Advertisement

Quantum Monte Carlo Methods for Strongly Correlated Electron Systems

  • Shiwei Zhang
Chapter
Part of the CRM Series in Mathematical Physics book series (CRM)

Abstract

We review some of the recent development in quantum Monte Carlo (QMC) methods for models of strongly correlated electron systems. QMC is a promising general theoretical tool to study many-body systems, and has been widely applied in areas spanning condensed-matter, high-energy, and nuclear physics. Recent progress has included two new methods, the ground-state and finite-temperature constrained path Monte Carlo methods. These methods significantly improve the capability of numerical approaches to lattice models of correlated electron systems. They allow calculations without any decay of the sign, making possible calculations for large system sizes and low temperatures. The methods are approximate. Benchmark calculations show that accurate results on energy and correlation functions can be obtained. This chapter gives a pedagogical introduction to quantum Monte Carlo, with a focus on the constrained path Monte Carlo methods.

Keywords

Random Walk Hubbard Model Monte Carlo Sample Slater Determinant Quantum Monte Carlo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. [1]
    K.E. Schmidt and M.H. Kalos, in Applications of the Monte Carlo Method in Statistical Physics, ed. K. Binder (Springer Verlag, Heidelberg, 1984).Google Scholar
  2. [2]
    E.Y. Loh Jr., J.E. Gubernatis, R.T. Scalettar, S.R. White, D.J. Scalapino, and R.L. Sugar, Phys. Rev. B 41, 9301 (1990).CrossRefADSGoogle Scholar
  3. [3]
    S. Zhang, in Quantum Monte Carlo Methods in Physics and Chemistry, eds. M.P. Nightingale and C.J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, Dordrecht, 1999).Google Scholar
  4. [4]
    S. Zhang, J. Carlson, and J.E. Gubernatis, Phys. Rev. Lett. 78, 4486 (1997).CrossRefADSGoogle Scholar
  5. [5]
    S. Zhang, J. Carlson, and J.E. Gubernatis, Phys. Rev. Lett. 74, 3652 (1995); Phys. Rev. B 55, 7464 (1997).CrossRefADSGoogle Scholar
  6. [6]
    J. Carlson, J.E. Gubernatis, G. Ortiz, and S. Zhang, Phys. Rev. B, 59, 12788 (1999).CrossRefADSGoogle Scholar
  7. [7]
    S. Zhang, Phys. Rev. Lett. 83, 2777 (1999); Comp. Phys. Comm. 127, 150 (2000).CrossRefADSGoogle Scholar
  8. [8]
    M.H. Kalos, D. Levesque, and L. Verlet, Phys. Rev. A9, 2178 (1974); D.M. Ceperley and M.H. Kalos, in Monte Carlo Methods in Statistical Physics, ed. K. Binder (Springer-Verlag, Heidelberg, 1979).ADSGoogle Scholar
  9. [9]
    See, e.g., M.H. Kalos and P.A. Whitlock, Monte Carlo Methods, Vol. I (Wiley, New York, 1986).zbMATHCrossRefGoogle Scholar
  10. [10]
    R. Blankenbecler, D.J. Scalapino, and R.L. Sugar, Phys. Rev. D 24, 2278 (1981).CrossRefADSGoogle Scholar
  11. [11]
    G. Sugiyama and S.E. Koonin, Ann. Phys. (NY) 168, 1 (1986).CrossRefADSGoogle Scholar
  12. [12]
    S.R. White, D.J. Scalapino, R.L. Sugar, E.Y. Loh Jr., J.E. Gubernatis, R.T. Scalettar, Phys. Rev. B 40, 506 (1989).CrossRefADSGoogle Scholar
  13. [13]
    S. Sorella et al., Int. Jour. Mod. Phys. B 1 993 (1988).CrossRefADSGoogle Scholar
  14. [14]
    See, e.g., D.R. Hamann and S.B. Fahy, Phys. Rev. B 41, 11352 (1990).CrossRefADSGoogle Scholar
  15. [15]
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959).CrossRefADSGoogle Scholar
  16. [16]
    J.E. Hirsch, Phys. Rev. B 31, 4403 (1985).CrossRefADSGoogle Scholar
  17. [17]
    J.W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1987), Chapter 7.Google Scholar
  18. [18]
    S. Rombouts, K. Heyde, and N. Jachowicz, Phys. Lett. A 242, 271 (1998).CrossRefADSGoogle Scholar
  19. [19]
    R.T. Scalettar, private communication.Google Scholar
  20. [20]
    S.B. Fahy and D.R. Hamann, Phys. Rev. Lett. 65, 3437 (1990); Phys. Rev. B 43, 765 (1991).CrossRefADSGoogle Scholar
  21. [21]
    J.B. Anderson, J. Chem. Phys. 63, 1499 (1975); 65, 4122 (1976).CrossRefADSGoogle Scholar
  22. [22]
    J.W. Moskowitz, K.E. Schmidt, M.A. Lee, and M.H. Kalos, J. Chem. Phys. 77, 349 (1982); P.J. Reynolds, D.M. Ceperley, B.J. Alder, and W.A. Lester, J. Chem. Phys. 77, 5593 (1982).CrossRefADSGoogle Scholar
  23. [23]
    D.F.B. ten Haaf, H.J.M. van Bemmel, J.M.J. van Leeuwen, W. van Saarloos, and D.M. Ceperley, Phys. Rev. B 51, 13039 (1995); H.J.M. van Bemmel, D.F.B.ten Haaf, W. van Saarloos, J.M.J. van Leeuwen, and G. An, Phys. Rev. Lett., 72, 2442 (1994).CrossRefADSGoogle Scholar
  24. [24]
    D.M. Ceperley, Phys. Rev. Lett. 69, 331 (1992); in Simulation in Condensed Matter Physics and Chemistry, eds. K. Binder and G. Ciccotti (1996).CrossRefADSGoogle Scholar
  25. [25]
    C.J. Umrigar, M.P. Nightingale, and K.J. Runge, J. Chem. Phys. 99, 2865 (1993); M.P. Nightingale, Quantum Monte Carlo Methods in Physics and Chemistry, eds. M.P. Nightingale and C.J. Umrigar, NATO ASI Series (Kluwer Academic Publishers, Dordrecht, 1999).CrossRefADSGoogle Scholar
  26. [26]
    S. Zhang and M.H. Kalos, Phys. Rev. Lett. 67, 3074 (1991); J.B. Anderson, C.A. Traynor, and B.M. Boghosian, J. Chem. Phys. 95, 7418 (1991).CrossRefADSGoogle Scholar
  27. [27]
    S. Zhang and E.C. Allman, in Computer Simulation Studies in Condensed Matter Physics XII, eds. D.P. Landau, S.P. Lewis, and H.B. Schuttler (Springer Verlag, Heidelberg, Berlin, 1999).Google Scholar
  28. [28]
    N. Furukawa and M. Imada, J. Phys. Soc. Jpn. 61, 3331 (1992).CrossRefADSGoogle Scholar
  29. [29]
    See, e.g., M. Guerrero, J.E. Gubernatis, and S. Zhang, Phys. Rev. B 57, 11980 (1998); J. Bonca and J. E. Gubernatis, Phys. Rev. B 58, 6992 (1998); M. Guerrero, G. Ortiz, J.E. Gubernatis, Phys. Rev. B 59, 1706 (1999); S. Zhang and E.C. Allman, in Computer Simulation Studies in Condensed Matter Physics XII, eds. D.P. Landau, S.P. Lewis, and H.B. Schuttler (Springer Verlag, Heidelberg, Berlin, 1999).CrossRefADSGoogle Scholar
  30. [30]
    O.F. Sankey, A.A. Demkov, and T. Lenosky, Phys. Rev. B 57, 15129 (1998); S. Mazumdar, S. Ramasesha, R.T. Clay, D.K. Campbell, Phys. Rev. Lett. 82, 1522 (1999); K.E. Schmidt and S. Fantoni, Phys. Lett. B 446, 99 (1999).Google Scholar
  31. [31]
    H. De Raedt and M. Frick, Phys. Reports, 231, 109 (1993).Google Scholar
  32. [32]
    S.R. White, Phys. Rev. Lett. 69, 2863 (1992); Phys. Rev. B 48, 10345 (1993).CrossRefADSGoogle Scholar
  33. [33]
    R.M. Noack, private communication.Google Scholar
  34. [34]
    A. Parola, S. Sorella, S. Baroni, R. Car, M. Parrinello, and E. Tosatti, Physica C 162–164, 771 (1989); A. Parola, S. Sorella, M. Parrinello, and E. Tosatti, Phys. Rev. B 43, 6190 (1991); G. Fano, F. Ortolani, and A. Parola, Phys. Rev. B 42, 6877 (1990).CrossRefGoogle Scholar
  35. [35]
    C.J. Umrigar et al., Phys. Rev. Lett. 60 1719 (1988).CrossRefADSGoogle Scholar
  36. [36]
    N. Trivedi and D.M. Ceperley, Phys. Rev. B 41, 4552 (1990)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag New York, Inc. 2004

Authors and Affiliations

  • Shiwei Zhang

There are no affiliations available

Personalised recommendations