley, New York.Google Scholar
  33. Kendall, W.L., B.G. Peterjohn, and J.R. Sauer. 1996. First-time observer effects in the North American Breeding Bird Survey. Auk 113: 823–829.Google Scholar
  34. Kish, L. 1987. Statistical Design for Research. Wiley, New York.Google Scholar
  35. Krebs, C.J. 1978. Ecology: The Experimental Analysis of Distribution and Abundance, 2d ed. Harper and Row, New York.Google Scholar
  36. Lakatos, I. 1978. The Methodology of Scientific Research Programmes. Cambridge Univ. Pr. Cambridge.Google Scholar
  37. Lebreton, J.-D., K.P. Burnham, J. Clobert, and D.R. Anderson. 1992. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62:67–118.Google Scholar
  38. Levins, R. 1969. Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull. Entomol. Soc. Am. 15:237–240.Google Scholar
  39. Levins, R. 1970. Extinction. In M. Gerstenhaber (ed.). Some Mathematical Questions in Biology, pp. 77–107. American Mathematical Society, Providence, RI.Google Scholar
  40. Link, W.A., and J.R. Sauer. 1998. Estimating population change from count data: Application to the North American Breeding Bird Survey. Ecol. Applic. 8:258–268.Google Scholar
  41. Manly, B.F.J. 1991. Randomization and Monte Carlo Methods in Biology. Chapman and Hall, London.Google Scholar
  42. McCullough, D.R. 1996. Introduction. In D.R. McCullough (ed.). Metapopulations and Wildlife Conservation, pp. 1–10. Island Press, Washington, DC.Google Scholar
  43. Morrison, M.L., B.G. Marcot, and R.W. Mannan. 1998. Wildlife-Habitat Relationships: Concepts and Applications. Univ. Wisconsin Pr., Madison, WI.Google Scholar
  44. National Research Council 1985. Oil in the Sea: Inputs, Fates, and Effects. National Academy Pr., Washington, DC.Google Scholar
  45. Neyman, J., and E.S. Pearson. 1935. On the problem of the most efficient tests of statistical hypothesis. Philos. Trans. R. Soc. Lond. [A] 231:289–337.Google Scholar
  46. Nichols, J.D., and M.J. Conroy. 1996. Estimation of species richness. In D.E. Wilson, F.R. Cole, J.D. Nichols, R. Rudran, and M. Foster, eds. Measuring and Monitoring Biological Diversity: Standard Methods for Mammals, pp. 226–234. Smithsonian Institution Pr., Washington, DC.Google Scholar
  47. Nichols, J.D., T. Boulinier, J.E. Hines, K.H. Pollock, and J.R. Sauer. 1998a. Estimating rates of local species extinction, colonization, and turnover in animal communities. Ecol. Applic. 8:1213–1225.Google Scholar
  48. —. 1998b. Inference methods for spatial variation in species richness and community composition when not all species are detected. Conserv. Biol. 12:1390–1398.Google Scholar
  49. Nichols, J.D., J.E. Hines, J.R. Sauer, F.W. Fallon, J.E. Fallon, and P.J. Heglund (2000). A doubleobserver approach for estimating detection probability and abundance from point counts. Auk 117:393–408.Google Scholar
  50. Otis, D.L., K.P. Burnham, G.C. White, and D.R. Anderson. 1978. Statistical inference for capture data on closed animal populations. Wildl. Monogr. 62.Google Scholar
  51. Peterjohn, B.G., J.R. Sauer, and W.A. Link. 1996. The 1994 and 1995 summary of the North American Breeding Bird Survey. Bird Popul. 3:48–66.Google Scholar
  52. Platt, J.R. 1964. Strong inference. Science 146:347–353.Google Scholar
  53. Pollock, K.H., J.D. Nichols, J.E. Hines, and C. Brownie. 1990. Statistical inference for capturerecapture experiments, Wildl. Monogr. 107.Google Scholar
  54. Popper, K.P. 1959. The Logic of Scientific Discovery. Basic Books, New York.Google Scholar
  55. —. 1979. Objective Knowledge: An Evolutionary Approach. Oxford Univ. Pr., Oxford.Google Scholar
  56. Pulliam, H.R. 1988. Sources, sinks, and population regulation. Am Natural. 132:652–661.Google Scholar
  57. Romesburg, H.C. 1981. Wildlife science: Gaining reliable knowledge. J. Wildl. Manage. 45:293–313.Google Scholar
  58. Sauer, J.R., B.G. Peterjohn, and W.A. Link. 1994. Observer differences in the North American Breeding Bird Survey. Auk 111:50–62.Google Scholar
  59. Scheaffer, R.L., W. Mendenhall, and L. Ott. 1979. Elementary Survey Sampling, 2d ed. Duxbury Pr., North Scituate, MA.Google Scholar
  60. Seber, G.A.F. 1982. The Estimation of Animal Abundance and Related Parameters, 2d ed. Macmillan, New York.Google Scholar
  61. Skalski, J.R. 1994. Estimating Wildlife populations based on incomplete area surveys. Wildl. Soc. Bull. 22:192–203.Google Scholar
  62. Skalski, J.R., and D.S. Robson. 1992. Techniques for Wildlife Investigations: Design and Analy-sis of Capture Data. Academic Pr., San Diego, CA.Google Scholar
  63. Sokal, R.R., and F.J. Rohlf. 1995. Biometry, 3d ed. W.H. Freedman, San Francisco, CA.Google Scholar
  64. Steel, R.G.D., and J.H. Torrie. 1980. Principles and Procedures of Statistics: A Biometrical Approach, 2d ed. McGraw-Hill, New York.Google Scholar
  65. Steidl, R.J., J.P. Hayes, and E. Schauber. 1997. Statistical power analysis in wildlife research. J. Wildl. Manage. 61:270–279.Google Scholar
  66. Stewart-Oaten, A., W.W. Murdoch, and K.R. Parker. 1986. Environmental impact assessment: “Pseudoreplication“ in time? Ecology 67:929–940.Google Scholar
  67. Thompson, S.K. 1992. Sampling. Wiley, New York.Google Scholar
  68. Underwood, A.J. 1994. On beyond BACI: Sampling designs that might reliably detect environmental disturbances. Ecol. Applic. 4:3–15.Google Scholar
  69. Walters, C.J. 1986. Adaptive Management of Renewable Resources. Macmillan, New York.Google Scholar
  70. Walters, C.J., and C.S. Holling. 1990. Large-scale management experiments and learning by doing. Ecology 71:2060–2068.Google Scholar
  71. White, G.C., D.R. Anderson, K.P. Burnham, and D.L. Otis. 1982. Capture-Recapture and Removal Methods for Sampling Closed Populations. Los Alamos National Laboratory, Los Alamos, NM.Google Scholar
  72. Williams, B.K. 1996. Adaptive optimization and the harvest of biological populations. Math. Biosci. 136:1–20.CrossRefPubMedGoogle Scholar
  73. —. 1997. Logic and science in wildlife biology. J. Wildl. Manage. 61:1007–1015.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2001

Personalised recommendations