Skip to main content

Polycyclic Aromatic Hydrocarbon Ecotoxicity Data for Developing Soil Quality Criteria

  • Chapter

Part of the book series: Reviews of Environmental Contamination and Toxicology ((RECT,volume 179))

Summary

With the overall perspective of calculating soil quality criteria (SQC) for the group of polycyclic aromatic hydrocarbons (PAHs), the existing ecotoxicity data for the soil compartment have been reviewed. The majority of data useful in the context of deriving SQC are of recent origin. Soil quality criteria are considered valuable tools for assessing the environmental risk of contamination, as they may give guidance on concentration limits for various chemicals to protect the function and structure of ecosystems. Soil quality criteria for soil-dwelling species were calculated using various assumptions and two internationally accepted methods, i.e., application of assessment factors and species sensitivity distributions, respectively. It was suggested to derive ecotoxicological soil quality criteria, which focus on the lower molecular weight PAHs, i.e., those with log K ow values lower than 5.5 or 6; this is the log K ow range where a cutoff in toxicity for terrestrial species is expected for narcotic substances. Predicted values from the two methods were similar. Calculations showed that, for four individual PAHs of three or four rings, SQC fall in the range of 1.0 and 2.5 mg kg. However, as no individual PAH is fond alone it is suggested to use a sum criterion for a group of PAHs instead. The different possibilities to calculate such a sum criterion are discussed. Based on toxicity data presented here and the average abundance of different PAHs in nearly 1000 Danish soil samples, an ecotoxicological soil quality criterion of 25 mg kg dry weight for the sum of the eight PAHs acenaphthene, fluorene, anthracene, phenanthrene, pyrene, fluoranthene, benz[a]anthracene, and chrysene is suggested.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achazi RK, Chroszcz G, Däker C, Henneken M. Rothe B, Schaub K, Steudel I (1995) The effect of fluoranthene (Fla), benzo(a)pyrene (BaP) and cadmium (Cd) upon survival rate and life cycle parameters of two terrestrial annelids in laboratory test systems. Newsl Enchytraeidae 4:7–14.

    Google Scholar 

  • Aldenberg T, Sloob W (1993) Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol Environ Saf 25:48–63.

    Article  PubMed  CAS  Google Scholar 

  • Alexander M (2000) Aging, bioavailability and overestimation of risk from environmental pollutants. Environ Sci Technol 34:4259–4265.

    Article  CAS  Google Scholar 

  • Baud-Grasset F, Baud-Grasset S, Safferman SI (1993) Evaluation of the bioremediation of a contaminated soil with phytotoxicity tests. Chemosphere 26:1365–1374.

    Article  CAS  Google Scholar 

  • Blakely JK, Neher DA, Spongberg AL (2002) Soil invertebrate and microbila communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Appl Soil Ecol 21:71–88.

    Article  Google Scholar 

  • Bowmer DT, Roza P, Henzen L, Degeling C (1993) The development of chronic toxicological tests for PAH contaminated soils using the earthworm Eisenia fetida and the springtail Folsomia candida. Report IMW-R 92/387. TNO Institute of Environmental Science, Delft, The Netherlands.

    Google Scholar 

  • CCME (1996) A protocol for the derivation of environmental and human health soil quality guidelines. Report from the Canadian Council of Ministers of the Environment (CCME), pp. 1–169. ISBN: 0-662-24344-7.

    Google Scholar 

  • CCME (1997) Recommended Canadian Soil Quality Criteria. Report from the Canadian Council of Ministers of the Environment (CCME), pp. 1–185. ISBN: 1-895-925-92-4.

    Google Scholar 

  • Chapman PM, Fairbrother A, Brown D (1998) A critical evaluation of safety (uncertainty) factors for ecological risk assessment. Environ Toxicol Chem 17:99–108.

    Article  CAS  Google Scholar 

  • Charrois JWA, McGill WB, Froese KL (2001) Acute ecotoxicity of creosote-contaminated soils to Eisenia fetida: a survival-based approach. Environ Toxicol Chem 20: 2594–2603.

    Article  PubMed  CAS  Google Scholar 

  • Chung N, Alexander M (2002) Effects of soil properties on bioavailability and extractability of phenanthrene and atrazine sequestered in soil. Chemosphere 48:109–115.

    Article  PubMed  CAS  Google Scholar 

  • Crommentuijn T, Sijm D, de Bruijn J, van den Hoop M, van Leeuwen K, van de Plassche E (2000) Maximum permissible and negligible concentrations for metals and metalloids in the Netherlands, taking into account background concentrations. J Environ Manag 60:121–143.

    Article  Google Scholar 

  • Crouau Y, Chenon P, Gisclard C (1999) The use of Folsomia candida (Collembola, Isotomidae) for the bioassay of xenobiotic substances and soil pollutants. Appl Soil Ecol 12:103–111.

    Article  Google Scholar 

  • Dörr VR (1970) Die aufnahme von 3,4-benzpyren durch pflanzenwurzeln. Landwirtsch Forsch 23:371–379.

    Google Scholar 

  • Duke LD, Taggart M (2000) Uncertainty factors in screening ecological risk assessments. Environ Toxicol Chem 19: 1668–1680.

    Article  CAS  Google Scholar 

  • Eason CT, Svendsen C, O’Halloran K, Weeks JM (1999) An assessment of the lyosomal neutral red retention test and immune function assay in earthworms (Eisenia andrei) following exposure to chlorpyrifos, benzo-a-pyrene (BaP), and contaminated soil. Pedobiologia 43:641–645.

    CAS  Google Scholar 

  • Eijsackers H, van Gestel CAM, de Jonge S, Muihs B, Slijkerman D (2001) Polycyclic aromatic hydrocarbon-polluted dredged peat sediments and earthworms: a mutual interference. Ecotoxicology 10:35–50.

    Article  PubMed  CAS  Google Scholar 

  • El-Fouly MM (1980) Effect of low concentrations of 3,4-benzpyrene on growth and N-fractions of seedlings. Landwirtsch Forsch 33:108–117.

    CAS  Google Scholar 

  • Emans HJB, Plassche EJ, Canton JH, Okkerman PC, Sparenburg PM (1993) Validation of some extrapolation methods used for effect assessment. Environ Toxicol Chem 12: 2139–2154.

    CAS  Google Scholar 

  • Erstfeld KM, Snow-Ashbrook J (1999) Effects of chronic low-level PAH contamination on soil invertebrate communities. Chemosphere 39:2117–2139.

    Article  PubMed  CAS  Google Scholar 

  • Eschenbach A, Gehlen P, Bierl R (1991) Untersuchungen zum einfluss von Fluoranthen und benzo(a)pyren auf bodenmikroorganismen and zum mikrobiellen abbau dieser substanzen. Mitteilungen d. Dt. Bodenkundl Ges 63:91–94.

    Google Scholar 

  • European Commission (1996) Technical Guidance Document (TGD) in support of Commission Directive 93/67/EEC on risk assessment for new notified substances and Commission Regulation (EC) No. 1488/94 on risk assessment for existing substances. Part II: Ecological Risk Assessment. European Commission, Luxembourg.

    Google Scholar 

  • Ferguson C, Darmendrail D, Freier K, Jensen BK, Jensen J, Kasamas H, Urzelai A, Vegter J (eds) (1998) Risk Assessment for Contaminated Sites in Europe, vol 1. Scientific Basis. LQM Press, Nottingham, UK.

    Google Scholar 

  • Forbes TL, Forbes VL (1993) A critique of the use of distribution-based extrapolation models in ecotoxicology. Funct Ecol 7:249–254.

    Google Scholar 

  • Forbes VE, Calow P (2002) Species sensitivity distributions revisited: A critical appraisal. Hum Ecol Risk Assess 8:473–492.

    Article  Google Scholar 

  • Henner P, Schiavon M, Druelle V, Lichtfouse E (1999) Phytotoxicity of ancient gaswork soils. Effect of polycyclic aromatic hydrocarbons (PAHs) on plant germination. Org Geochem 30:963–969.

    Article  CAS  Google Scholar 

  • Hulzebos EM, Adema DDM, Dirven-van Breeman EM, Henzen L, van Dis WA, Herbold HA, Hoekstra JA, Baerselman R, van Gestel CAM (1993) Phytotoxicity studies with Lactuca sativa in soil and nutrient solution. Environ Toxicol Chem 12:1079–1094.

    CAS  Google Scholar 

  • Hund K, Traunspurger W (1994) Ecotox-evaluation strategy for soil bioremediation exemplified for a PAH-contaminated site. Chemosphere 29:371–390.

    Article  PubMed  CAS  Google Scholar 

  • Joner EJ, Johansen A, Loibner AP, Dela Cruz MA, Szolar OHJ, Portal JM, Leyval C (2001) Rhizosphere effects on microbial community structure and dissipation and toxicity of polycyclic aromatic hydrocarbons (PAHs) in spiked soil. Environ Sci Technol 35:2773–2777.

    Article  PubMed  CAS  Google Scholar 

  • Kalf DF, Crommentuijn T, van de Plassche EJ (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons (PAHs). Ecotoxicol Environ Saf 36:89–97.

    Article  PubMed  CAS  Google Scholar 

  • Knudsen S, Andersen JN, Broholm M (2001) Natural attenuation of PAH in soil and ground water (in Danish). Environmental Project Report 582. Miljøstyrelsen (Danish Environmental Protection Agency), Copenhagen.

    Google Scholar 

  • Lee E, Banks MK (1993) Bioremediation of petroleum contaminated soil using vegetation: a microbial study. In: Robinson JW (ed) Petroleum Contaminated Soil. Dekker, New York, pp 2187–2198.

    Google Scholar 

  • Løkke H (1994) Ecotoxicolocal extrapolation: tool or toy? In: Donker MH, Eijsackers H, Heimbach F (eds) Ecotoxicology of Soil Organisms. Lewis, CRC Press, Boca Raton, FL, pp 411–425.

    Google Scholar 

  • Mahmood SK, Rao PR (1993) Microbial abundance and degradation of polycyclic aromatic hydrocarbons in soil. Bull Environ Contam Toxicol 50:486–491.

    Article  PubMed  CAS  Google Scholar 

  • Maliszewska-Kordybach B, Smreczak B (2000) Ecotoxicological activity of soils polluted with polycyclic aromatic hydrocarbons (PAHs): effects on plants. Environ Technol 21:1099–1110.

    Article  CAS  Google Scholar 

  • Mitchell RL, Burchett MD, Pulkownik A, McCluskey R (1988) Effects of environmentally hazardous chemicals on emergence and early growth of selected Australian plants. Plant Soil 112:195–199.

    Article  CAS  Google Scholar 

  • Neuhauser EF, Callahan CA (1990) Growth and reproduction of the earthworm Eisenia fetida exposed to sublethal concentrations of organic chemicals. Soil Biol Biochem 22:175–179.

    Article  CAS  Google Scholar 

  • Neuhauser EF, Loehr RC, Malecki MR, Milligan DL, Durkin PR (1985) The toxicity of selected organic chemicals to the earthworm Eisenia fetida. J Environ Qual 14: 383–388.

    CAS  Google Scholar 

  • Neuhauser EF, Durkin PR, Malecki MR, Anatra M (1986) Comparative toxicity of ten organic chemicals to four earthworm species. Comp Biochem Physiol 86C:197–200.

    Google Scholar 

  • Okkerman PC, van de Plassche EJ, Emans HJB, Canton JH (1993) Validation of some extrapolation methods with toxicity data derived from multi species experiments. Ecotoxicol Environ Saf 25:341–359.

    Article  PubMed  CAS  Google Scholar 

  • Park KS, Sims RC, Dupont RR, Doucette WJ, Matthews JE (1990) Fate of PAH compounds in two soil types: influence of volatilization, abiotic loss and biological activity. Environ Toxicol Chem 9:187–195.

    CAS  Google Scholar 

  • Posthuma L, Suter GW II, Traas TP (2002) Species sensitivity distributions in ecotoxicology. Lewis, CRC Press, Boca Raton, FL.

    Google Scholar 

  • Roman G, Isnard P. Jouany JM (1999) Critical analysis of methods for assessment of predicted no-effect concentration. Ecotoxicol Environ Saf 43:117–125.

    Article  PubMed  CAS  Google Scholar 

  • Römbke J, Bauer C, Marschner A (1994) Verhalten und wirkungen von sechs umweltchemikalien in terrestrischen labortest. Umweltbundesamt 5–9 September 1994. Ecoinforma 6:269–282.

    Google Scholar 

  • Safe SH (1998) Hazard and risk assessment of chemical mixtures using the toxic equivalency factor approach. Environ Health Perspect 196(suppl 4):1051–1058.

    Google Scholar 

  • Smith EP, Cairns J (1993) Extrapolation methods for setting ecological standards for water quality: statistical and ecological concerns. Ecotoxicology 2:203–219.

    Article  Google Scholar 

  • Sverdrup LE (2001) Toxicity of tar constituents in terrestrial ecosystems: effects of eight polycyclic aromatic compounds on terrestrial plants, soil invertebrates and microorganisms. PhD thesis, Faculty of Mathematics and Natural Sciences, University of Oslo, Norway.

    Google Scholar 

  • Sverdrup LE, Kelley AE, Krogh PH, Nielsen T, Jensen J, Scott-Fordsmand JJ, Stenersen J (2001) Effects of eight polycyclic aromatic compounds on the survial and reproduction of the springtail Folsomia fimetaria (Collembola, Isotomidae). Environ Toxicol Chem 20:1332–1338.

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup LE, Jensen J, Krogh PH, Kelley AE, Stenersen J (2002a) Effects of eight polycyclic aromatic compounds on the survival and reproduction of the enchytraeid Enchytraeus crypticus (Oligochaeta, Clitellata). Environ Toxicol Chem 21:109–114.

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup LE, Krogh PH, Nielsen T, Stenersen J (2002b) Relative sensitivity of three terrestrial invertebrate tests to polycyclic aromatic compounds. Environ Toxicol Chem 21:1927–1933.

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup LE, Ekelund F, Krogh PH, Nielsen T, Johnsen K (2002c) Soil microbial toxicity of eight polycyclic aromatic compounds: effects on nitrification, the genetic diversity of bacteria and the total number of protozoans. Environ Toxicol Chem 21:1644–1650.

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup LE, Nielsen T, Krogh PH (2002d) Soil ecotoxicity and polycyclic aromatic hydrocarbons (PAHs) in relation to soil sorption, lipophilicity and water solubility. Environ Sci Technol 36:2429–2435.

    Article  PubMed  CAS  Google Scholar 

  • Sverdrup LE, Jensen J, Krogh PH, Stenersen J (2002e) Studies on the effects of aging on the toxicity of pyrene and phenanthrene to a soil dwelling springtail. Environ Toxicol Chem 21:489–492.

    Article  PubMed  CAS  Google Scholar 

  • van Brummelen TC, Verweij RA, van Straalen NM (1991) Determination of benzo(a)pyrene in isopods (Porcellio scaber Latr) exposed to contaminated food. Comp Biochem Physiol C Comp Pharmacol Toxicol 100:21–24.

    Article  Google Scholar 

  • van Brummelen TC, Stuijzand SC (1993) Effects of benzo(a)pyrene on survival, growth and energy reserves in the terrestrial isopods Oniscus asellus and Porcellio scaber. Sci Total Environ Suppl 1993:921–930.

    Google Scholar 

  • van Brummelen TC, van Gestel CAM, Verweij RA (1996) Long-term toxicity of five polycyclic aromatic hydrocarbons for the terrestrial isopods. Oniscus asellus and Porcellio scaber. Environ Toxicol Chem 15:1199–1210.

    Article  Google Scholar 

  • Van de Leemkule MA, van Hesteren S, Pruiksma MA (1999). Minimum soil quality: a use-based approach from an ecological perspective. Part 2: Immobile organic micro-pollutants. Report TCB R09. Dutch Technical Soil Protection Committee (TCB), The Hague, The Netherlands.

    Google Scholar 

  • Van Hesteren S, van de Leemkule MA, Pruiksma MA (1999) Minimum soil quality: a use-based approach from an ecological perspektive. Part 1: Metals. Report TCB R08. Dutch Technical Soil Protection Committee (TCB) The Hague, The Netherlands.

    Google Scholar 

  • van Straalen NM (1993) Open problems in the derivation of soil quality criteria from ecotoxicity experiments. In: Arendt F, Annokkée GJ, Bosman R, van den Brink WJ (eds) Contaminated Soil’ 93. Fourth International Conference on Contaminated Soil, 3–7 May 1993, Berlin, Germany. Kluwer, Dordrecht, The Netherlands, pp. 315–326.

    Google Scholar 

  • van Straalen NM, Verweij RA (1991) Effects of benzo(a)pyrene on food assimilation and growth efficiency in Porcellio scaber (Isopoda). Bull Environ Contam Toxicol 46:134–140.

    Article  PubMed  Google Scholar 

  • Versteeg DJ, Belanger SE, Carr GJ (1999) Understanding single-species and model ecosystem sensitivity: data-based comparison. Environ Toxicol Chem 18:1329–1346.

    CAS  Google Scholar 

  • Wagner C, Løkke H (1991) Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res 25:1237–1242.

    Article  CAS  Google Scholar 

  • Wagner KH, Wagner-Hering E, Buchhaupt K (1969) Üben 3,4-benzpyren und 3,4-benzfluoranthen einen wachstumsförderenden. Effekt auf plfanzen aus. Z Pflanzenernaehr Bodenk 123:186–196.

    CAS  Google Scholar 

  • Weber JB, Dorney JR, Overcash MR (1984) Crop plant growth and uptake of toxic organic pollutants found in sewage sludge: polynuclear aromatics. In: Proceedings of the Triangle Conference on Environmental Techology, March 6–8, 1984. Duke University, Durham, NC, pp 1–17.

    Google Scholar 

  • Williams JE, Wiegart RG (1971) Effects of naphthalene application on a coastal plain broomsedge (Andropogon) community. Pedobiologia 11:58–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by G.W. Ware.

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Jensen, J., Sverdrup, L.E. (2003). Polycyclic Aromatic Hydrocarbon Ecotoxicity Data for Developing Soil Quality Criteria. In: Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 179. Springer, New York, NY. https://doi.org/10.1007/0-387-21731-2_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-21731-2_3

  • Received:

  • Accepted:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00620-8

  • Online ISBN: 978-0-387-21731-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics