Skip to main content

Conserving Approximations vs. Two-Particle Self-Consistent Approach

  • Chapter
Book cover Theoretical Methods for Strongly Correlated Electrons

Part of the book series: CRM Series in Mathematical Physics ((CRM))

  • 1345 Accesses

Abstract

The conserving approximation scheme to many-body problems was developed by Kadanoff and Baym using the functional-derivative approach. Another approach for the Hubbard model also satisfies conservation laws, but in addition it satisfies the Pauli principle and a number of sum rules. A concise formal derivation of that approach, using functional derivatives, is given in this conference paper to highlight formal analogies and differences with conserving approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

5 References

  1. G. Baym, Phys. Rev. 127 (1962), 1391.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  2. L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin, Menlo Park, 1962.

    MATH  Google Scholar 

  3. N.E. Bickers and D.J. Scalapino, Ann. Physics 193 (1989), 206.

    Article  ADS  Google Scholar 

  4. Y.M. Vilk and A.-M.S. Tremblay, J. Physique I France 7 (1997), 1309.

    Article  ADS  Google Scholar 

  5. Y.M. Vilk and A.-M.S. Tremblay, Europhys. Lett. 33 (1996), 159; J. Phys. Chem. Solids 56 (1995), 1769.

    Article  ADS  Google Scholar 

  6. P.C.E. Stamp, J. Phys. F: Met. Phys. 15 (1985), 1829.

    Article  ADS  Google Scholar 

  7. S. Allen and A.-M.S. Tremblay, Phys. Rev. B 64 (2001), 075115/1–14.

    Article  ADS  Google Scholar 

  8. B. Kyung, S. Allen, and A.-M.S. Tremblay, Phys. Rev. B 64 (2001),075116.

    Article  ADS  Google Scholar 

  9. P.C. Martin and J. Schwinger, Phys. Rev. 115 (1959). This paper also contains numerous references to previous work.

    Google Scholar 

  10. For a review, see K.S. Singwi and M.P. Tosi, in eds. H. Ehrenreich, F. Seitz, and D. Turnbull, Solid State Physics, Vol. 36 (Academic, New York, 1981), p. 177; S. Ichimaru, Rev. Modern Phys. 54 (1982), 1017.

    Google Scholar 

  11. Y.M. Vilk, L. Chen, and A.-M.S. Tremblay, Phys. Rev. B Rapid Comm. 49 (1994), 13267.

    ADS  Google Scholar 

  12. B. Kyung, J.-S. Landry, D. Poulin, and A.-M.S. Tremblay, Phys. Rev. Lett. 90 (2003), 099702.

    Article  ADS  Google Scholar 

  13. A.F. Veilleux, A.-M. Daré, L. Chen, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. B 52 (1995), 16255.

    Article  ADS  Google Scholar 

  14. A.-M. Daré, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. B 53(1996), 14236.

    Article  ADS  Google Scholar 

  15. N. Bulut, D.J. Scalapino, and S.R. White, Phys. Rev. B 47 (1993), 2742; N.F. Berk and J.R. Schrieffer, Phys. Rev. Lett. 17 (1966), 433.

    Article  ADS  Google Scholar 

  16. S. Allen, H. Touchette, S. Moukouri, Y.M. Vilk, and A.-M.S. Tremblay, Phys. Rev. Lett. 83 (1999), 4128; Y.M. Vilk, S. Allen, H. Touchette, S. Moukouri, L. Chen, and A.-M.S. Tremblay, J. Phys. Chem. Solids 59 (1998), 1873.

    Article  ADS  Google Scholar 

  17. S. Moukouri, S. Allen, F. Lemay, B. Kyung, D. Poulin, Y.M. Vilk, and A.-M. S. Tremblay, Phys. Rev. B 61 (2000), 7887.

    Article  ADS  Google Scholar 

  18. S. Allen, Ph.D. Thesis, Université de Sherbrooke, 2000 (unpublished).

    Google Scholar 

  19. S. Roy, M.Sc. thesis, Université de Sherbrooke, 2002 (unpublished).

    Google Scholar 

  20. A.-M. Daré (unpublished).

    Google Scholar 

  21. S. Allen, B. Kyung, and A.-M.S. Tremblay (unpublished).

    Google Scholar 

  22. B. Kyung, J.-S. Landry, and A.-M.S. Tremblay, cond-mat/0205165.

    Google Scholar 

  23. B. Kyung, Phys. Rev. B 63 (2000), 014502; Phys. Rev. B 64 (2001), 104512.

    Article  ADS  Google Scholar 

  24. S. Allen (unpublished).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Allen, S., Tremblay, A.M.S., Vilk, Y.M. (2004). Conserving Approximations vs. Two-Particle Self-Consistent Approach. In: Sénéchal, D., Tremblay, AM., Bourbonnais, C. (eds) Theoretical Methods for Strongly Correlated Electrons. CRM Series in Mathematical Physics. Springer, New York, NY. https://doi.org/10.1007/0-387-21717-7_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-21717-7_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00895-0

  • Online ISBN: 978-0-387-21717-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics