Skip to main content

Anatomy and Physiology of Coronary Arteries

  • Chapter
Coronary Magnetic Resonance Angiography
  • 260 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Higgins CB. Essentials of cardiac radiology and imaging. Philadelphia: J.B. Lippincott Company, 1992.

    Google Scholar 

  2. Grossman W. Cardiac catheterization and angiography, 3rd ed. Philadelphia: Lea and Febiger, 1986:31.

    Google Scholar 

  3. van Rossum AC, Bedaux WL, Hofman MB. Morphologic and functional evaluation of coronary artery bypass conduits. J Magn Reson Imag 1999;10(5):734–40.

    Article  Google Scholar 

  4. Duerinckx AJ, Atkinson DP, Mintorovitch J, Simonetti OP, Urman MK. Two-dimensional coronary MR angiography: limitations and artifacts. Eur Radiology 1996;6(3):312–25.

    CAS  Google Scholar 

  5. Soto B, Kassner EG, Baxley WA. Imaging of cardiac disorders. Volume 2: acquired diseases. Philadelphia: J.B. Lippincott/Gower Medical Publishing, 1992.

    Google Scholar 

  6. Dodge JT Jr, Brown BG, Bolson EL, Dodge HT. Lumen diameter of normal human coronary arteries. Influence of age, sex, anatomic variation, and left ventricular hypertrophy and dilatation. Circulation 1992;86:232–46.

    PubMed  Google Scholar 

  7. MacAlpin RN, Abbassi AS, Grollman JH, Eber L. Human coronary artery size during life. A cinearteriographic study. Radiology 1973;108:567–576.

    CAS  PubMed  Google Scholar 

  8. Bergstrand L, Bylund H, Erikson U, et al. Distribution of coronary atherosclerosis and its correlation to metabolic risk factors and femoral atherosclerosis. Acta Radiol 1994;33:481–86.

    Article  Google Scholar 

  9. Aro A, Soimakallio S, Voutilainen E, Ehnholm C, Wiljasalo M. Serum lipoprotein and apoprotein levels as indicators of the severity of angiographically assessed coronary artery disease. Atherosclerosis 1986;62:219–25.

    Article  CAS  PubMed  Google Scholar 

  10. Freedman DS, Gruchow HW, Jacobsen SJ, Anderson AJ, King JF, Barboriak JJ. Risk factors and the anatomic distribution of coronary artery disease. Atherosclerosis 1989; 75:227–36.

    Article  CAS  PubMed  Google Scholar 

  11. Perez GO, Mendez AJ, Goldberg RB, et al. Correlates of atherosclerosis in coronary arteries of patients undergoing angiographic evaluation. Angiology 1990;41:525–32.

    CAS  PubMed  Google Scholar 

  12. Chang PJ, Bayesian analysis revisited: a radiologist’s survival guide. Am J Roentgenol 1989;152:721–27.

    CAS  Google Scholar 

  13. Hillis LD, Winniford MD. Frequency of severe (70% or more) narrowing of the right, left anterior descending, and left circumflex coronary arteries in right dominant circulations with coronary artery disease. Am J Cardiol 1987;59:358–59.

    Article  CAS  PubMed  Google Scholar 

  14. Feit A, Khan R, Sheriff NE, Reddy CVR. Nonrandom occurrence of single-vessel coronary artery disease. Am J Med 1984;77:683–84.

    Article  CAS  PubMed  Google Scholar 

  15. Waller B. Anatomy, histology, and pathology of the major epicardial coronary arteries relevant to echocardiographic imaging techniques. J Am Soc Echocardiogr 1989;2(4):232–52.

    CAS  PubMed  Google Scholar 

  16. Wang Y, Vidan E, Bergman GW. Cardiac motion of coronary arteries: variability in the rest period and implications for coronary MR angiography. Radiology 1999; 213(3):751–58.

    CAS  PubMed  Google Scholar 

  17. Karwatowski SP, Mohiaddin RH, Yang GZ, Firmin DN, St John Sutton M, Underwood SR. Regional myocardial velocity image by magnetic resonance in patients with ischaemic heart disease. Br Heart J 1994;72(4):332–38.

    CAS  PubMed  Google Scholar 

  18. Karwatowski SP, Mohiaddin R, Yang GZ, et al. Assessment of regional left ventricular long-axis motion with MR velocity mapping in healthy subjects. J Magn Reson Imag 1994;4(2):151–55.

    CAS  Google Scholar 

  19. Kong Y, Morris JJ, McIntosh HD. Assessment of regional myocardial performance from biplane coronary cineangiograms. Am J Cardiol 1971;27:529–37.

    Article  CAS  PubMed  Google Scholar 

  20. Hofman MB, Wickline SA, Lorenz CH. Quantification of in-plane motion of the coronary arteries during the cardiac cycle: implications for acquisition window duration for MR flow quantification. J Magn Reson Imag 1998; 8(3):568–76.

    CAS  Google Scholar 

  21. Holland AE, Goldfarb JW, Edelman RR. Diaphragmatic and cardiac motion during suspended breathing: preliminary experience and implications for breath-hold MR imaging. Radiology 1998;209(2):483–89.

    CAS  PubMed  Google Scholar 

  22. Wang Y, Grist TM, Korosec FR, et al. Respiratory blur in 3D coronary MR imaging. Magn Reson Med 1995;33(4): 541–48.

    CAS  PubMed  Google Scholar 

  23. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and implications for the spatial resolution in coronary imaging. Magn Reson Med 1995;33(5): 713–19.

    CAS  PubMed  Google Scholar 

  24. Sachs TS, Meyer CH, Hu BS, Kohli J, Nishimura DG, Macovski A. Real-time motion detection in spiral MRI using navigators. Magn Reson Med 1994;32(5):639–45.

    CAS  PubMed  Google Scholar 

  25. Fu Z, Wang Y, Grimm RC, et al. Orbital navigator echoes for motion measurement in magnetic resonance imaging. Magn Reson Med 1995;34(5):746–53.

    CAS  PubMed  Google Scholar 

  26. Li D, Kaushikkar S, Woodard P, Dhawale P, Haacke EM. Three-dimensional MRI of coronary arteries (abstr). In: Book of abstracts of VII International Workshop on Magnetic Resonance Angiography. Matsuyama, Japan: October 12–14, 1995.

    Google Scholar 

  27. Taylor AM, Jhooti P, Firmin DN, Pennell DJ. Automated monitoring of diaphragm end-expiratory position for realtime navigator echo MR coronary angiography. J Magn Reson Imag 1999;9(3):395–401.

    Article  CAS  Google Scholar 

  28. Taylor AM, Keegan J, Jhooti P, Firmin DN, Pennell DJ. Calculation of a subject-specific adaptive motion-correction factor for improved real-time navigator echo-gated magnetic resonance coronary angiography. J Cardiovasc Magn Reson 1999;1(2):131–38.

    CAS  PubMed  Google Scholar 

  29. Danias PG, Stuber M, Botnar RM, Kissinger KV, Edelman RR, Manning WJ. Relationship between motion of coronary arteries and diaphragm during free breathing: lessons from real-time MR imaging. Am J Roentgenol 1999;172(4):1061–65.

    CAS  Google Scholar 

  30. Taylor AM, Keegan J, Jhooti P, Gatehouse PD, Firmin DN, Pennell DJ. Differences between normal subjects and patients with coronary artery disease for three different MR coronary angiography respiratory suppression techniques. J Magn Reson Imag 1999;9(6):786–93.

    Article  CAS  Google Scholar 

  31. Manning WJ, Li W, Edelman RR. A preliminary report comparing magnetic resonance coronary angiography with conventional angiography. N Engl J Med 1993;328: 828–32.

    Article  CAS  PubMed  Google Scholar 

  32. Iliceto S, Memmola C, Marangelli V, Caiato C, Rizzon P. Evaluation of coronary artery anatomy and physiology with the use of transesophageal echocardiography. Cor Art Dis 1992;3:357–63.

    Google Scholar 

  33. Siostrzonek P, Kranz A, Heinz G, et al. Noninvasive estimation of coronary flow reserve by transesophageal Doppler measurements of coronary sinus flow. Am J Cardiol 1993;72:1334–37.

    Article  CAS  PubMed  Google Scholar 

  34. Iliceto S, Marangelli V, Memmola C, Rizzon P. Transesophageal Doppler echocardiography evaluation of coronary blood flow velocity in baseline conditions and during dipyridamole-induced coronary vasodilation. Circulation 1991;83:61–69.

    CAS  PubMed  Google Scholar 

  35. Fusejima K, Takahara Y, Sudo Y, Murayama H, Masuda Y, Inagaki Y. Comparison of coronary hemodynamics in patients with internal mammary artery and saphenous vein coronary artery bypass grafts: a noninvasive approach using combined two-dimensional and Doppler echocardiography. J Am Coll Card 1990;15(1):131–39.

    Article  CAS  Google Scholar 

  36. Bandyk D, Galbraith T, Haasler G, Almassi H. Blood flow velocity of internal mammary artery and saphenous vein grafts to the coronary arteries. J Surg Res 1988;44:342–51.

    Article  CAS  PubMed  Google Scholar 

  37. Fujiwara T, Kajiya F, Kanazawa S, et al. Comparison of blood-flow velocity waveforms in different coronary artery bypass grafts: sequential saphenous vein grafts and internal mammary artery grafts. Circulation 1988;78:1210–17.

    CAS  PubMed  Google Scholar 

  38. vanRossum AC, Visser FC, Hofman MBM, Galjee MA, Westerhof N, Valk J. Global left ventricular perfusion: noninvasive measurement with cine MR imaging and phase velocity mapping of coronary venous outflow. Radiology 1992;182:685–91.

    PubMed  Google Scholar 

  39. Paschal C, Haacke E, Adler L, Finelli DA. Magnetic resonance coronary artery imaging. Cardiovasc Intervent Radiol 1992;15:23–31.

    CAS  PubMed  Google Scholar 

  40. Mukundan S, Oshinski JN, Pettigrew RI. Breath-hold turbo cine MRI for 4D localization of coronary arteries (abstr.). In: Printed program of the first meeting of the Society of Magnetic Resonance (SMR). Dallas, Texas, March 5–9, 1994; J Magn Reson Imag 1994;4(P):80.

    Google Scholar 

  41. Kenny A, Shapiro LM. Identification of coronary artery stenosis and poststenotic blood flow patterns using a miniature high-frequency epicardial transducer. Circulation 1994;89:731–39.

    CAS  PubMed  Google Scholar 

  42. Ofili EO, Labovitz AJ, Kern MJ. Coronary flow velocity dynamics in normal and diseased arteries. Am J Cardiol 1993;71:30D–39D.

    Article  Google Scholar 

  43. DeBono DP, Samani NJ, Spyt TJ, Hartshorne T, Thrush AJ, Evans DH. Transcutaneous ultrasound measurements of blood-flow in internal mammary artery to coronary artery grafts. Lancet 1992;339:379–81.

    Article  PubMed  Google Scholar 

  44. Canver CC, Dame NA. Ultrasonic assessment of internal thoracic artery graft flow in the revascularized heart. Ann Thorac Surg 1994;58:135–38.

    Article  CAS  PubMed  Google Scholar 

  45. Ge J, Erbel R, Gerber T, et al. Intravascular ultrasound imaging of angiographically normal coronary arteries: a prospective study in vivo. Br Heart J 1994;71:572–78.

    CAS  PubMed  Google Scholar 

  46. Tomoike H, Ootsubo H, Sakai K, Kikuchi Y, Nakamura M. Continuous measurements of coronary artery diameter in situ. Am J Physiol 1981;240:H73–H79.

    CAS  PubMed  Google Scholar 

  47. Clarke GD, Eckels R, Chaney C, et al. Measurement of absolute epicardial coronary artery flow and flow reserve with breathhold cine phase-contrast magnetic resonance imaging. Circulation 1995;91(10):2627–34.

    CAS  PubMed  Google Scholar 

  48. Hoffman JIE. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 1984;70:153–59.

    CAS  PubMed  Google Scholar 

  49. Li D, Paschal CB, Haacke EM, Adler LP. Coronary arteries: three-dimensional MR imaging with fat saturation and magnetization transfer contrast. Radiology 1993;187:401–6.

    CAS  PubMed  Google Scholar 

  50. Wielopolski P, van Geuns RJ, de Feyter PJ, Oudkerk M. Breath-hold coronary MR angiography with volume targeted imaging. Radiology 1998;209:209–20.

    CAS  PubMed  Google Scholar 

  51. Brittain JH, Hu BS, Wright GA, Meyer CH, Macovski A, Nishimura DG. Coronary angiography with magnetization-prepared T2 contrast. Magn Reson Med 1995;33(5): 689–96.

    CAS  PubMed  Google Scholar 

  52. Botnar RM, Stuber M, Danias PG, Kissinger KV, Manning WJ. Improved coronary artery definition with T2-weighted, free-breathing, three-dimensional coronary MRA. Circulation 1999;99(24):3139–48.

    CAS  PubMed  Google Scholar 

  53. Worthley SG, Helft G, Fayad Z, et al. MR imaging documents coronary artery atherosclerotic severity and composition: Ex vivo and in vivo studies in a porcine model (abstr.). In: Cardiovascular Imaging 1999. The 27th Annual Meeting of the North American Society for Cardiac Imaging (NASCI), Nov 6, 1999, Atlanta, GA: 1999.

    Google Scholar 

  54. Botnar RM, Stuber M, Kissinger KV, Manning WJ. Real-time navigator gated and corrected coronary vessel wall imaging (abstr.). In: Cardiovascular Imaging 1999. The 27th Annual Meeting of the North American Society for Cardiac Imaging (NASCI), Nov 6, 1999, Atlanta, GA: 1999.

    Google Scholar 

  55. Botnar RM, Stuber M, Kissinger KV, Manning WJ. In vivo imaging of coronary artery wall in humans using navigator and free-breathing (abstr.). In: Book of Abstracts and Proceedings of the 8th Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM 2000 Proceedings Available on CD-ROM). Denver, CO April 1–7, 2000.

    Google Scholar 

  56. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black blood MR (abstr.). In: Book of Abstracts and Proceedings of the 8th Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM 2000 Proceedings Available on CD-ROM). Denver, CO April 1–7, 2000.

    Google Scholar 

  57. Zheng J, Li D, Finn JP, Simonetti O, Cavagna FM. Coronary vessel wall MR imaging: Initial experience. (abstr.). In: Book of Abstracts and Proceedings of the 8th Meeting of the International Society of Magnetic Resonance in Medicine (ISMRM 2000 Proceedings Available on CD-ROM). Denver, CO April 1–7, 2000.

    Google Scholar 

  58. Yuan C, Petty C, O’Brien KD, Hatsukami TS, Eary JF, Brown BG. In vitro and in situ magnetic resonance imaging signal features of atherosclerotic plaque-associated lipids. Thrombosis,..., Arteriosclerosis 1997;17(8):1496–1503.

    CAS  Google Scholar 

  59. Trouard TP, Altbach MI, Hunter GC, Eskelson CD, Gmitro AF. MRI and NMR spectroscopy of the lipids of atherosclerotic plaque in rabbits and humans. Magn Reson Med 1997;38(1):19–26.

    CAS  PubMed  Google Scholar 

  60. Toussaint JF, Southern JF, Kantor HL, Jang IK, Fuster V. Behavior of atherosclerotic plaque components after in vitro angioplasty and atherectomy studied by high field MR imaging. Magn Reson Imag 1998;16(2):175–83.

    Article  CAS  Google Scholar 

  61. Hatsukami TS, Ferguson MS, Beach KW, et al. Carotid plaque morphology and clinical events. Stroke 1997;28(1): 95–100.

    CAS  PubMed  Google Scholar 

  62. Bonn D. Plaque detection: the key to tackling atherosclerosis? [news]. Lancet 1999;354(9179):656.

    Article  CAS  PubMed  Google Scholar 

  63. Luk-Pat GT, Gold GE, Olcott EW, Hu BS, Nishimura DG. High-resolution three-dimensional in vivo imaging of atherosclerotic plaque. Magn Reson Med 1999;42(4):762–71.

    Article  CAS  PubMed  Google Scholar 

  64. Shinnar M, Fallon JT, Wehrli S, et al. The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 1999;19(11): 2756–61.

    CAS  PubMed  Google Scholar 

  65. Zimmermann-Paul GG, Quick HH, Vogt P, von Schulthess GK, Kling D, Debatin JF. High-resolution intravascular magnetic resonance imaging: monitoring of plaque formation in heritable hyperlipidemic rabbits. Circulation 1999;99(8):1054–61.

    CAS  PubMed  Google Scholar 

  66. Fayad ZA, Fuster V, Fallon JT, et al. Noninvasive in vivo human coronary artery lumen and wall imaging using black-blood magnetic resonance imaging. Circulation 2000;102(5):506–10.

    CAS  PubMed  Google Scholar 

  67. Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann NY Acad Sci 2000;902:173–86.

    Article  CAS  PubMed  Google Scholar 

  68. Fischer A, Gutstein DE, Fayad, ZA, Fuster V. Predicting plaque rupture: enhancing diagnosis and clinical decision-making in coronary artery disease. Vasc Med 2000;5(3): 163–72.

    Article  CAS  PubMed  Google Scholar 

  69. Rogers WJ, Prichard JW, Hu YL, et al. Characterization of signal properties in atherosclerotic plaque components by intravascular MRI. Arterioscler Thromb Vasc Biol 2000; 20(7):1824–30.

    CAS  PubMed  Google Scholar 

  70. Worthley SG, Helft G, Fuster V, et al. Serial in vivo MRI documents arterial remodeling in experimental atherosclerosis. Circulation 2000;101(6):586–89.

    CAS  PubMed  Google Scholar 

  71. Worthley SG, Helft G, Fuster V, et al. Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 2000;101(25): 2956–61.

    CAS  PubMed  Google Scholar 

  72. Worthley SG, Helft G, Fuster V, et al. High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 2000;150(2):321–29.

    Article  CAS  PubMed  Google Scholar 

  73. Worthley SG, Helft G, Fayad ZA, et al. Images in cardiovascular medicine. Magnetic resonance imaging and asymptomatic aortic dissection. Circulation 2000;101(23):2771.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Duerinckx, A.J. (2002). Anatomy and Physiology of Coronary Arteries. In: Duerinckx, A.J. (eds) Coronary Magnetic Resonance Angiography. Springer, New York, NY. https://doi.org/10.1007/0-387-21590-5_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-21590-5_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-94959-8

  • Online ISBN: 978-0-387-21590-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics