Advertisement

Fermi and Non-Fermi Liquid Behavior of Quantum Impurity Models: A Diagrammatic Pseudo-Particle Approach

  • J. Kroha
  • P. Wölfle
Chapter
  • 902 Downloads
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We review a systematic many-body method capable of describing Fermi liquid and non-Fermi liquid behavior of quantum impurity models at low temperatures on the same footing. The crossover to the high temperature local moment regime is covered as well. The approach makes use of a pseudo-particle representation of the impurity Hilbert space in the limit of infinite Coulomb repulsion U as well as for finite U. Approximations are derived from a generating Luttinger-Ward functional, in terms of renormalized perturbation theory in the hybridization V. Within a “conserving T-matrix approximation” (CTMA), including all two-particle vertex functions, an infinite series of leading infrared singular skeleton diagrams is included. The local constraint is strictly enforced. Applied to the SU(N) × SU(M) multichannel Anderson model the method allows to recover the Fermi liquid behavior of the single channel case, as well as the non-Fermi liquid behavior in the multi-channel case. The results are compared with the “noncrossing approximation” (NCA) and with data obtained by the numerical renormalization group and the Bethe ansatz. The generalization of the method to the case of finite on-site repulsion U is presented in a systematic way and solved on the level of a generalized NCA, fully symmetric with respect to all virtual excitations of the model.

Keywords

Anderson Model Vertex Function Kondo Temperature Auxiliary Particle Kondo Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. [1]
    P.A. Lee, T.M. Rice, J.W. Serene, L.J. Sham, and J.W. Wilkins, Comments on Condensed Matter Physics 12 (1986), 99.Google Scholar
  2. [2]
    P.W. Anderson, Science 235 (1987), 1196; and The Theory of Superconductivity in the High-T c Cuprates (Princeton University Press, Princeton, NJ, 1997).ADSCrossRefGoogle Scholar
  3. [3]
    For a review see S. Das Sarma and A. Pinczuk, eds., Perspectives in Quantum Hall Effects (Wiley, New York, 1996).Google Scholar
  4. [4]
    A.A. Abrikosov, Physics 2 (1965), 21.Google Scholar
  5. [5]
    S.E. Barnes, J. Phys. F 6 (1976), 1375; 7 (1977), 2637.CrossRefADSMathSciNetGoogle Scholar
  6. [6]
    P. Coleman, Phys. Rev. B 29 (1984), 2.Google Scholar
  7. [7]
    D.M. Newns, N. Read, J. Phys. C 16 (1983), 3273; Adv. Phys. 36 (1988), 799.CrossRefADSGoogle Scholar
  8. [8]
    A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, Cambridge, 1993).CrossRefGoogle Scholar
  9. [9]
    D.L. Cox and A. Zawadowski, Adv. Phys. 47 (1998), 599.CrossRefGoogle Scholar
  10. [10]
    See, e.g., related articles in Mesoscopic Electron Transport, eds. L.L. Sohn, L.P. Kouwenhoven and G. Schön, Vol. 345 of NATO ASI Series E: Applied Sciences (Kluwer Science Publishers, Dordrecht, 1997).Google Scholar
  11. [11]
    P.W. Anderson, Phys. Rev. 124 (1961), 41.CrossRefADSMathSciNetGoogle Scholar
  12. [12]
    J.R. Schrieffer and P.A. Wolff, Phys. Rev. 149 (1966), 491.CrossRefADSGoogle Scholar
  13. [13]
    K.G. Wilson, Rev. Mod. Phys. 47 (1975), 773.CrossRefADSGoogle Scholar
  14. [14]
    N. Andrei, K. Furuya, and J.H. Löwenstein, Rev. Mod. Phys. 55(1983), 331.CrossRefADSGoogle Scholar
  15. [15]
    P.B. Wiegmann and A.M. Tsvelik, J. Phys. C 12 (1983), 2281 and 2321.CrossRefADSGoogle Scholar
  16. [16]
    P. Nozières, J. Low Temp. Phys. 17 (1974), 31.CrossRefADSGoogle Scholar
  17. [17]
    N. Andrei and C. Destri, Phys. Rev. Lett. 52 (1984), 364.CrossRefADSGoogle Scholar
  18. [18]
    A.M. Tsvelik, J. Phys. C 18 (1985), 159.CrossRefADSGoogle Scholar
  19. [19]
    I. Affleck and A.W.W. Ludwig, Nucl. Phys. 352 (1991), 849; B360 (1991), 641; Phys. Rev. B 48 (1993), 7297.CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    K. Yamada, Prog. Theor. Phys. 53 (1975), 970; 54 (1975), 316; 55 (1976), 1345; K. Yosida and K. Yamada, Prog. Theor. Phys. 53 (1975), 1286.CrossRefADSGoogle Scholar
  21. [21]
    D.L. Cox, N.E. Bickers, and J.W. Wilkins, Phys. Rev. B 36 (1987),2036.CrossRefADSGoogle Scholar
  22. [22]
    P.W. Anderson, Phys. Rev. Lett. 18 (1967), 1049.CrossRefADSGoogle Scholar
  23. [23]
    P. Nozières and C.T. De Dominicis, Phys. Rev. 178 (1969), 1073; 1084; 1097.Google Scholar
  24. [24]
    G.D. Mahan, Many-Particle Physics, 2nd ed. (Plenum Press, New York, 1990), gives an overview, p. 732.Google Scholar
  25. [25]
    K.D. Schotte and U. Schotte, Phys. Rev. 185 (1969), 509.CrossRefADSMathSciNetGoogle Scholar
  26. [26]
    B. Menge and E. Müller-Hartmann, Z. Phys. B 73 (1988), 225.CrossRefADSGoogle Scholar
  27. [27]
    T.A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 73 (1994), 1275.CrossRefADSGoogle Scholar
  28. [28]
    T.A. Costi, P. Schmitteckert, J. Kroha, and P. Wölfle, Physica (Amsterdam) 235–240C (1994), 2287.Google Scholar
  29. [29]
    S. Fujimoto, N. Kawakami, and S.K. Yang, J. Phys. Korea 29 (1996),S136.Google Scholar
  30. [30]
    D.M. Newns and N. Read, J. Phys. C16 (1983), 3273; Adv. Phys. 36 (1988), 799.ADSGoogle Scholar
  31. [31]
    S. Elitzur, Phys. Rev. D 12 (1975), 3978.CrossRefADSGoogle Scholar
  32. [32]
    A. Jevicki, Phys. Lett. B 71 (1977), 327.CrossRefADSGoogle Scholar
  33. [33]
    F. David, Comm. Math. Phys. 81 (1981), 149.CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    I.D. Lawrie, J. Phys. A 18 (1985), 1141.CrossRefADSMathSciNetGoogle Scholar
  35. [35]
    B. Jin and Y. Kuroda, J. Phys. Soc. Japan 57 (1988), 1687.CrossRefADSGoogle Scholar
  36. [36]
    T. Matsuura et al., J. Phys. Soc. Japan 66 (1997), 1245.CrossRefADSGoogle Scholar
  37. [37]
    G. Sellier, Diploma Thesis, Universität Karlsruhe, 1998, unpublished.Google Scholar
  38. [38]
    G. Baym and L.P. Kadanoff, Phys. Rev. 124 (1961), 287; G. Baym, Phys. Rev. 127 (1962) 1391.CrossRefADSMathSciNetzbMATHGoogle Scholar
  39. [39]
    H. Keiter and J.C. Kimball, J. Appl. Phys. 42 (1971), 1460; N. Grewe and H. Keiter, Phys. Rev B 24 (1981), 4420.CrossRefADSGoogle Scholar
  40. [40]
    Y. Kuramoto, Z. Phys. B 53 (1983), 37; H. Kojima, Y. Kuramoto and M Tachiki, 54 (1984), 293; Y. Kuramoto and H. Kojima, 57 (1984), 95; Y. Kuramoto, 65 (1986), 29.CrossRefADSGoogle Scholar
  41. [41]
    E. Müller-Hartmann, Z. Phys. B 57 (1984), 281.CrossRefADSGoogle Scholar
  42. [42]
    T.A. Costi, J. Kroha, and P. Wölfle, PRB 53 (1996), 1850.CrossRefADSGoogle Scholar
  43. [43]
    N.E. Bickers, Rev. Mod. Phys. 59 (1987), 845; N.E. Bickers, D.L. Cox, and J.W. Wilkins, Phys. Rev. B 36 (1987), 2036.CrossRefADSGoogle Scholar
  44. [44]
    D.L. Cox and A.E. Ruckenstein, Phys. Rev. Lett. 71 (1993), 1613.CrossRefADSGoogle Scholar
  45. [45]
    F. Anders and N. Grewe, Europhys. Lett. 26 (1994), 551; F. Anders, J. Phys. Cond. Mat. 7 (1995), 2801.CrossRefADSGoogle Scholar
  46. [46]
    J. Kroha, P. Wölfle and T.A. Costi, Phys. Rev. Lett. 79 (1997), 261.CrossRefADSGoogle Scholar
  47. [47]
    Th. Schauerte, J. Kroha, and P. Wölfle, Phys. Rev. B 62 (2000),4394.CrossRefADSGoogle Scholar
  48. [48]
    S. Kirchner, J. Kroha, and P. Wölfle, in preparation.Google Scholar
  49. [49]
    Th. Pruschke and N. Grewe, Z. Phys. B 74 (1989), 439.CrossRefADSGoogle Scholar
  50. [50]
    I. Holm and K. Schönhammer, Solid State Comm. 69 (1989), 10, 969.CrossRefGoogle Scholar
  51. [51]
    K. Haule, S. Kirchner, J. Kroha, and P. Wölfle, Proceedings of the NATO Advanced Research Workshop on “Size Dependent Magnetic Scattering,” Pecs, Hungary, 2000 (Kluwer Academic Publishers, in press).Google Scholar
  52. [52]
    K. Haule, S. Kirchner, J. Kroha, and P. Wölfle, cond-mat/0105490, 2001.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • J. Kroha
  • P. Wölfle

There are no affiliations available

Personalised recommendations