Conserving Approximations vs. Two-Particle Self-Consistent Approach
Chapter
- 910 Downloads
Abstract
The conserving approximation scheme to many-body problems was developed by Kadanoff and Baym using the functional-derivative approach. Another approach for the Hubbard model also satisfies conservation laws, but in addition it satisfies the Pauli principle and a number of sum rules. A concise formal derivation of that approach, using functional derivatives, is given in this conference paper to highlight formal analogies and differences with conserving approximations.
Keywords
Hubbard Model Random Phase Approximation Functional Derivative Pauli Principle Quantum Monte Carlo
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
5 References
- [1]G. Baym, Phys. Rev. 127 (1962), 1391.CrossRefADSzbMATHMathSciNetGoogle Scholar
- [2]L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, Menlo Park, 1962.zbMATHGoogle Scholar
- [3]N.E. Bickers and D.J. Scalapino, Ann. Physics 193 (1989), 206.CrossRefADSGoogle Scholar
- [4]Y.M. Vilk and A.-M.S. Tremblay, J. Physique I France 7 (1997), 1309.CrossRefADSGoogle Scholar
- [5]Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33 (1996), 159; J. Phys. Chem. Solids 56 (1995), 1769.CrossRefADSGoogle Scholar
- [6]P.C.E. Stamp, J. Phys. F: Met. Phys. 15 (1985), 1829.CrossRefADSGoogle Scholar
- [7]S. Allen and A.-M.S. Tremblay, Phys. Rev. B 64 (2001), 075115/1–14.CrossRefADSGoogle Scholar
- [8]B. Kyung, S. Allen, and A.-M.S. Tremblay, Phys. Rev. B 64 (2001),075116.CrossRefADSGoogle Scholar
- [9]P.C. Martin and J. Schwinger, Phys. Rev. 115 (1959). This paper also contains numerous references to previous work.Google Scholar
- [10]For a review, see K.S. Singwi and M.P. Tosi, in eds. H. Ehrenreich, F. Seitz, and D. Turnbull, Solid State Physics, Vol. 36 (Academic, New York, 1981), p. 177; S. Ichimaru, Rev. Modern Phys. 54 (1982), 1017.Google Scholar
- [11]Y.M. Vilk, L. Chen, and A.-M.S. Tremblay, Phys. Rev. B Rapid Comm. 49 (1994), 13267.ADSGoogle Scholar
- [12]B. Kyung, J.-S. Landry, D. Poulin, and A.-M.S. Tremblay, Phys. Rev. Lett. 90 (2003), 099702.CrossRefADSGoogle Scholar
- [13]A.F. Veilleux, A.-M. Daré, L. Chen, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. B 52 (1995), 16255.CrossRefADSGoogle Scholar
- [14]A.-M. Daré, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. B 53(1996), 14236.CrossRefADSGoogle Scholar
- [15]N. Bulut, D.J. Scalapino, and S.R. White, Phys. Rev. B 47 (1993), 2742; N.F. Berk and J.R. Schrieffer, Phys. Rev. Lett. 17 (1966), 433.CrossRefADSGoogle Scholar
- [16]S. Allen, H. Touchette, S. Moukouri, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. Lett. 83 (1999), 4128; Y.M. Vilk, S. Allen, H. Touchette, S. Moukouri, L. Chen, and A.-M.S. Tremblay, J. Phys. Chem. Solids 59 (1998), 1873.CrossRefADSGoogle Scholar
- [17]S. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y.M. Vilk, and A.-M. S. Tremblay, Phys. Rev. B 61 (2000), 7887.CrossRefADSGoogle Scholar
- [18]S. Allen, Ph.D. Thesis, Université de Sherbrooke, 2000 (unpublished).Google Scholar
- [19]S. Roy, M.Sc. thesis, Université de Sherbrooke, 2002 (unpublished).Google Scholar
- [20]A.-M. Daré (unpublished).Google Scholar
- [21]S. Allen, B. Kyung, and A.-M.S. Tremblay (unpublished).Google Scholar
- [22]B. Kyung, J.-S. Landry, and A.-M.S. Tremblay, cond-mat/0205165.Google Scholar
- [23]B. Kyung, Phys. Rev. B 63 (2000), 014502; Phys. Rev. B 64 (2001), 104512.CrossRefADSGoogle Scholar
- [24]S. Allen (unpublished).Google Scholar
Copyright information
© Springer-Verlag New York, Inc. 2004