Advertisement

Self-Consistent Many-Body Theory for Condensed Matter Systems

  • N. E. Bickers
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

Self-consistent field techniques for the many-electron problem are examined using the modern formalism of functional methods. Baym-Kadanoff, or Φ-derivable, approximations are introduced first. After a brief review of functional integration results, the connection between conventional mean-field theory and higher-order Baym-Kadanoff approximations is established through the concept of the action functional. The Φ-derivability criterion for thermodynamic consistency is discussed, along with the calculation of free-energy derivatives. Parquet, or crossing-symmetric, approximations are introduced next. The principal advantages of the parquet approach and its relationship to Baym-Kadanoff theory are outlined. A linear eigenvalue equation is derived to study instabilities of the electronic normal state within Baym-Kadanoff or parquet theory. Finally, numerical techniques for the solution of self-consistent field approximations are reviewed, with particular emphasis on renormalization group methods for frequency and momentum space.

Keywords

Renormalization Group Hubbard Model Vertex Function Condense Matter System Matsubara Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

15 References

  1. [1]
    G. Baym and L.P. Kadanoff, Phys. Rev. 124, 287 (1961).CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. [2]
    G. Baym, Phys. Rev. 127, 1391 (1962).CrossRefADSzbMATHMathSciNetGoogle Scholar
  3. [3]
    C. de Dominicis and P.C. Martin, J. Math. Phys. 5, 14, 31 (1964).CrossRefADSGoogle Scholar
  4. [4]
    N.E. Bickers and D.J. Scalapino, Ann. Phys. (N.Y.) 193, 206 (1989).CrossRefADSGoogle Scholar
  5. [5]
    A more detailed discussion of the topics in Section 3 is available elsewhere. For a pedagogical treatment see, e.g., N.E. Bickers, The Large Degeneracy Expansion in Dilute Magnetic Alloys, Ph.D. thesis, Cornell University, 1986.Google Scholar
  6. [6]
    See, e.g., M. Sigrist and K. Ueda, Rev. Mod. Phys. 63, 239 (1991).CrossRefADSGoogle Scholar
  7. [7]
    Parts of our discussion below are an expansion of an earlier set of published lecture notes (N.E. Bickers, Int. J. Mod. Phys. 5, 253 (1991)).CrossRefADSGoogle Scholar
  8. [8]
    See, e.g., P. Nozières, Theory of Interacting Fermi Systems (W.A. Benjamin, New York, 1964).zbMATHGoogle Scholar
  9. [9]
    S. Babu and G.E. Brown, Ann. Phys. (N.Y.) 78, 1 (1973).CrossRefADSGoogle Scholar
  10. [10]
    M. Pfitzner and P. Wölfle, Phys. Rev. B35, 4699 (1987).ADSGoogle Scholar
  11. [11]
    K.F. Quader, K.S. Bedell, and G.E. Brown, Phys. Rev. B36, 156 (1987), and references therein.ADSGoogle Scholar
  12. [12]
    N.E. Bickers, D.J. Scalapino, and S.R. White, Phys. Rev. Lett. 62, 961 (1989).CrossRefADSGoogle Scholar
  13. [13]
    N.E. Bickers and S.R. White, Phys. Rev. B43, 8044 (1991).ADSGoogle Scholar
  14. [14]
    J.W. Serene and D.W. Hess, Phys. Rev. B44, 3391 (1991).ADSGoogle Scholar
  15. [15]
    L.G. Aslamazov and A.I. Larkin, Fiz. Tverd. Tela. 10, 1104 (1968). [English translation: Soviet Phys.—Solid State 10, 875 (1968).Google Scholar
  16. [16]
    C.-X. Chen, J. Luo, and N.E. Bickers, J. Appl. Phys. 69, 5469 (1991).CrossRefADSGoogle Scholar
  17. [17]
    C.-X. Chen and N.E. Bickers, Solid State Commun. 82, 311 (1992).CrossRefADSGoogle Scholar
  18. [18]
    C.-H. Pao and N.E. Bickers, Phys. Rev. Lett. 72, 1870 (1994); Phys. Rev. B51, 16310 (1995).CrossRefADSGoogle Scholar
  19. [19]
    P. Monthoux and D.J. Scalapino, Phys. Rev. Lett. 72, 1874 (1994).CrossRefADSGoogle Scholar
  20. [20]
    St. Lenck, J.P. Carbotte, and R.C. Dynes, Phys. Rev. B50, 10149 (1994).ADSGoogle Scholar
  21. [21]
    T. Dahm and L. Tewordt, Phys. Rev. Lett. 74, 793 (1995).CrossRefADSGoogle Scholar
  22. [22]
    J. Luo and N.E. Bickers, Phys. Rev. B47, 12153 (1993); Phys. Rev. B48, 15983 (1993).ADSGoogle Scholar
  23. [23]
    C.-H. Pao and N.E. Bickers, Phys. Rev. B49, 1586 (1994).ADSGoogle Scholar
  24. [24]
    C.-X. Chen and N.E. Bickers, unpublished.Google Scholar
  25. [25]
    G. Esirgen and N.E. Bickers, Phys. Rev. B55, 2122 (1997); Phys. Rev. B57, 5376 (1998).ADSGoogle Scholar
  26. [26]
    C.-H. Pao and H.-B. Schüttler, preprint, 1998.Google Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • N. E. Bickers

There are no affiliations available

Personalised recommendations