Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 18))

Summary

During the last 20 years, considerable advances have been made in the development of cochlear implants for the profoundly deaf. It has been shown that multiple-channel devices are superior to single-channel systems. Strategies in which several electrodes (six to eight) correspond to fixed-filter outputs, or the extraction of six to eight spectral maxima for 20 to 22 electrodes offer better speech perception than stimulation with second and first formants at individual sites in the cochlea, provided that nonsimultaneous or interleaved presentation is employed to minimize current leakage between the electrodes. Further refinements such as spectral maxima at rates of approximately 800 to 1600 pulsess and the extraction of speech transients also give improvements for a number of patients.

Successful speech recognition by many prelinguistically deafened children as well as by postlinguistically deaf children has been achieved. If children are implanted before 2 years of age and have good language training, they can achieve speech perception, speech production, and expressive and receptive language at levels that are normal for their chronological age. The main restriction on the amount of information that can be presented to the auditory nervous system is the electroneural “bottleneck” caused by the relatively small number of electrodes (presently 22) that can be inserted into the cochlea and the limited dynamic range of effective stimulation. Strategies to overcome this restriction continue to be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitkin LM (1986) The Auditory Midbrain: Structure and Function in the Central Auditory Pathway. Clifton, NJ: Humana Press.

    Google Scholar 

  • Arndt P, Staller S, Arcoroli J, Hines A, Ebinger K (1999) Within-subject comparison of advanced coding strategies in the Nucleus 24 cochlear implant. Cochlear Corporation.

    Google Scholar 

  • Bacon SP, Gleitman RM (1992) Modulation detection in subjects with relatively flat hearing losses. J Speech Hear Res 35:642–653.

    CAS  PubMed  Google Scholar 

  • Battmer R-D, Gnadeberg D, Allum-Mecklenburg DJ, Lenarz T (1994) Matched-pair comparisons for adults using the Clarion or Nucleus devices. Ann Oto Rhino Laryngol 104(suppl 166):251–254.

    Google Scholar 

  • Bilger RC, Black RO, Hopkinson NT (1977) Evaluation of subjects presently fitted with implanted auditory prostheses. Ann Oto Rhino Laryngol 86(suppl 38):1–176.

    Google Scholar 

  • Black RC, Clark GM (1977) Electrical transmission line properties in the cat cochlea. Proc Austral Physiol Pharm Soc 8:137.

    Google Scholar 

  • Black RC, Clark GM (1978) Electrical network properties and distribution of potentials in the cat cochlea. Proc Austral Physiol Pharm Soc 9:71.

    Google Scholar 

  • Black RC, Clark GM (1980) Differential electrical excitation of the auditory nerve. J Acoust Soc Am 67:868–874.

    Article  CAS  PubMed  Google Scholar 

  • Black RC, Clark GM, Patrick JF (1981) Current distribution measurements within the human cochlea. IEEE Trans Biomed Eng 28:721–724.

    CAS  PubMed  Google Scholar 

  • Blamey PJ, Dowell RC, Tong YC, Brown AM, Luscombe SM, Clark GM (1984a) Speech processing studies using an acoustic model of a multiple-channel cochlear implant. J Acoust Soc Am 76:104–110.

    Article  CAS  PubMed  Google Scholar 

  • Blamey PJ, Dowell RC, Tong YC, Clark GM (1984b) An acoustic model of a multiple-channel cochlear implant. J Acoust Soc Am 76:97–103.

    Article  CAS  PubMed  Google Scholar 

  • Blamey PJ, Martin LFA, Clark GM (1985) A comparison of three speech coding strategies using an acoustic model of a cochlear implant. J Acoust Soc Am 77:209–217.

    Article  CAS  PubMed  Google Scholar 

  • Blamey PJ, Parisi ES, Clark GM (1995) Pitch matching of electric and acoustic stimuli. In: Clark GM, Cowan RSC (eds) The International Cochlear Implant, Speech and Hearing Symposium, Melbourne, suppl 166, vol 104, no 9, part 2. St. Louis: Annals, pp. 220–222.

    Google Scholar 

  • Brimacombe JA, Arndt PL, Staller SJ, Menapace CM (1995) Multichannel cochlear implants in adults with residual hearing. NIH Consensus Development Conference on Cochlear Implants in Adults and Children, May 15-16.

    Google Scholar 

  • Brugge JF, Kitzes L, Javel E (1981) Postnatal development of frequency and intensity sensitivity of neurons in the anteroventral cochlear nucleus of kittens. Hear Res 5:217–229.

    Article  CAS  PubMed  Google Scholar 

  • Buden SV, Brown M, Paolini G, Clark GM (1996) Temporal and entrainment response properties of cochlear nucleus neurons to intra cochleal electrical stimulation in the cat. Proc 16th Ann Austral Neurosci Mgt 8:104.

    Google Scholar 

  • Burns EM, Viemeister NG (1981) Played-again SAM: further observations on the pitch of amplitude-modulated noise. J Acoust Soc Am 70:1655–1660.

    Article  Google Scholar 

  • Busby PA, Clark GM (1996) Spatial resolution in early deafened cochlear implant patients. Proc Third European Symposium Pediatric Cochlear Implantation, Hannover, June 5–8.

    Google Scholar 

  • Busby PA, Clark GM (1997) Pitch and loudness estimation for single and multiple pulse per period electric pulse rates by cochlear implant patients. J Acoust Soc Am 101:1687–1695.

    Article  CAS  PubMed  Google Scholar 

  • Busby PA, Clark GM (2000a) Electrode discrimination by early-deafened subjects using the Cochlear Limited multiple-electrode cochlear implant. Ear Hear 21: 291–304.

    Article  CAS  PubMed  Google Scholar 

  • Busby PA, Clark GM (2000b) Pitch estimation by early-deafened subjects using a multiple-electrode cochlear implant. J Acoust Soc Am 107:547–558.

    Article  CAS  PubMed  Google Scholar 

  • Busby PA, Tong YC, Clark GM (1992) Psychophysical studies using a multiple-electrode cochlear implant in patients who were deafened early in life. Audiology 31:95–111.

    CAS  PubMed  Google Scholar 

  • Busby PA, Tong YC, Clark GM (1993a) The perception of temporal modulations by cochlear implant patients. J Acoust Soc Am 94:124–131.

    Article  CAS  PubMed  Google Scholar 

  • Busby PA, Roberts SA, Tong YC, Clark GM (1993b) Electrode position, repetition rate and speech perception early-and late-deafened cochlear implant patients. J Acoust Soc Am 93:1058–1067.

    Article  CAS  PubMed  Google Scholar 

  • Busby PA, Whitford LA, Blamey PJ, Richardson LM, Clark GM (1994) Pitch perception for different modes of stimulation using the Cochlear multiple-electrode prosthesis. J Acoust Soc Am 95:2658–2669.

    Article  CAS  PubMed  Google Scholar 

  • Clark GM (1969) Responses of cells in the superior olivary complex of the cat to electrical stimulation of the auditory nerve. Exp Neurol 24:124–136.

    Article  CAS  PubMed  Google Scholar 

  • Clark GM (1986) The University of Melbourne/Cochlear Corporation (Nucleus) Program. In: Balkany T (ed) The Cochlear Implant. Philadephia: Saunders.

    Google Scholar 

  • Clark GM (1987) The University of Melbourne-Nucleus multi-electrode cochlear implant. Basel: Karger.

    Google Scholar 

  • Clark GM (1995) Cochlear implants: historical perspectives. In: Plant G, Spens K-E (eds) Profound Deafness and Speech Communication. London: Whurr, pp. 165–218.

    Google Scholar 

  • Clark GM (1996a) Electrical stimulation of the auditory nerve, the coding of sound frequency, the perception of pitch and the development of cochlear implant speech processing strategies for profoundly deaf people. J Clin Physiol Pharm Res 23:766–776.

    CAS  Google Scholar 

  • Clark GM (1996b) Cochlear implant speech processing for severely-to-profoundly deaf people. Proc ESCA Tutorial and Research Workshop on the Auditory Basis of Speech Perception, Keele University, United Kingdom.

    Google Scholar 

  • Clark GM (1998) Cochlear implants. In: Wright A, Ludman H (eds) Diseases of the Ear. London: Edward Arnold, pp. 149–163.

    Google Scholar 

  • Clark GM (2001) Editorial. Cochlear implants: climbing new mountains. The Graham Fraser Memorial Lecture 2001. Cochlear Implants Int 2(2):75–97.

    Article  CAS  PubMed  Google Scholar 

  • Clark GM (2003) Cochlear Implants: Fundamentals and Applications. New York: Springer-Verlag.

    Google Scholar 

  • Clark GM, Tong YC (1990) Electrical stimulation, physiological and behavioural studies. In: Clark GM, Tong YC, Patrick JF (eds) Cochlear Prostheses. Edinburgh: Churchill Livingstone.

    Google Scholar 

  • Clark GM, Nathar JM, Kranz HG, Maritz JSA (1972) Behavioural study on electrical stimulation of the cochlea and central auditory pathways of the cat. Exp Neurol 36:350–361.

    Article  CAS  PubMed  Google Scholar 

  • Clark GM, Kranz HG, Minas HJ (1973) Behavioural thresholds in the cat to frequency modulated sound and electrical stimulation of the auditory nerve. Exp Neurol 41:190–200.

    Article  CAS  PubMed  Google Scholar 

  • Clark GM, Tong YC, Dowell RC (1984) Comparison of two cochlear implant speech processing strategies. Ann Oto Rhino Laryngol 93:127–131.

    CAS  Google Scholar 

  • Clark GM, Carter TD, Maffi CL, Shepherd RK (1995) Temporal coding of frequency: neuron firing probabilities for acoustical and electrical stimulation of the auditory nerve. Ann Otol Rhinol Laryngol 104(suppl 166):109–111.

    Google Scholar 

  • Clark GM, Dowell RC, Cowan RSC, Pyman BC, Webb RL (1996) Multicentre evaluations of speech perception in adults and children with the Nucleus (Cochlear) 22-channel cochlear implant. IIIrd Int Symp Transplants Implants Otol, Bordeaux, June 10–14, 1995.

    Google Scholar 

  • Cohen NL, Waltzman SB, Fisher SG (1993) A prospective, randomized study of cochlear implants. N Engl J Med 328:233–282.

    Article  CAS  PubMed  Google Scholar 

  • Cowan RSC, Brown C, Whitford LA, et al. (1995) Speech perception in children using the advanced SPEAK speech processing strategy. Ann Otol Rhinol Laryngol 104(suppl 166):318–321.

    Google Scholar 

  • Cowan RSC, Brown C, Shaw S, et al. (1996) Comparative evaluation of SPEAK and MPEAK speech processing strategies in children using the Nucleus 22-channel cochlear implant. Ear Hear (submitted).

    Google Scholar 

  • Dawson PW, Blamey PJ, Clark GM, et al. (1989) Results in children using the 22 electrode cochlear implant. J Acoust Soc Am 86(suppl 1):81.

    Article  Google Scholar 

  • Dawson PW, Blamey PJ, Rowland LC, et al. (1992) Cochlear implants in children, adolescents and prelinguistically deafened adults: speech perception. J Speech Hear Res 35:401–417.

    CAS  PubMed  Google Scholar 

  • Dorman MF (1993) Speech perception by adults. In: Tyler RS (ed) Cochlear Implants. Audiological Foundations. San Diego: Singular, pp. 145–190.

    Google Scholar 

  • Dorman M, Dankowski K, McCandless G (1989) Consonant recognition as a function of the number of channels of stimulation by patients who use the Symbion cochlear implant. Ear Hear 10:288–291.

    Article  CAS  PubMed  Google Scholar 

  • Dowell, RC (1991) Speech Perception in Noise for Multichannel Cochlear Implant Users. Doctor of philosophy thesis, The University of Melbourne.

    Google Scholar 

  • Dowell RC, Mecklenburg DJ, Clark GM (1986) Speech recognition for 40 patients receiving multichannel cochlear implants. Arch Otolaryngol 112:1054–1059.

    CAS  Google Scholar 

  • Dowell RC, Seligman PM, Blamey PJ, Clark GM (1987) Speech perception using a two-formant 22-electrode cochlear prosthesis in quiet and in noise. Acta Otolaryngol (Stockh) 104:439–446.

    CAS  Google Scholar 

  • Dowell RC, Whitford LA, Seligman PM, Franz BK, Clark GM (1990) Preliminary results with a miniature speech processor for the 22-electrode Melbourne/Cochlear hearing prosthesis. Otorhinolaryngology, Head and Neck Surgery. Proc XIV Congress Oto-Rhino-Laryngology, Head and Neck Surgery, Madrid, Spain, pp. 1167–1173.

    Google Scholar 

  • Dowell RC, Blamey PJ, Clark GM (1995) Potential and limitations of cochlear implants in children. Ann Otol Rhinol Laryngol 104(suppl 166):324–327.

    Google Scholar 

  • Dowell RC, Dettman SJ, Blamey PJ, Barker EJ, Clark GM (2002) Speech perception in children using cochlear implants: prediction of long-term outcomes. Cochlear Implants Int 3:1–18.

    Article  PubMed  Google Scholar 

  • Eddington DK (1980) Speech discrimination in deaf subjects with cochlear implants. J Acoust Soc Am 68:886–891.

    Article  Google Scholar 

  • Eddington DK (1983) Speech recognition in deaf subjects with multichannel intracochlear electrodes. Ann NY Acad Sci 405:241–258.

    CAS  PubMed  Google Scholar 

  • Eddington DK, Dobelle WH, Brackman EE, Brackman DE, Mladejovsky MG, Parkin JL (1978) Auditory prosthesis research with multiple channel intracochlear stimulation in man. Ann Otol Rhino Laryngol 87(suppl 53):5–39.

    Google Scholar 

  • Evans EF (1978) Peripheral auditory processing in normal and abnormal ears: physiological considerations for attempts to compensate for auditory deficits by acoustic and electrical prostheses. Scand Audiol Suppl 6:10–46.

    Google Scholar 

  • Evans EF (1981) The dynamic range problem: place and time coding at the level of the cochlear nerve and nucleus. In: Syka J, Aitkin L (eds) Neuronal Mechanisms of Hearing. New York: Plenum, pp. 69–85.

    Google Scholar 

  • Evans EF, Wilson JP (1975) Cochlear tuning properties: concurrent basilar membrane and single nerve fiber measurements. Science 190:1218–1221.

    CAS  PubMed  Google Scholar 

  • Fourcin AJ, Rosen SM, Moore BCJ (1979) External electrical stimulation of the cochlea: clinical, psychophysical, speech-perceptual and histological findings. Br J Audiol 13:85–107.

    CAS  PubMed  Google Scholar 

  • Gantz BJ, McCabe BF, Tyler RS, Preece JP (1987) Evaluation of four cochlear implant designs. Ann Otol Rhino Laryngol 96:145–147.

    Google Scholar 

  • Glattke T (1976) Cochlear implants: technical and clinical implications. Laryngoscope 86:1351–1358.

    CAS  PubMed  Google Scholar 

  • Gruenz OO, Schott LA (1949) Extraction and portrayal of pitch of speech sounds. J Acoust Soc Am 21:5, 487–495.

    Article  Google Scholar 

  • Hochmair ES, Hochmair-Desoyer IJ, Burian K (1979) Investigations towards an artificial cochlea. Int J Artif Organs 2:255–261.

    CAS  PubMed  Google Scholar 

  • Hochmair-Desoyer IJ, Hochmair ES, Fischer RE, Burian K (1980) Cochlear prostheses in use: recent speech comprehension results. Arch Otorhinolaryngol 229: 81–98.

    Article  CAS  PubMed  Google Scholar 

  • Hochmair-Desoyer IJ, Hochmair ES, Burian K (1981) Four years of experience with cochlear prostheses. Med Prog Tech 8:107–119.

    CAS  Google Scholar 

  • House WF, Berliner KI, Eisenberg LS (1981) The cochlear implant: 1980 update. Acta Otolaryngol 91:457–462.

    CAS  PubMed  Google Scholar 

  • Irlicht L, Clark GM (1995) Control strategies for nerves modeled by self-exciting poit processes. In: Clark GM, Cowan RSC (eds) The International Cochlear Implant, Speech & Hearing Symposium, Melbourne 1994. St Louis: Annals, pp. 361–363.

