Advertisement

Renormalization Group Technique for Quasi-One-Dimensional Interacting Fermion Systems at Finite Temperature

  • C. Bourbonnais
  • B. Guay
  • R. Wortis
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We review some aspects of the renormalization group method for interacting fermions. Special emphasis is placed on the application of scaling theory to quasi-one-dimensional systems at nonzero temperature. We begin by introducing the scaling ansatz for purely one-dimensional fermion systems and its extension when interchain coupling and dimensionality crossovers are present at finite temperature. Next, we review the application of the renormalization group technique to the one-dimensional electron gas model and clarify some peculiarities of the method at the two-loop level. The influence of interchain coupling is then included and results for the crossover phenomenology and the multiplicity of characteristic energy scales are summarized. The emergence of the Kohn-Luttinger mechanism in quasi-one-dimensional electronic structures is discussed for both superconducting and density-wave channels.

Keywords

Renormalization Group Outer Shell Fermi Liquid Ladder Approximation Dimensionality Crossover 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. [1]
    K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975).CrossRefADSGoogle Scholar
  2. [2]
    K.G. Wilson, Rev. Mod. Phys. 55, 583 (1983).CrossRefADSGoogle Scholar
  3. [3]
    E. Reidel and F. Wegner, Z. Physik 225, 195 (1969).CrossRefADSGoogle Scholar
  4. [4]
    P. Pfeuty, D. Jasnow, and M. Fisher, Phys. Rev. B 10, 2088 (1974).CrossRefADSGoogle Scholar
  5. [5]
    M.K. Grover, Phys. Lett. 44A, 253 (1973).ADSGoogle Scholar
  6. [6]
    J. Hertz, Phys. Rev. B 14, 1165 (1976).CrossRefADSGoogle Scholar
  7. [7]
    S. Sachdev, Quantum Phase Transitions (Cambridge Univ. Press, Cambridge, U.K., 1999).Google Scholar
  8. [8]
    Y.A. Bychkov, L.P. Gorkov, and I. Dzyaloshinskii, Sov. Phys. JETP 23, 489 (1966).ADSGoogle Scholar
  9. [9]
    I.E. Dzyaloshinskii and A.I. Larkin, Sov. Phys. JETP 34, 422 (1972).ADSGoogle Scholar
  10. [10]
    N. Menyhard and J. Solyom, J. Low Temp. Phys. 12, 529 (1973).CrossRefADSGoogle Scholar
  11. [11]
    J. Solyom, Adv. Phys. 28, 201 (1979).CrossRefADSGoogle Scholar
  12. [12]
    C. Bourbonnais, Ph.D. thesis, Université de Sherbrooke, 1985.Google Scholar
  13. [13]
    C. Bourbonnais, Mol. Cryst. Liq. Cryst. 119, 11 (1985).CrossRefGoogle Scholar
  14. [14]
    C. Bourbonnais and L.G. Caron, Physica 143B, 450 (1986).Google Scholar
  15. [15]
    C. Bourbonnais and L.G. Caron, Int. J. Mod. Phys. B 5, 1033 (1991).CrossRefADSMathSciNetGoogle Scholar
  16. [16]
    C. Bourbonnais, in Les Houches, Session LVI (1991), Strongly Interacting Fermions and High-T c Superconductivity, eds. B. Doucot and J. Zinn-Justin (Elsevier Science, Amsterdam, 1995), p. 307.Google Scholar
  17. [17]
    D. Jérome and H. Schulz, Adv. in Physics 31, 299 (1982).CrossRefADSGoogle Scholar
  18. [18]
    C. Bourbonnais and D. Jérome, in Advances in Synthetic Metals, Twenty Years of Progress in Science and Technology, eds. P. Bernier, S. Lefrant, and G. Bidan (Elsevier, New York, 1999), pp. 206–261, arXiv:cond-mat/9903101.Google Scholar
