Skip to main content

Bayesian Clustering of Gene Expression Dynamics

  • Chapter

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

This chapter presents a Bayesian method for model-based clustering of gene expression dynamics and a program implementing it. The method represents gene expression dynamics as autoregressive equations and uses an agglomerative procedure to search for the most probable set of clusters, given the available data. The main contributions of this approach are the ability to take into account the dynamic nature of gene expression time series during clustering and an automated, principled way to decide when two series are different enough to belong to different clusters. The reliance of this method on an explicit statistical representation of gene expression dynamics makes it possible to use standard statistical techniques to assess the goodness of fit of the resulting model and validate the underlying assumptions. A set of gene expression time series, collected to study the response of human fibroblasts to serum, is used to illustrate the properties of the method and the functionality of the program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aach J, Church GM (2001). Aligning gene expression time series with time warping algorithms. Bioinformatics, 17:495–508.

    Article  Google Scholar 

  • Akaike H (1973). Information theory and an extension of the maximum likelihood principle. In 2nd International Symposium on Information Theory, pp 267–281, Budapest, Hu. Kiado.

    Google Scholar 

  • Alter O, Brown PO, Botstein D (2000). Singular value decomposition for genomewide expression data processing and modeling. Proceedings of the National Academy of Sciences USA, 97:10101–10106.

    Article  Google Scholar 

  • Bernardo JM, Smith AFM (1994). Bayesian Theory. Wiley, New York, NY.

    Book  MATH  Google Scholar 

  • Box GEP, Jenkins GM (1976). Time Series Analysis: Forecasting and Control. Holden-Day, San Francisco, CA.

    MATH  Google Scholar 

  • Butte AJ, Tamayo P, Slonim D, Golub TR, Kohane IS (2000). Discovering functional relationships between rna expression and chemotherapeutic susceptibility using relevance networks. Proceedings of the National Academy of Sciences USA, 97:12182–12186.

    Article  Google Scholar 

  • Eisen M, Spellman P, Brown P, Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences USA, 95:14863–14868.

    Article  Google Scholar 

  • Fernandez-Silva P, Martinez-Azorin F, Micol V, Attardi G (1997). The human mitochondrial transcription termination factor (mterf) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. Embo J, 16(5):1066–79.

    Article  Google Scholar 

  • Gilovich T, Vallone R, Tversky A (1985). The hot hand in basketball: On the misperception of random sequences. Cognitive Psychology, 17:295–314.

    Article  Google Scholar 

  • Golub R, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Loh IML, Coller H, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286:531–537.

    Article  Google Scholar 

  • Haimowitz IJ, Le PP, Kohane IS (1995) Clinical monitoring using regressionbased trend templates. Artif Intell Med, 7(4):471–472.

    Google Scholar 

  • Holter NS, Maritan A, Cieplak M, Fedoroff NV, Banavar JR (2001). Dynamic modeling of gene expression data. Proceedings of the National Academy of Sciences USA, 98(4):1693–1698.

    Article  Google Scholar 

  • Iyer VR, Eisen MB, Ross DT, Schuler T, Moore G, Lee JM, Trent JC, Staudt LM, Hudson J, Boguski MS, Lashkari D, Shalon D, Botstein D, Brown PO (1999). The transcriptional program in the response of human fibroblasts to serum. Science, 283:83–7.

    Article  Google Scholar 

  • Kahneman D, Slovic P, Tversky A (1982). Judgment under Uncertainty: Hueristic and Biases. Cambridge University Press, New York, NY.

    Book  Google Scholar 

  • Kass RE, Raftery A (1995). Bayes factors. Journal of the American Statistical Association, 90:773–795.

    Article  MATH  Google Scholar 

  • Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996). Expression monitoring by hybridization to high-density oligonucleotide arrays. Natural Biotechnology, 14:1675–1680.

    Article  Google Scholar 

  • Lossos IS, Alizadeh AA, Eisen MB, Chan WC, Brown PO, Botstein D, Staudt LM, Levy R (2000). Ongoing immunoglobulin somatic mutation in germinal center b cell-like but not in activated B cell-like diffuse large cell lymphomas. Proceedings of the National Academy of Sciences USA, 97(18):10209–10213.

    Article  Google Scholar 

  • MacKay DJC (1992). Bayesian interpolation. Neural Computing, 4:415–447.

    Article  Google Scholar 

  • Ramoni M, Sebastiani P, Cohen PR (2000). Multivariate clustering by dynamics. In Proceedings of the 2000 National Conference on Artificial Intelligence (AAAI-2000), pp 633–638, San Francisco, CA. Morgan Kaufmann.

    Google Scholar 

  • Ramoni M, Sebastiani P, Cohen PR (2002). Bayesian clustering by dynamics. Mach Learn, 47(1):91–121.

    Article  MATH  Google Scholar 

  • Ramoni M, Sebastiani P, Kohane IS (2002). Cluster analysis of gene expression dynamics. Proceedings of the National Academy of Sciences USA, 99(14):9121–6.

    Article  MATH  MathSciNet  Google Scholar 

  • Reis BY, Butte AS, Kohane IS (2001). Extracting knowledge from dynamics in gene expression. J Biomed Inform, 34(1):15–27.

    Article  Google Scholar 

  • Schena M, Shalon D, Davis RW, Brown PO (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270:467–70.

    Article  Google Scholar 

  • Sebastiani P, Ramoni M (2001). Common trends in European school populations. Research in Official Statistics, 4(1):169–183.

    MathSciNet  Google Scholar 

  • Shahar Y, Tu S, Musen M (1992). Knowledge acquisition for temporal abstraction mechanisms. Knowl Acquis, 1(4):217–236.

    Article  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences USA, 96:2907–2912.

    Article  Google Scholar 

  • Tenenbaum JB, Griffiths TL (2001). Generalization, similarity, bayesian inference. Behavi Brain Sci, 24(3).

    Google Scholar 

  • Tversky A, Kahneman D (1974). Judgment under uncertainty: Heuristics and biases. Science, 185:1124–1131.

    Article  Google Scholar 

  • Wen X, Fuhrman S, Michaels GS, Carr DB, Smith S, Barker JL, Somogyi R (1998). Large-scale temporal gene expression mapping of central nervous system development. Proceedings of the National Academy of Sciences USA, 95:334–339.

    Article  Google Scholar 

  • West M, Harrison J (1997). Bayesian Forecasting and Dynamic Models. Springer, New York, NY.

    MATH  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Sebastiani, P., Ramoni, M., Kohane, I.S. (2003). Bayesian Clustering of Gene Expression Dynamics. In: Parmigiani, G., Garrett, E.S., Irizarry, R.A., Zeger, S.L. (eds) The Analysis of Gene Expression Data. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-21679-0_18

Download citation

  • DOI: https://doi.org/10.1007/0-387-21679-0_18

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95577-3

  • Online ISBN: 978-0-387-21679-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics