Skip to main content

MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments

  • Chapter

Part of the Statistics for Biology and Health book series (SBH)

Abstract

We describe a software package called MAANOVA (MicroArray ANalysis Of VAriance). MAANOVA is a collection of functions for statistical analysis of gene expression data from two-color cDNA microarray experiments. It is available in both the Matlab and R programming environments and can be run on any platform that supports these packages. MAANOVA allows the user to assess data quality, apply data transformations, estimate relative gene expression from designed experiments with ANOVA models, evaluate and interpret ANOVA models, formally test for differential expression of genes and estimate false-discovery rates, produce graphical summaries of expression patterns, and perform cluster analysis with bootstrapping. The development of MAANOVA was motivated by the need to analyze microarray data that arise from sophisticated designed experiments. MAANOVA provides specialized functions for microarray analysis in an open-ended format within flexible computing environments. MAANOVA functions can be used alone or in co mbination with other functions for the rigorous statistical analysis of microarray data.

Keywords

  • Microarray Data
  • Microarray Experiment
  • Data Object
  • Consensus Tree
  • ANOVA Model

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldi P, Long AD (2001). A Bayesian framework for the analysis of microarray expression data: Regularized t-test and statistical inferences of gene changes. Bioinformatics, 17:509.

    CrossRef  Google Scholar 

  • Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple-testing. Journal of the Royal Statistical Society, Series B, 57:289.

    MATH  MathSciNet  Google Scholar 

  • Callow MJ, Dudoit S, Gong EL, Speed TP, Rubin E (2000). Microarray expression profiling identifies genes with altered expression in HDL deficient mice. Genome Research, 10:2022.

    CrossRef  Google Scholar 

  • Chu S, DeRisi J, Eisen M, Mullholland J, Botstein D, Brown PO (1998). Science, 282:699.

    CrossRef  Google Scholar 

  • Cui XQ, Kerr MK, Churchill GA (submitted for publication). Data transformations for normalization of cDNA microarray data.

    Google Scholar 

  • Dudoit S, Yang YH, Speed TP, Callow MJ (2002). Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica, 12:111–139.

    MATH  MathSciNet  Google Scholar 

  • Felsenstein J (1985). Confidence limits on phylogenies—An approach using the bootstrap. Evolution 39:783.

    CrossRef  Google Scholar 

  • Jin W, Riley RM, Wolfinger RD, White KP, Passador-Gurgel G, Gibson G (2001). The contribution of sex, genotype and age to transcriptional variance in Drosophila melanogaster. Nature Genetics, 29:389.

    CrossRef  Google Scholar 

  • Kerr MK, Churchill GA (2001a). Experimental design for gene expression microarrays. Biostatistics, 2:183.

    CrossRef  MATH  Google Scholar 

  • Kerr MK, Churchill GA (2001b). Statistical design and the analysis of gene expression microarray data. Genetical Research, 77:123.

    Google Scholar 

  • Kerr MK, Churchill GA (2001c). Bootstrapping cluster analysis: Assessing the reliability of conclusion from microarray experiments. Proceedings of the National Academy of Sciences USA, 98:8961.

    CrossRef  MATH  Google Scholar 

  • Kerr MK, Martin, M., Churchill GA (2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology, 7:819.

    CrossRef  Google Scholar 

  • Kerr MK, Leiter EH, Picard L, Churchill GA (2002). Sources of variation in microarray experiments. In: Computational and Statistical Approaches to Genomics, Zhang I, Shmulevich I (Eds), p 41. Kluwer Academic Publishers: Amsterdam.

    Google Scholar 

  • Lönnstedt I, Speed TP (2002). Replicated microarray data. Statistica Sinica, 12:31.

    MATH  MathSciNet  Google Scholar 

  • Margush T, McMorris FR (1981). Consensus n-trees. Bulletin of Mathematical Biology, 43:239.

    MATH  MathSciNet  Google Scholar 

  • Pritchard CC, Hsu L, Delrow J, Nelson PS (2001). Project normal: Defining normal variation in mouse gene expression Proceedings of the National Academy of Sciences USA, 98:13266.

    CrossRef  Google Scholar 

  • Rocke DM, Durbin B (2001). A model for measurement error for gene expression arrays. Journal of Computational Biology, 8:557.

    CrossRef  Google Scholar 

  • Schena M (Ed) (2000). DNA Microarrays: A Practical Approach. Practical Approach Series 205. Oxford University Press: Oxford.

    Google Scholar 

  • Seber GAF (1977). Linear Regression Analysis. Wiley: New York.

    MATH  Google Scholar 

  • Tanner JM (1949). Fallacy of per-weight and per-surface area standards, and their relation to spurious correlations. Journal of Applied Physiology, 2:1.

    Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proceedings of the National Academy of Sciences USA, 98:5116.

    CrossRef  MATH  Google Scholar 

  • Westfall PH, Young SS (1993). Resampling-based multiple testing: Examples and methods for p-value adjustment. Wiley Series in Probability and Mathematical Statistics, Wiley: New York.

    Google Scholar 

  • Wolfinger RD, Gibson G, Wolfinger ED, Bennett L, Hamadeh H, Bushel P, Ashfari C, Paules RS (2001). Assessing gene significance from cDNA microarray expression data via mixed-models. Journal of Computational Biology, 8:625.

    CrossRef  Google Scholar 

  • Yang YH, Buckley MJ, Dudoit S, Speed TP (2002). Comparison of methods for image analysis on cDNA microarray data. Journal of Computational Graph Statistics, 11:108.

    CrossRef  MathSciNet  Google Scholar 

  • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J, Speed TP. (2001). Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Research, 30:e15.

    CrossRef  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Wu, H., Kerr, M.K., Cui, X., Churchill, G.A. (2003). MAANOVA: A Software Package for the Analysis of Spotted cDNA Microarray Experiments. In: Parmigiani, G., Garrett, E.S., Irizarry, R.A., Zeger, S.L. (eds) The Analysis of Gene Expression Data. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-21679-0_14

Download citation

  • DOI: https://doi.org/10.1007/0-387-21679-0_14

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95577-3

  • Online ISBN: 978-0-387-21679-9

  • eBook Packages: Springer Book Archive