  19. [19]
    R. Shankar, Rev. Mod. Phys. 66, 129 (1994).CrossRefADSMathSciNetGoogle Scholar
  20. [20]
    D. Zanchi and H.J. Schulz, Phys. Rev. B 61, 13 609 (2000).CrossRefGoogle Scholar
  21. [21]
    C.J. Halborth and W. Metzner, Phys. Rev. B 85, 5164 (2000).Google Scholar
  22. [22]
    C. Honerkamp, M. Salmhofer, N. Furukawa, and T.M. Rice, Phys. Rev. B 63, 35109 (2001).CrossRefADSGoogle Scholar
  23. [23]
    G. Chitov and D. Sénéchal, Phys. Rev. B 52, 129 (1995).CrossRefGoogle Scholar
  24. [24]
    N. Dupuis, Eur. Phys. J. B 3, 315 (1998).CrossRefADSGoogle Scholar
  25. [25]
    N. Dupuis and G. Chitov, Phys. Rev. B 54, 3040 (1996).CrossRefADSGoogle Scholar
  26. [26]
    M. Fabrizio, Phys. Rev. B 48, 15838 (1993).CrossRefADSGoogle Scholar
  27. [27]
    H.-H. Lin, L. Balents, and M.P.A. Fisher, Phys. Rev. B 56, 6569 (1997).CrossRefADSGoogle Scholar
  28. [28]
    J. Kishine and K. Yonemitsu, J. Phys. Soc. of Jpn. 67, 1714 (1998).CrossRefADSGoogle Scholar
  29. [29]
    D. Zanchi, Europhys. Lett. 55, 376 (2001).CrossRefADSGoogle Scholar
  30. [30]
    D.B. B.Binz and B. Doucot, arXiv:cond-mat/0104424 (unpublished).Google Scholar
  31. [31]
    M. Salmhofer, Renormalization, An Introduction (Springer, Berlin, Heidelberg, 1999).zbMATHGoogle Scholar
  32. [32]
    This review will not discuss the real-space renormalization group approach based on the bosonic degrees of freedom description of the one-dimensional electron gas and ladder systems [49, 52, 68, 69]. See also D. Sénéchal, this volume; S.T. Chui and P.A. Lee, Phys. Rev. Lett. 35, 325 (1975); T. Giamarchi and H. Schulz, J. Phys. (Paris) 49, 819 (1988); V. Yakovenko, JETP Lett., 56, 510 (1992); N. Nerseyan, A. Luther and F. V. Kusmartsev, Physics Letters A 176, 363 (1993); D. V. Khveshchenko and T. M. Rice, Phys. Rev. B 50, 252 (1994); U. Ledermann, K. Le Hur and T. M. Rice, Phys. Rev 62, 16383 (2000); P. Donohue, M. Tsuchiizu, T. Giamarchi and Y. Suzumura, Phys. Rev. B 63, 45121 (2001) and references there cited.CrossRefADSGoogle Scholar
  33. [33]
    W. Kohn and J.M. Luttinger, Phys. Rev. Lett. 15, 524 (1965).CrossRefADSMathSciNetGoogle Scholar
  34. [34]
    V.J. Emery, Synthetic Metals 13, 21 (1986).CrossRefGoogle Scholar
  35. [35]
    L.G. Caron and C. Bourbonnais, Physica 143B, 453 (1986).Google Scholar
  36. [36]
    M.T. Béal-Monod, C. Bourbonnais, and V.J. Emery, Phys. Rev. B 34, 7716 (1986).CrossRefADSGoogle Scholar
  37. [37]
    C. Bourbonnais and L.G. Caron, Europhys. Lett. 5, 209 (1988).ADSCrossRefGoogle Scholar
  38. [38]
    B. Guay and C. Bourbonnais, Synthetic Metals 103, 2180 (1999).CrossRefGoogle Scholar
  39. [39]
    B. Guay, Ph.D. thesis, Université de Sherbrooke, 1997.Google Scholar
  40. [40]
    T. Ishiguro and K. Yamaji, Organic Superconductors, Vol. 88 of Springer-Verlag Series in Solid-State Science (Springer-Verlag Heidelberg, 1990).Google Scholar
  41. [41]
    N.D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).CrossRefADSGoogle Scholar
  42. [42]
    C. Bourbonnais, J. Phys. I (France) 3, 143 (1993).CrossRefGoogle Scholar
  43. [43]
    J.W. Negele and H. Orland, Quantum Many Particle Systems, Vol. 68 of Frontiers in Physics Series (Addison-Wesley, New York, 1988).zbMATHGoogle Scholar
  44. [44]
    M. Kimura, Prog. Theor. Phys. 63, 955 (1975).CrossRefADSGoogle Scholar
  45. [45]
    M. Fowler, Solid State Commun. 18, 241 (1976).CrossRefADSGoogle Scholar
  46. [46]
    E.H. Rezayi, J. Solyom, and J. Sak, Phys. Rev. B 23, 1342 (1981).CrossRefADSMathSciNetGoogle Scholar
  47. [47]
    F.D.M. Haldane, J. Phys. C 14, 2585 (1981).CrossRefADSGoogle Scholar
  48. [48]
    A. Luther and V.J. Emery, Phys. Rev. Lett. 33, 589 (1974).CrossRefADSGoogle Scholar
  49. [49]
    V.J. Emery, in Highly Conducting One-Dimensional Solids, eds. J.T. Devreese, R.E. Evrard, and V.E. van Doren (Plenum Press, New York, 1979), p. 247.Google Scholar
  50. [50]
    E. Lieb and F.Y. Wu, Phys. Rev. Lett. 20, 1445 (1968).CrossRefADSGoogle Scholar
  51. [51]
    A. I. Larkin and J. Sak, Phys. Rev. Lett 39, 1025 (1977).CrossRefADSGoogle Scholar
  52. [52]
    J. Voit, Rep. Prog. Phys. 58, 977 (1995).CrossRefADSGoogle Scholar
  53. [53]
    C. Bourbonnais et al., J. Phys. (Paris) Lett. 45, L755 (1984).Google Scholar
  54. [54]
    M. Brech, J. Voit, and H. Buttner, Europhys. Lett. 12, 289 (1990).ADSCrossRefGoogle Scholar
  55. [55]
    J. Voit, Eur. Phys. J. B 5, 505 (1998).CrossRefADSGoogle Scholar
  56. [56]
    E.W. Carlson, D. Orgad, S.A. Kivelson, and V.J. Emery, Phys. Rev. B 62, 3422 (2000).CrossRefADSGoogle Scholar
  57. [57]
    S. Capponi, D. Poilblanc, and E. Arrigoni, Phys. Rev. B 57, 6360 (1998).CrossRefADSGoogle Scholar
  58. [58]
    A. Vishwanath and D. Carpentier, Phys. Rev. Lett. 86, 676 (2001).CrossRefADSGoogle Scholar
  59. [59]
    D. Boies, C. Bourbonnais, and A.-M. Tremblay, Phys. Rev. Lett. 74, 968 (1995).CrossRefADSGoogle Scholar
  60. [60]
    E. Arrigoni, Phys. Rev. Lett. 80, 790 (1998).CrossRefADSGoogle Scholar
  61. [61]
    L.G. Caron et al., Synthetic Metals 27B, 123 (1988).CrossRefGoogle Scholar
  62. [62]
    S. Biermann, A. Georges, A. Lichtenstein, and T. Giamarchi, Phys. Rev. Lett. 87, 276405 (2001), arXiv:cond-mat/0107633.CrossRefADSGoogle Scholar
  63. [63]
    Y.A. Firsov, Y.N. Prigodin, and C. Seidel, Rep. Prog. Phys. 126, 245 (1985).Google Scholar
  64. [64]
    S. Brazovskii and Y. Yakovenko, J. Phys. (Paris) Lett. 46, L (1985).Google Scholar
  65. [65]
    Y. Suzumura, J. Phys. Soc. Jpn. 54, 2386 (1985).CrossRefADSGoogle Scholar
  66. [66]
    V.N. Prigodin and Y.A. Firsov, Sov. Phys. JETP 49, 369 (1979).ADSGoogle Scholar
  67. [67]
    R. Duprat and C. Bourbonnais, Eur. Phys. J. B 21, 219 (2001).CrossRefADSGoogle Scholar
  68. [68]
    H.J. Schulz, Phys. Rev. B 53, 2959 (1996).CrossRefADSGoogle Scholar
  69. [69]
    H.-H. Lin, L. Balents, and M.P.A. Fisher, Phys. Rev. B 58, 1794 (1998).CrossRefADSGoogle Scholar
  70. [70]
    K. Yamaji, J. Phys. Soc. of Japan 51, 2787 (1982).CrossRefADSGoogle Scholar
  71. [71]
    J. Polchinski, Nucl. Phys. B 231, 269 (1984).CrossRefADSGoogle Scholar
  72. [72]
    B. Dumoulin et al., Phys. Rev. Lett. 76, 1360 (1996).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • C. Bourbonnais
  • B. Guay
  • R. Wortis

There are no affiliations available

Personalised recommendations