    Google Scholar 

  • Irlicht L, Au D, Clark GM (1995) A new temporal coding scheme for auditory nerve stimulation. In: Clark GM, Cowan RSC (eds) The International Cochle ar Implant, Speech and Hearing Symposium, Melbourne 1994. St Louis: Annals, pp. 358–360.

    Google Scholar 

  • Irvine DRF (1986) The Auditory Brainstem. A Review of the Structure and Function of Auditory Brainstem Processing Mechanisms. Berlin: Springer-Verlag.

    Google Scholar 

  • Javel E, Tong YC, Shepherd RK, Clark GM (1987) Responses of cat auditory nerve fibers to biphasic electrical current pulses. Ann Otol Rhinol Laryngol 96(suppl 128):26–30.

    Google Scholar 

  • Katsuki Y, Suga N, Kanno Y (1962) Neural mechanism of the peripheral and central auditory system in monkeys. J Acoust Soc Am 34:1396–1410.

    Article  Google Scholar 

  • Kessler DK, Loeb GE, Barker MJ (1995) Distribution of speech recognition results with the Clarion cochlear prosthesis. Ann Otol Rhino Laryngol 104(suppl 166) (9):283–285.

    Google Scholar 

  • Kiang NYS (1966) Stimulus coding in the auditory nerve and cochlear nucleus. Acta Otolaryngol 59:186–200.

    Google Scholar 

  • Kiang NYS, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–729.

    CAS  PubMed  Google Scholar 

  • Kiang NYS, Pfeiffer RF, Warr WB (1965) Stimulus coding in the cochlear nucleus. Ann Otol Rhino Laryngol 74:2–23.

    Google Scholar 

  • Laird RK (1979) The bioengineering development of a sound encoder for an implantable hearing prosthesis for the profoundly deaf. Master of engineering science thesis, University of Melbourne.

    Google Scholar 

  • Luxford WM, Berliner KI, Eisenberg MA, House WF (1987) Cochlear implants in children. Ann Otol 94:136–138.

    Google Scholar 

  • McDermott HJ, McKay CM (1994) Pitch ranking with non-simultaneous dualelectrode electrical stimulation of the cochlea. J Acoust Soc Am 96:155–162.

    Article  CAS  PubMed  Google Scholar 

  • McDermott HJ, McKay CM, Vandali AE (1992) A new portable sound processor for the University of Melbourne/Nucleus Limited multi-electrode cochlear implant. J Acoust Soc Am 91:3367–3371.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, McDermott HJ (1993) Perceptual performance of subjects with cochlear implants using the Spectral Maxima Sound Processor (SMSP) and the Mini Speech Processor (MSP). Ear Hear 14:350–367.

    Article  CAS  PubMed  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1991) Preliminary results with a six spectral maxima speech processor for the University of Melbourne/Nucleus multiple-electrode cochlear implant. J Otolaryngol Soc Aust 6:354–359.

    Google Scholar 

  • McKay CM, McDermott HJ, Vandali AE, Clark GM (1992) A comparison of speech perception of cochlear implantees using the Spectral Maxima Sound Processor (SMSP) and the MSP (MULTIPEAK) processor. Acta Otolaryngol (Stockh) 112: 752–761.

    Article  CAS  Google Scholar 

  • McKay CM, McDermott HJ, Clark GM (1995) Pitch matching of amplitude modulated current pulse trains by cochlear implantees: the effect of modulation depth. J Acoust Soc Am 97:1777–1785.

    Article  CAS  PubMed  Google Scholar 

  • Merzenich MM (1975) Studies on electrical stimulation of the auditory nerve in animals and man: cochlear implants. In: Tower DB (ed) The Nervous System, vol 3, Human Communication and Its Disorders. New York: Raven Press, pp. 537–548.

    Google Scholar 

  • Merzenich M, Byers C, White M (1984) Scala tympani electrode arrays. Fifth Quarterly Progress Report 1–11.

    Google Scholar 

  • Moore BCJ (1989) Pitch perception. In: Moore BCJ (ed) An Introduction to the Psychology of Hearing. London: Academic Press, pp. 158–193.

    Google Scholar 

  • Moore BCJ, Raab DH (1974) Pure-tone intensity discrimination: some experiments relating to the “near-miss” to Weber’s Law. J Acoust Soc Am 55:1049–1954.

    Article  CAS  PubMed  Google Scholar 

  • Moxon EC (1971) Neural and mechanical responses to electrical stimulation of the cat’s inner ear. Doctor of philosophy thesis, Massachusetts Institute of Technology.

    Google Scholar 

  • Nilsson M, Soli SD, Sullivan JA (1994) Development of the Hearing in Noise Test for the measurement of speech reception thresholds in quiet and in noise. Journal of the Acoustical Society of America 95(2):1085–99.

    Article  CAS  PubMed  Google Scholar 

  • Rajan R, Irvine DRF, Calford MB, Wise LZ (1990) Effect of frequency-specific losses in cochlear neural sensitivity on the processing and representation of frequency in primary auditory cortex. In: Duncan A (ed) Effects of Noise on the Auditory System. New York: Marcel Dekker, pp. 119–129.

    Google Scholar 

  • Recanzone GH, Schreiner CE, Merzenich MM (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13:87–103.

    CAS  PubMed  Google Scholar 

  • Robertson D, Irvine DRF (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471.

    Article  CAS  PubMed  Google Scholar 

  • Rose JE, Galambos R, Hughes JR (1959) Microelectrode studies of the cochlear nuclei of the cat. Bull Johns Hopkins Hosp 104:211–251.

    CAS  PubMed  Google Scholar 

  • Rose JE, Brugge JF, Anderson DJ, Hind JE (1967) Phase-locked response to low-frequency tones in single auditory nerve fibers of the squirrel monkey. J Neurophysiol 30:769–793.

    CAS  PubMed  Google Scholar 

  • Rupert A, Moushegian G, Galambos R (1963) Unit responses to sound from auditory nerve of the cat. J Neurophysiol 26:449–465.

    CAS  PubMed  Google Scholar 

  • Sachs MB, Young ED (1979) Encoding of steady-state vowels in the auditory nerve: representation in terms of discharge rate. J Acoust Soc Am 66:470–479.

    Article  CAS  PubMed  Google Scholar 

  • Schindler RA, Kessler DK, Barker MA (1995) Clarion patient performance: an update on the clinical trials. Ann Otol Rhino Laryngol 104(suppl 166):269–272.

    Google Scholar 

  • Seldon HL, Kawano A, Clark GM (1996) Does age at cochlear implantation affect the distribution of responding neurons in cat inferior colliculus? Hear Res 95: 108–119.

    Article  CAS  PubMed  Google Scholar 

  • Seligman PM, McDermott HJ (1995) Architecture of the SPECTRA 22 speech processor. Ann Otol Rhinol Laryngol 104(suppl 166):139–141.

    Google Scholar 

  • Shannon RV (1983) Multichannel electrical stimulation of the auditory nerve in man: I. Basic psychophysics. Hear Res 11:157–189.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV (1992) Temporal modulation transfer functions in patients with cochlear implants. J Acoust Soc Am 91:2156–2164.

    Article  CAS  PubMed  Google Scholar 

  • Simmons FB (1966) Electrical stimulation of the auditory nerve in man. Arch Otolaryngol 84:2–54.

    CAS  PubMed  Google Scholar 

  • Simmons FB, Glattke TJ (1970) Comparison of electrical and acoustical stimulation of the cat ear. Ann Otol Rhinol Laryngol 81:731–738.

    Google Scholar 

  • Skinner MW, Holden LK, Holden TA, et al. (1991) Performance of postlinguistically deaf adults with the Wearable Speech Processor (WSP III) and Mini Speech Processor (MSP) of the Nucleus multi-electrode cochlear implant. Ear Hear 12: 3–22.

    Article  CAS  PubMed  Google Scholar 

  • Skinner MW, Clark GM, Whitford LA, et al. (1994) Evaluation of a new Spectral Peak coding strategy for the Nucleus 22 channel cochlear implant system. Am J Otol 15:15–27.

    PubMed  Google Scholar 

  • Snyder RL, Rebscher SJ, Cao KL, Leake PA, Kelly K (1990) Chronic introcochlear electrical stimulation in the neonatally deafened cat. 1: Expansion of central representation. Hear Res 50:7–33.

    Article  CAS  PubMed  Google Scholar 

  • Staller S, Parkinson J, Arcaroli J, Arndt P (2002) Pediatric outcomes with the Nucleus 24 contour: North American clinical trial. Ann Otol Rhino Laryngol 111(suppl 189):56–61.

    Google Scholar 

  • Tasaki I (1954) Nerve impulses in individual auditory nerve fibers of the guinea pig. J Neurophysiol 17:7–122.

    Google Scholar 

  • Tong YC, Black RC, Clark GM, et al. (1979) A preliminary report on a multiple-channel cochlear implant operation. J Laryngol Otol 93:679–695.

    CAS  PubMed  Google Scholar 

  • Tong YC, Clark GM, Blamey PJ, Busby PA, Dowell RC (1982) Psychophysical studies for two multiple-channel cochlear implant patients. J Acoust Soc Am 7: 153–160.

    Article  Google Scholar 

  • Tong YC, Blamey PJ, Dowell RC, Clark GM. (1983a) Psychophysical studies evaluating the feasibility of a speech processing strategy for a multiple-channel cochlear implant. J Acoust Soc Am 74:73–80.

    Article  CAS  PubMed  Google Scholar 

  • Tong YC, Dowell RC, Blamey PJ, Clark GM (1983b) Two component hearing sensations produced by two-electrode stimulation in the cochlea of a totally deaf patient. Science 219:993–994.

    CAS  PubMed  Google Scholar 

  • Tong YC, Busby PA, Clark GM (1988) Perceptual studies on cochlear implant patients with early onset of profound hearing impairment prior to normal development of auditory, speech, and language skills. J Acoust Soc Am 84:951–962.

    Article  CAS  PubMed  Google Scholar 

  • Tong YC, Harrison JM, Lim HH, et al. (1989a) Speech Processors for Auditory Prostheses. First Quarterly Progress Report NIH contract No. 1-DC-9-2400. February 1–April 30.

    Google Scholar 

  • Tong YC, Lim HH, Harrison JM, et al. (1989b) Speech Processors for Auditory Prostheses. First Quarterly Progress Report, NIH contract No. 1-DC-9-2400. February 1–April 30.

    Google Scholar 

  • Tong YC, van Hoesel R, Lai WK, Vandali A, Harrison JM, Clark GM (1990) Speech Processors for Auditory Prostheses. Sixth Quarterly Progress Report NIH contract No. 1-DC-9-2400. June 1–August 31.

    Google Scholar 

  • Townshend B, Cotter NE, Van Compernolle D, White RL (1987) Pitch perception by cochlear implant subjects. J Acoust Soc Am 82:106–115.

    Article  CAS  PubMed  Google Scholar 

  • Vandali AE, Whitford LA, Plant KL, Clark GM (2000) Speech perception as a function of electrical stimulation rate using the Nucleus 24 cochlear implant system. Ear and Hearing 21:608–624.

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF (1974) Intensity discrimination of noise in the presence of bandreject noise. J Acoust Soc Am 56:1594–1600.

    Article  CAS  PubMed  Google Scholar 

  • Williams AJ, Clark GM, Stanley GV (1976) Pitch discrimination in the cat through electrical stimulation of the terminal auditory nerve fibres. Physiol Psychol 4: 23–27.

    Google Scholar 

  • Wilson BS, Lawson DT, Zerbi M, Finley CC (1992) Twelfth Quarterly Progress Report-Speech Processors for Auditory Prostheses. NIH contract No. 1-DC-9-2401. Research Triangle Institute, April.

    Google Scholar 

  • Wilson BS, Lawson DT, Zerbi M, Finley CC (1993) Fifth Quarterly Progress Report-Speech Processors for Auditory Protheses. NIH contract No. 1-DC-2-2401. Research Triangle Institute, October.

    Google Scholar 

  • Zeng FG, Shannon RV (1992) Loudness balance between electric and acoustic stimulation. Hear Res 60:231–235.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Clark, G. (2004). Cochlear Implants. In: Speech Processing in the Auditory System. Springer Handbook of Auditory Research, vol 18. Springer, New York, NY. https://doi.org/10.1007/0-387-21575-1_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-21575-1_8

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00590-4

  • Online ISBN: 978-0-387-21575-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics