Skip to main content

The Lure and Complexity of Multiple Analyses

  • Chapter
Multiple Analyses in Clinical Trials

Part of the book series: Statistics for Biology and Health ((SBH))

  • 808 Accesses

Abstract

This chapter presents the motivations for, and consequences of, executing multiple statistical analyses in clinical trials. Logistical efficiency, the desire to build a causal argument, and the need to explore and develop unanticipated results, are appropriate and powerful factors that motivate the inclusion of multiple analyses in these randomized studies. However, their incorporation may produce results which can be difficult to integrate with the idea of controlling the type I error rate. The need to minimize the type I error rate in a clinical trial is developed, followed by an elementary introduction to one of the most useful tools for controlling type I error rates—the Bonferroni inequality. Alternative methods of controlling the type I error rate are then briefly discussed. The chapter ends by combining (1) the motivation for the prospective plan of an experiment and (2) the need to control the type I error rate into a framework to guide the design of a clinical trial. This final integration (Table 3.3) describes the three ways in which multiple analyses in clinical trials are carried out, and the implications for each of their interpretations. This result will be the basis for the development of the multiple analysis tools to which the rest of the book is devoted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Budde, M., Bauer, P. (1989). Multiple test procedures in clinical dose finding studies. Journal of the American Statistical Association 84:792–796.

    Article  Google Scholar 

  2. Shepherd, J., Cobbe, S.M., Ford, I., et al. (1995). Prevention of CAD with pravastatin in men with hypercholesterolemia. New England Journal of Medicine 333:1301–7.

    Article  Google Scholar 

  3. Sacks, F.M., Pfeffer, M.A., Moyé, L.A., Rouleau, J.L., Rutherford, J.D., Cole, T.G., Brown, L., Warnica, J.W., Arnold, J.M.O., Wun, C.C., Davist, B.R., Braunwald. E. (1996). The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. New England Journal of Medicine 335:1001–9.

    Article  Google Scholar 

  4. Scandinavian Simvastatin Survival Study Group. (1994). Randomized trial of cholesterol lowering in 4444 patients with CAD: the Scandinavian Simvastatin Survival Study (4S). Lancet 344:1383–9.

    Google Scholar 

  5. Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. (1998). Prevention of cardiovascular events and death with pravastatin in patients with CAD and a broad range of initial cholesterol levels. New England Journal of Medicine 339:1349–1357.

    Article  Google Scholar 

  6. Food and Drug Modernization Act of 1997. (November 21, 1997). Public Law.105-115;21USC 355a;111Stat. 2295.

    Google Scholar 

  7. Nester, M.R., (1996). An applied statistician’s creed. Applied Statistics 45: 4401–410.

    MathSciNet  Google Scholar 

  8. Rothman, R.J. No adjustments are needed for multiple comparisons. Epidemiology 1:43–46.

    Google Scholar 

  9. Fisher, L.D., Moyé, L.A. (1999). Carvedilol and the Food and Drug Administration Approval Process: An Introduction. Controlled Clinical Trials 20:1–15.

    Article  Google Scholar 

  10. Fisher, L.D. (1999). Carvedilol and the FDA approval process: the FDA paradigm and reflections upon hypothesis testing. Controlled Clinical Trials 20:16–39.

    Article  Google Scholar 

  11. Moyé, L.A. (1999). P-Value Interpretation in Clinical Trials. The Case for Discipline. Controlled Clinical Trials 20:40–49.

    Article  Google Scholar 

  12. Hochberg, Y., Tamhane, A.C. (1987). Multiple Comparison Procedures, New York, Wiley.

    Google Scholar 

  13. Westfall, P.H., Young S.S. (1993). Resampling Based Multiple Testing: Examples and Methods for P-Value Adjustment. New York. Wiley.

    Google Scholar 

  14. Pocock, R.J., Farewell, V.T. (1996). Multiplicity consideration in the design and analysis of clinical trials. Journal of the Royal Statistical Society A 159:93–110.

    Google Scholar 

  15. Adams, C. (2002). At FDA, approving cancer treatments can be an ordeal. The Wall Street Journal. December 11, p 1.

    MATH  Google Scholar 

  16. Senn, S. (1997). Statistical Issues in Drug Development. Chichester, Wiley, Section 15.2.1.

    Google Scholar 

  17. Miller, R.G. (1981) Simultaneous Statistical Inference, 2nd ed. New York Springer.

    Google Scholar 

  18. Bonferroni, C.E. (1935). Il calcolo delle assicurazioni su gruppi di teste. In Studi in Onore del Professore Salvatore Ortu Carboni. Rome, 13–60.

    Google Scholar 

  19. Bonferroni, C.E. (1936). Teoria statistica delle classi e calcolo delle probabilità. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8:3–62.

    Google Scholar 

  20. Dunn, O.J. (1959). Confidence intervals for the means of dependent, normally distributed variables. Journal of the American Statistical Association 54:613–621.

    Article  MATH  MathSciNet  Google Scholar 

  21. Dunn, O.J. (1961). Multiple comparisons among means. Journal of the American Statistical Asssociation 56:52–54.

    Article  MATH  MathSciNet  Google Scholar 

  22. Zhang, J., Qwuan, H., Ng, J., Stepanavage, M.E. (1997). Some statistical methods for mulitple endpoints in clinical trials. Controlled Clinical Trials 18:204–221.

    Article  Google Scholar 

  23. Wright, S.P. (1992). Adjusted P-values for simultaneous inference. Biometrics 48:1005–1013.

    Google Scholar 

  24. Simes, R.J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:819–827.

    Article  MathSciNet  Google Scholar 

  25. Holm, S. (1979). A simple sequentially rejective multiple test procedures. Scandinavian Journal of Statistics 6:65–70.

    MATH  MathSciNet  Google Scholar 

  26. Hommel, G. (1988). A stepwise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75:383–386.

    Article  MATH  Google Scholar 

  27. Shaffer, J.P. (1986). Modified sequentially rejective multiple test procedures. Journal of the American Statistical Association 81:826–831.

    Article  MATH  Google Scholar 

  28. Bland, J.M., Altman, D.G. (1994). Statistics notes: One and two-sided tests of significance. British Medical Journal 309:248.

    Google Scholar 

  29. Dunnett, C.W., Gent, M. (1996). An alternative to the use of two-sided tests in clinical trials. Statistics in Medicine 15:1729–1738.

    Article  Google Scholar 

  30. Knottnerus J.A., Bouter L.M. (2001). Commentary The ethics of sample size: two-sided testing and one-sided thinking. Journal of Clinical Epidemiology 54:109–110.

    Article  Google Scholar 

  31. Moyé, L.A. (2000). Statistical Reasoning in Medicine: The Intuitive P-Value Primer. New York, Springer. Chapter 6.

    Google Scholar 

  32. Moyé, L.A., Tita, A. (2002). Ethics and Hypothesis Testing Complexity Circulation 105:3062–3065.

    Article  Google Scholar 

  33. Westfall P.H., Young S.S., Wright S.P. (1993). Adjusting p-values for multiplicity. Biometrics 49:941–945.

    Google Scholar 

  34. Westfall, P.H., Young, S. P-value adjustments for mulitple tests in multivariate binomial models. Journal of the American Statistical Association 84:780–786.

    Google Scholar 

  35. Westfall, P.H., Krishnen, A., Young, S.S. (1998). Using prior information to allocate significance levels for multiple endpoints. Statistics in Medicine 17:2107–2119.

    Article  Google Scholar 

  36. Berger, V. (1998). Admissibility of Exact Conditional Tests of Stochastic Order. Journal of Statistical Planning and Inference 66:39–50.

    Article  MATH  MathSciNet  Google Scholar 

  37. Miller RG. (1977). Developements in multiple comparisons 1966–1976. Journal of the American Statistical Association 72:779–788.

    Article  MATH  MathSciNet  Google Scholar 

  38. Edwards, D., Berry, J.J. (1987). The efficiency of simulation-based multiple comparisons. Biometrics 43:913–928.

    MathSciNet  Google Scholar 

  39. Einot, I., Gabriel, E.R. (1975). A study of powers of several methods of multiple comparisons. Journal of the American Statistical Association 70:574–583.

    Article  Google Scholar 

  40. O’Brien, P.C. (1984). Procedures for comparing samples with multiple end-points. Biometrics 40:1079–1087.

    MathSciNet  Google Scholar 

  41. Simes, R.J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73:751–754.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

(2003). The Lure and Complexity of Multiple Analyses. In: Multiple Analyses in Clinical Trials. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-21813-0_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-21813-0_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00727-4

  • Online ISBN: 978-0-387-21813-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics