Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 18))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agnew J, Block M (1997) HINT threshold for a dual microphone BTE. Hear Rev 4:26–30.

    Google Scholar 

  • Allen JB (1994) How do humans process speech? IEEE Trans Speech Audio Proc 2:567–577.

    Article  Google Scholar 

  • Allen JB (1996) Derecuitment by multi-band compression in hearing aids. In: Kollmeier B (ed) Psychoacoustics, Speech, and Hearing Aids. Singapore: World Scientific, pp. 141–152.

    Google Scholar 

  • Allen JB, Hall JL, Jeng PS (1990) Loudness growth in 1/2-octave bands—a procedure for the assessment of loudness. J Acoust Soc Am 88:745–753.

    Article  CAS  PubMed  Google Scholar 

  • American National Standards Institute (1987) Specifications of hearing aid characteristics. ANSI S3.22-1987. New York: American National Standards Institute.

    Google Scholar 

  • American National Standards Institute (1996) Specifications of hearing aid characteristics. ANSI S3.22-1996. New York: American National Standards Institute.

    Google Scholar 

  • Bachler H, Vonlanthen A (1997) Audio zoom-signal processing for improved communication in noise. Phonak Focus 18.

    Google Scholar 

  • Bacon SP, Gleitman RM (1992) Modulation detection in subjects with relatively flat hearing losses. J Speech Hear Res 35:642–653.

    CAS  PubMed  Google Scholar 

  • Bacon SP, Viemeister NF (1985) Temporal modulation transfer functions in normal-hearing and hearing-impaired listeners. Audiology 24:117–134.

    CAS  PubMed  Google Scholar 

  • Baer T, Moore BCJ (1993) Effects of spectral smearing on the intelligibility of sentences in noise. J Acoust Soc Am 94:1229–1241.

    Article  Google Scholar 

  • Bakke M, Neuman AC, Levitt H (1974) Loudness matching for compressed speech signals. J Acoust Soc Am 89:1991.

    Google Scholar 

  • Barfod (1972) Investigations on the optimum corrective frequency response for high-tone hearing loss. Report No. 4, The Acoustic Laboratory, Technical University of Denmark.

    Google Scholar 

  • Bilger RC, Wang MD (1976) Consonant confusions in patients with sensorineural hearing loss. J Speech Hear Res 19:718–748.

    CAS  PubMed  Google Scholar 

  • Billa J, El-Jaroudi A (1998) An analysis of the effect of basilar membrane nonlin-earities on noise suppression. J Acoust Soc Am 103:2691–2705.

    Article  CAS  PubMed  Google Scholar 

  • Boll SF (1979) Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans Acoust Speech Signal Proc 27:113–120.

    Article  Google Scholar 

  • Bonding P (1979) Frequency selectivity and speech discrimination in sensorineural hearing loss. Scand Audiol 8:205–215.

    CAS  PubMed  Google Scholar 

  • Boothroyd A, Mulhearn B, Gong J, Ostroff J (1996) Effects of spectral smearing on phoneme and word recognition. J Acoust Soc Am 100:1807–1818.

    Article  CAS  PubMed  Google Scholar 

  • Bosman AJ, Smoorenberg GF (1987) Differences in listening strategies between normal and hearing-impaired listeners. In: Schouten MEH (ed) The Psychoacoustics of Speech Perception. Dordrecht: Martimus Nijhoff.

    Google Scholar 

  • Breeuwer M, Plomp R (1984) Speechreading supplemented with frequency-selective sound-pressure information. J Acoust Soc Am 76:686–691.

    Article  CAS  PubMed  Google Scholar 

  • Bregman AS (1990) Auditory Scene Analysis. Cambridge: MIT Press.

    Google Scholar 

  • Bunnell HT (1990) On enhancement of spectral contrast in speech for hearing-impaired listeners. J Acoust Soc Am 88:2546–1556.

    Article  CAS  PubMed  Google Scholar 

  • Bustamante DK, Braida LD (1987a) Multiband compression limiting for hearing-impaired listeners. J Rehabil Res Dev 24:149–160.

    CAS  PubMed  Google Scholar 

  • Bustamante DK, Braida LD (1987b) Principal-component compression for the hearing impaired. J Acoust Soc Am 82:1227–1239.

    Article  CAS  PubMed  Google Scholar 

  • Byrne D, Dillon H (1986) The National Acoustic Laboratory’s (NAL) new procedure for selecting the gain and frequency response of a hearing aid. Ear Hear 7:257–265.

    CAS  PubMed  Google Scholar 

  • Capon J, Greenfield RJ, Lacoss RT (1967) Design of seismic arrays for efficient online beamforming. Lincoln Lab Tech Note 1967-26, June 27.

    Google Scholar 

  • Caraway BJ, Carhart R (1967) Influence of compression action on speech intelligibility. J Acoust Soc Am 41:1424–1433.

    Article  CAS  PubMed  Google Scholar 

  • Carlyon RP, Sloan EP (1987) The “overshoot” effect and sensorineural hearing impairment. J Acoust Soc Am 82:1078–1081.

    Article  CAS  PubMed  Google Scholar 

  • Carney A, Nelson DA (1983) An analysis of psychoacoustic tuning curves in normal and pathological ears. J Acoust Soc Am 73:268–278.

    Article  CAS  PubMed  Google Scholar 

  • CHABA Working Group on Communication Aids for the Hearing-Impaired (1991) Speech-perception aids for hearing-impaired people: current status and needed research. J Acoust Soc Am 90:637–685.

    Article  Google Scholar 

  • Chabries DM, Christiansen RW, Brey RH (1982) Application of the LMS adaptive filter to improve speech communication in the presence of noise. IEEE Int Cont Acoust Speech Signal Proc-82 1:148–151.

    Article  Google Scholar 

  • Ching TY, Dillon H, Byrne D (1998) Speech recognition of hearing-impaired listeners: predictions from audibility and the limited role of high-frequency amplification. J Acoust Soc Am 103:1128–1140.

    Article  CAS  PubMed  Google Scholar 

  • Coker CH (1974) Speech as an error-resistant digital code. J Acoust Soc Am 55: 476(A).

    Google Scholar 

  • Cook JA, Bacon SP, Sammeth CA (1997) Effect of low-frequency gain reduction on speech recognition and its relation to upward spread of masking. J Speech Lang Hear Res 40:410–422.

    CAS  PubMed  Google Scholar 

  • Cooper NP, Rhode WS (1995) Nonlinear mechanics at the apex of the guinea-pig cochlea. Hear Res 82:225–243.

    Article  CAS  PubMed  Google Scholar 

  • Crain TR, Yund EW (1995) The effect of multichannel compression on vowel and stop-consonant discrimination in normal-hearing and hearing-impaired subjects. Ear Hear 16:529–543.

    Article  CAS  PubMed  Google Scholar 

  • Danaher EM, Pickett JN (1975) Some masking effects produced by low-frequency vowel formants in persons with sensorineural hearing loss. J Speech Hear Res 18: 261–271.

    Google Scholar 

  • Darwin CJ (1981) Perceptual grouping of speech components differing in fundametal frequency and onset time. Q J Exp Psychol 33A:185–207.

    Google Scholar 

  • Darwin CJ (1984) Perceiving vowels in the presence of another sound: constraints on formant perception. J Acoust Soc Am 76:1636–1647.

    Article  CAS  PubMed  Google Scholar 

  • Davis H, Stevens SS, Nichols RH, et al. (1947) Hearing Aids-An Experimental Study of Design Objectives. Cambridge: Harvard University Press.

    Google Scholar 

  • Davis SB, Mermelstein P (1980) Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences. IEEE Trans Acoust Speech Signal Proc 28:357–366.

    Article  Google Scholar 

  • De Gennaro SV (1982) An analytic study of syllabic compression for severely impaired listeners. S.M. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • De Gennaro S, Braida LD, Durlach NI (1986) Multichannel syllabic compression for severely impaired listeners. J Rehabil Res 23:17–24.

    Google Scholar 

  • Delattre PC, Liberman AM, Cooper FS, Gerstman LJ (1952) An experimental study of the acoustic determinants of vowel colour: observations on one-and two-formant vowel synthesized from spectrographic patterns. Word 8:195–210.

    Google Scholar 

  • Derleth RP, Dau T (2000) On the role of envelope fluctuation processing in spectral masking. J Acoust Soc Am 108:285–296.

    Article  CAS  PubMed  Google Scholar 

  • Derleth RP, Dau T, Kollmeier B (1996) Perception of amplitude modulated narowband noise by sensorineural hearing-impaired listeners. In: Kollmeier B (ed) Psychoacoustics, Speech, and Hearing Aids. Singapore: World Scientific, pp. 39–44.

    Google Scholar 

  • Dillon H (1993) Hearing aid evaluation: predicting speech gain from insertion gain. J Speech Hear Res 36:621–633.

    CAS  PubMed  Google Scholar 

  • Dillon H (1996) Compression? Yes, but for low or high frequencies, for low or high intensities, and with what response times? Ear Hear 17:267–307.

    Google Scholar 

  • Dirks DD, Morgan D, Dubno JR (1982) A procedure for quantifying the effects of noise on speech recognition. J Speech Hear Dis 47:114–123.

    CAS  Google Scholar 

  • Dreschler WA (1980) Reduced speech intelligibility and its psychophysical correlates in hearing-impaired listeners. In: Brink G van den, Bilsen FA (eds) Psychophysical, Physiological and Behavioral Studies in Hearing. Alphenaand den Rijn, The Netherlands: Sijthoff and Noordhoff.

    Google Scholar 

  • Dreschler WA (1986) Phonemic confusions in quiet and noise for the hearing-impaired. Audiology 25:19–28.

    CAS  PubMed  Google Scholar 

  • Dreschler WA (1988a) The effects of specific compression settings on phoneme identification in hearing-impaired subjects. Scand Audiol 17:35–43.

    CAS  PubMed  Google Scholar 

  • Dreschler WA (1988b) Dynamic-range reduction by peak clipping or compression and its effects on phoneme perception in hearing-impaired listeners. Scand Audiol 17:45–51.

    CAS  PubMed  Google Scholar 

  • Dreschler WA (1989) Phoneme perception via hearing aids with and without compression and the role of temporal resolution. Audiology 28:49–60.

    CAS  PubMed  Google Scholar 

  • Dreschler WA, Leeuw AR (1990) Speech reception in reverberation related to temporal resolution. J Speech Hear Res 33:181–187.

    CAS  PubMed  Google Scholar 

  • Dreschler WA, Plomp R (1980) Relation between psychophysical data and speech perception for hearing-impaired subjects. I. J Acoust Soc Am 68:1608–1615.

    Article  CAS  PubMed  Google Scholar 

  • Drullman R (1995) Temporal envelope and fine structure cues for speech intelligibility. J Acoust Soc Am 97:585–592.

    Article  CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Plomp R (1994) Effect of temporal envelope smearing on speech perception. J Acoust Soc Am 95:1053–1064.

    Article  CAS  PubMed  Google Scholar 

  • Drullman R, Festen JM, Houtgast T (1996) Effect of temporal modulation reduction on spectral contrasts in speech. J Acoust Soc Am 99:2358–2364.

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Ahlstrom JB (1995) Masked thresholds and consonant recognition in low-pass maskers for hearing-impaired and normal-hearing listeners. J Acoust Soc Am 97:2430–2441.

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Ahlstrom JB (2001a) Forward-and simultaneous-masked thresholds in bandlimited maskers in subjects with normal hearing and cochlear hearing loss. J Acoust Soc Am 110:1049–1157.

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Ahlstrom JB (2001b) Psychophysical suppression effects for tonal and speech signals. J Acoust Soc Am 110:2108–2119.

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Dirks DD (1989) Auditory filter characteristics and consonant recognition for hearing-impaired listeners. J Acoust Soc Am 85:1666–1675.

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Dirks DD (1990) Associations among frequency and temporal resolution and consonant recognition for hearing-impaired listeners. Acta Otolaryngol (suppl 469):23–29.

    CAS  Google Scholar 

  • Dubno JR, Schaefer AB (1991) Frequency selectivity for hearing-impaired and broadband-noise-masked normal listeners. Q J Exp Psychol 43:543–564.

    CAS  Google Scholar 

  • Dubno JR, Schaefer AB (1992) Comparison of frequency selectivity and consonant recognition among hearing-impaired and masked normal-hearing listeners. J Acoust Soc Am 91:2110–2121.

    Article  CAS  PubMed  Google Scholar 

  • Dubno JR, Schaefer AB (1995) Frequency selectivity and consonant recognition for hearing-impaired and normal-hearing listeners with equivalent masked thresholds. J Acoust Soc Am 97:1165–1174.

    Article  CAS  PubMed  Google Scholar 

  • Duifhuis H (1973) Consequences of peripheral frequency selectivity for nonsimultaneous masking. J Acoust Soc Am 54:1471–1488.

    Article  CAS  PubMed  Google Scholar 

  • Duquesnoy AJ, Plomp R (1980) Effect of reverberation and noise on the intelligibility of sentences in cases of presbyacusis. J Acoust Soc Am 68:537–544.

    Article  CAS  PubMed  Google Scholar 

  • Eddins DA (1993) Amplitude modulation detection of narrow-band noise: effects of absolute bandwidth and frequency region. J Acoust Soc Am 93:470–479.

    Article  Google Scholar 

  • Eddins DA, Hall JW, Grose JH (1992) The detection of temporal gaps as a function of absolute bandwidth and frequency region. J Acoust Soc Am 91: 1069–1077.

    Article  CAS  PubMed  Google Scholar 

  • Edwards BW (2002) Signal processing, hearing aid design, and the psychoacoustic Turing test. IEEE Proc Int Conf Acoust Speech Signal Proc, Vol. 4, pp. 3996–3999.

    Google Scholar 

  • Edwards BW, Struck CJ (1996) Device characterization techniques for digital hearing aids. J Acoust Soc Am 100:2741.

    Article  Google Scholar 

  • Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22:622–630.

    Article  Google Scholar 

  • Ellis D (1997) Computational auditory scene analysis exploiting speech-recognition knowledge. IEEE Workshop on Appl Signal Proc Audiol Acoust 1997, New Platz, New York.

    Google Scholar 

  • Ephraim Y, Malah D (1984) Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator. IEEE Trans Speech Signal Proc 32:1109–1122.

    Article  Google Scholar 

  • Erber NP (1972) Speech-envelope cues as an acoustic aid to lipreading for profoundly deaf children. J Acoust Soc Am 51:1224–1227.

    Article  CAS  PubMed  Google Scholar 

  • Erber NP (1979) Speech perception by profoundly hearing-impaired children. J Speech Hear Disord 44:255–270.

    CAS  PubMed  Google Scholar 

  • Evans EF, Harrison RV (1976) Correlation between outer hair cell damage and deterioration of cochlear nerve tuning properties in the guinea pig. J Physiol 252:43–44.

    Google Scholar 

  • Fabry DA, Van Tasell DJ (1990) Evaluation of an articulation-index based model for predicting the effects of adative frequency response hearing aids. J Speech Hear Res 33:676–689.

    CAS  PubMed  Google Scholar 

  • Fabry DA, Leek MR, Walden BE, Cord M (1993) Do adaptive frequency response (AFR) hearing aids reduce “upward spread” of masking? J Rehabil Res Dev 30:318–325.

    CAS  PubMed  Google Scholar 

  • Farrar CL, Reed CM, Ito Y, et al. (1987) Spectral-shape discrimination. I. Results from normal-hearing listeners for stationary broadband noises. J Acoust Soc Am 81:1085–1092.

    Article  CAS  PubMed  Google Scholar 

  • Faulkner A, Ball V, Rosen S, Moore BCJ, Fourcin A (1992) Speech pattern hearing aids for the profoundly hearing impaired: speech perception and auditory abilities. J Acoust Soc Am 91:2136–2155.

    Article  CAS  PubMed  Google Scholar 

  • Fechner G (1933) Elements of Psychophysics [English translation, Howes DW, Boring EC (eds)]. New York: Holt, Rhinehart and Winston.

    Google Scholar 

  • Festen JM (1996) Temporal resolution and the importance of temporal envelope cues for speech perception. In: Kollmeier B (ed) Psychoacoustics, Speech and Hearing Aids. Singapore: World Scientific.

    Google Scholar 

  • Festen JM, Plomp R (1983) Relations between auditory functions in impaired hearing. J Acoust Soc Am 73:652–662.

    Article  CAS  PubMed  Google Scholar 

  • Festen JM, van Dijkhuizen JN, Plomp R (1990) Considerations on adaptive gain and frequency response in hearing aids. Acta Otolaryngol 469:196–201.

    CAS  Google Scholar 

  • Festen JM, van Dijkhuizen JN, Plomp R (1993) The efficacy of a multichannel hearing aid in which the gain is controlled by the minima in the temporal signal envelope. Scand Audiol 38:101–110.

    CAS  Google Scholar 

  • Fitzgibbons PJ, Gordon-Salant S (1987) Minimum stimulus levels for temporal gap resolution in listeners with sensorineural hearing loss. J Acoust Soc Am 81: 1542–1545.

    Article  CAS  PubMed  Google Scholar 

  • Fitzgibbons PJ, Wightman FL (1982) Gap detection in normal and hearing-impaired listeners. J Acoust Soc Am 72:761–765.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher H (1953) Speech and Hearing in Communication. New York: Van Nostrand.

    Google Scholar 

  • Florentine M, Buus S (1984) Temporal gap detection in sensorineural and simulated hearing impairments. J Speech Hear Res 27:449–455.

    CAS  PubMed  Google Scholar 

  • Florentine M, Buus S, Scharf B, Zwicker E (1980) Freqquency selectivity in normally-hearing and hearing-impaired observers. J Speech Hear Res 23:646–669.

    CAS  PubMed  Google Scholar 

  • Fowler EP (1936) A method for the early detection of otosclerosis. Arch Otolaryngol 24:731–741.

    Google Scholar 

  • Franck BA, van Kreveld-Bos CS, Dreschler WA, Verschuure H (1999) Evaluation of spectral enhancement in hearing aids, combined with phonemic compression. J Acoust Soc Am 106:1452–1464.

    Article  CAS  PubMed  Google Scholar 

  • French NR, Steinberg JC (1947) Factors governing the intelligibility of speech sounds. J Acoust Soc Am 19:90–119.

    Article  Google Scholar 

  • Gagné JP (1983) Excess masking among listeners with high-frequency sensorineural hearing loss. Doctoral dissertation, Washington University (Central Institute for the Deaf), St. Louis.

    Google Scholar 

  • Gagné JP (1988) Excess masking among listeners with a sensorineural hearing loss. J Acoust Soc Am 83:2311–2321.

    Article  PubMed  Google Scholar 

  • Glasberg BR, Moore BCJ (1986) Auditory filter shapes with unilateral and bilateral cochlear impairments. J Acoust Soc Am 79:1020–1033.

    Article  CAS  PubMed  Google Scholar 

  • Glasberg BR, Moore BCJ (1992) Effects of envelope fluctuations on gap detection. Hear Res 64:81–92.

    Article  CAS  PubMed  Google Scholar 

  • Glasberg BR, Moore BCJ, Bacon SP (1987) Gap detection and masking in hearing-impaired and normal-hearing subjects. J Acoust Soc Am 81:1546–1556.

    Article  CAS  PubMed  Google Scholar 

  • Gordon-Salant S (1984) Effects of acoustic modification on consonant recognition in elderly hearing-impaired subjects. J Acoust Soc Am 81:1199–1202.

    Article  Google Scholar 

  • Gordon-Salant S, Sherlock LP (1992) Performance with an adaptive frequency response hearing aid in a sample of elderly hearing-impaired listeners. Ear Hear 13:255–262.

    Article  CAS  PubMed  Google Scholar 

  • Gorga MP, Abbas PJ (1981a) AP measurements of short term adaptation in normal and in acoustically traumatized ears. J Acoust Soc Am 70:1310–1321.

    Article  CAS  PubMed  Google Scholar 

  • Gorga MP, Abbas PJ (1981b) Forwards-masking AP tuning curves in normal and in acoustically traumatized ears. J Acoust Soc Am 70:1322–1330.

    Article  CAS  PubMed  Google Scholar 

  • Goshorn EL, Studebaker GA (1994) Effects of intensity on speech recognition in high-and low-frequency bands. Ear Hear 15:454–460.

    Article  CAS  PubMed  Google Scholar 

  • Graupe D, Grosspietsch JK, Taylor RT (1986) A self-adaptive noise filtering system, part 1: overview and description. Hear Instrum 37:29–34.

    Google Scholar 

  • Graupe D, Grosspietsch JK, Basseas SP (1987) A single-microphone-based self-adaptive filter of noise from speech and its performance evaluation. J Rehabil Res Dev 24:119–126.

    CAS  PubMed  Google Scholar 

  • Green DM (1969) Masking with continuous and pulsed sinusoids. J Acoust Soc Am 49:467–477.

    Google Scholar 

  • Greenberg J, Zurek P (1992) Evaluation of an adaptive beamforming method for hearing aids. J Acoust Soc Am 91:1662–1676.

    Article  CAS  PubMed  Google Scholar 

  • Greenberg S (1997) On the origins of speech intelligibility in the real world. Proc ESCA Workshop on Robust Speech Recognition for Unknown Communication Channels, pp. 23–32.

    Google Scholar 

  • Greenberg S, Hollenback J, Ellis D (1996) Insights into spoken language gleaned from phonetic transcription of the switchboard corpus. Proc 4th Int Conf Spoken Lang Proc, pp. S32–35.

    Google Scholar 

  • Gregan MJ, Bacon SP, Lee J (1998) Masking by sinusoidally amplitude-modulated tonal maskers. J Acoust Soc Am 103:1012–1021.

    Article  CAS  PubMed  Google Scholar 

  • Gresham LC, Collins LM (1997) Analysis of the performance of a model-based optimal auditory processor on a simultaneous masking task. J Acoust Soc Am 101:3149.

    Article  Google Scholar 

  • Grose JH, Eddins D, Hall JW (1989) Gap detection as a function of stimulus band-width with fixed high-frequency cutoff in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 86:1747–1755.

    Article  CAS  PubMed  Google Scholar 

  • Gutnick HN (1982) Consonant-feature transmission as a function of presentation level in hearing-impaired listeners. J Acoust Soc Am 72:1124–1130.

    Article  CAS  PubMed  Google Scholar 

  • Hack Z, Erber N (1982) Auditory, visual, and audiory-visual perception of vowels by hearing-impaired children. J Speech Hear Res 25:100–107.

    CAS  PubMed  Google Scholar 

  • Hall JW, Fernandes MA (1983) Temporal integration, frequency resolution, and off-frequency listening in normal-hearing and cochlear-impaired listeners. J Acoust Soc Am 74:1172–1177.

    Article  CAS  PubMed  Google Scholar 

  • Hansen J, Clements M (1987) Iterative speech enhancement with spectral constraints. IEEE Int Conf Acoust Speech Signal Proc, pp. 189–192.

    Google Scholar 

  • Hawkins DB, Yacullo WS (1984) Signal-to-noise ratio advantage of binaural hearing aids and directional microphones under different levels of reverberation. J Speech Hear Disord 49:278–286.

    CAS  PubMed  Google Scholar 

  • Heinz MG, Colburn HS, Carney LH (2001) Rate and timing cues associated with the cochlear amplifier: level discrimination based on monaural cross-frequency coincidence detection. J Acoust Soc Am 110:65–2084.

    Article  Google Scholar 

  • Hermansky H (1990) Perceptual linear predictive (PLP) analysis of speech. J Acoust Soc Am 87:1738–1752.

    Article  CAS  PubMed  Google Scholar 

  • Hermansky H, Morgan N (1993) RASTA processing of speech. IEEE Trans Speech Audiol Proc 2:578–589.

    Article  Google Scholar 

  • Hermansky H, Wan EA, Avendano C (1995) Speech enhancement based on temporal processing. Proc Int Cont Acoust Speech Signal Proc-95:405.

    Google Scholar 

  • Hermansky H, Greenberg S, Avendano C (1997) Enhancement of speech intelligibility via compensatory filtering of the modulation spectrum. 2nd Hear Aid Res Dev Conf, Bethesda, MD.

    Google Scholar 

  • Hicks ML, Bacon SP (1999a) Psychophysical measures of auditory nonlinearities as a function of frequency in individuals with normal hearing. J Acoust Soc Am 105: 326–338.

    Article  CAS  PubMed  Google Scholar 

  • Hicks ML, Bacon SP (1999b) Effects of aspirin on psychophysical measures of frequency selectivity, two-tone suppression, and growth of masking. J Acoust Soc Am 106:1436–1451.

    Article  CAS  PubMed  Google Scholar 

  • Hickson LMH (1994) Compression amplification in hearing aids. Am J Audiol 11: 51–65.

    Google Scholar 

  • Hickson L, Byrne D (1997) Consonant perception in quiet: effect of increasing the consonant-vowel ratio with compression amplification. J Am Acad Audiol 8:322–332.

    CAS  PubMed  Google Scholar 

  • Hoffman MW, Trine TD, Buckley KN, Van Tasell DJ (1994) Robust adaptive microhpone array processing for hearing aids: realistic speech enhancement. J Acoust Soc Am 96:759–770.

    Article  CAS  PubMed  Google Scholar 

  • Hogan CA, Turner CW (1998) High-frequency audibility: benefits for hearing-impaired listeners. J Acoust Soc Am 104:432–441.

    Article  CAS  PubMed  Google Scholar 

  • Holte L, Margolis RH (1987) The relative loudness of third-octave bands of speech. J Acoust Soc Am 81:186–190.

    Article  Google Scholar 

  • Horst JW (1987) Frequency discrimination of complex signals, frequency selectivity, and speech perception in hearing-impaired subjects. J Acoust Soc Am 82:874–885.

    Article  CAS  PubMed  Google Scholar 

  • Hou Z, Pavlovic CV (1994) Effects of temporal smearing on temporal resolution, frequency selectivity, and speech intelligibility. J Acoust Soc Am 96:1325–1340.

    Article  CAS  PubMed  Google Scholar 

  • Houtgast T, Steeneken HJM (1973) The modulation transfer function in room acoustics as predictor of speech intelligibility. Acustica 28:66–73.

    Google Scholar 

  • Houtgast T, Steeneken HJM (1985) A review of the MTF concept in room acoustics and its use for estimating speech intelligibility in auditoria. J Acoust Soc Am 77: 1069–1077.

    Article  Google Scholar 

  • Humes LE (1982) Spectral and temporal resolution by the hearing impaired. In: Studebaker GA, Bess FH (eds) The Vanderbilt Hearing Aid Report: State of the Art—Research Needs. Upper Darby, PA: Monographs in Contemporary Audiology.

    Google Scholar 

  • Humes LE, Dirks DD, Bell TS, Ahlstrom C, Kincaid GE (1986) Application of the articulation index and the speech transmission index to the recognition of speech by normal-hearing and hearing-impaired listeners. J Speech Hear Res 29:447–462.

    CAS  PubMed  Google Scholar 

  • Humes LE, Boney S, Loven F (1987) Further validation of the speech transmission index (STI). J Speech Hear Res 30:403–410.

    CAS  PubMed  Google Scholar 

  • Humes LE, Christensen LA, Bess FH, Hedley-Williams A (1997) A comparison of the benefit provided by well-fit linear hearing aids and instruments with automatic reductions of low-frequency gain. J Speech Lang Hear Res 40:666–685.

    CAS  PubMed  Google Scholar 

  • Irwin RJ, McAuley SF (1987) Relations among temporal acuity, hearing loss, and the perception of speech distorted by noise and reverberation. J Acoust Soc Am 81:1557–1565.

    Article  CAS  PubMed  Google Scholar 

  • Jayant NS, Johnston JD, Safranek RJ (1993) Signal compression based on human perception. Proc IEEE 81:1385–1422.

    Article  Google Scholar 

  • Jerlvall LB, Lindblad AC (1978) The influence of attack time and release time on speech intelligibility. Scand Audiol 6:341–353.

    Google Scholar 

  • Kates JM (1991) A simplified representation of speech for the hearing impaired. J Acoust Soc Am 89:1961.

    Article  Google Scholar 

  • Kates JM (1993) Optimal estimation of hearing-aid compression parameters. J Acoust Soc Am 94:1–12.

    Article  CAS  PubMed  Google Scholar 

  • Kates JM (1995) Classification of background noises for hearing aid applications. J Acoust Soc Am 97:461–470.

    Article  CAS  PubMed  Google Scholar 

  • Kiang NYS, Liberman MC, Levine RA (1976) Auditory-nerve activity in cats exposed to ototoxic drugs and high-intensity sounds. Ann Atol Rhinol Laryngol 85:752–768.

    CAS  Google Scholar 

  • Killion MC (1996) Talking hair cells: what they have to say about hearing aids. In: Berlin CI (ed) Hair Cells and Hearing Aids. San Diego: Singular.

    Google Scholar 

  • Killion MC (1997) Hearing aids: past, present, future: moving toward normal conversations in noise. Br J Audiol 31:141–148.

    CAS  PubMed  Google Scholar 

  • Killion MC, Fikret-Pasa S (1993) The three types of sensorineural hearing loss: loudness and intelligibility considerations. Hear J 46:31–36.

    Google Scholar 

  • Killion MC, Tillman TW (1982) Evaluation of high-fidelity hearing aids. J Speech Hear Res 25:15–25.

    CAS  PubMed  Google Scholar 

  • King AB, Martin MC (1984) Is AGC beneficial in hearing aids? Br J Audiol 18:31–38.

    CAS  PubMed  Google Scholar 

  • Kinsler LE, Frey AR (1962) Fundamentals of Acoustics. New York: John Wiley.

    Google Scholar 

  • Klatt DH (1980) Software for a cascade/parallel formant synthesizer. J Acoust Soc Am 67:971–995.

    Article  Google Scholar 

  • Klatt DH (1982) Prediction of perceived phonetic distance from critical-band spectra: a first step. Proc IEEE Int Conf Speech Acoust Signal Proc, pp. 1278–1281.

    Google Scholar 

  • Klumpp RG, Webster JC (1963) Physical measurements of equally speech-interfering navy noises. J Acoust Soc Am 35:1328–1338.

    Article  Google Scholar 

  • Kochkin S (1993) MarkeTrack III: why 20 million in US don’t use hearing aids for their hearing loss. Hear J 46:20–27.

    Google Scholar 

  • Koehler J, Morgan N, Hermansky H, Hirsch HG, Tong G (1994) Integrating RASTA-PLP into speech recognition. IEEE Proc Int Conf Acoust Speech Signal Proc, pp. 421–424.

    Google Scholar 

  • Kompis M, Dillier N (2001a) Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. I. Prediction of the signal-to-noise-ratio improvement. J Acoust Soc Am 109:1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Kompis M, Dillier N (2001b) Performance of an adaptive beamforming noise reduction scheme for hearing aid applications. II. Experimental verification of the predictions. J Acoust Soc Am 109:1134–1143.

    Article  CAS  PubMed  Google Scholar 

  • Kryter KD (1970) The Effects of Noise on Man. New York: Academic Press.

    Google Scholar 

  • Laurence RF, Moore BCJ, Glasberg BR (1983) A comparison of behind-the-ear high-fidelity linear hearing aids and two-channel compression hearing aids in the laboratory and in everyday life. Br J Audiol 17:31–48.

    CAS  PubMed  Google Scholar 

  • Lee J, Bacon SP (1998) Psychophysical suppression as a function of signal frequency: noise and tonal maskers. J Acoust Soc Am 104:1013–1022.

    Article  CAS  PubMed  Google Scholar 

  • Leek MR, Summers V (1993) Auditory filter shapes of normal-hearing and hearing-impaired listeners in continuous broadband noise. J Acoust Soc Am 94:3127–3137.

    Article  CAS  PubMed  Google Scholar 

  • Leek MR, Summers V (1996) Reduced frequency selectivity and the preservation of spectral contrast in noise. J Acoust Soc Am 100:1796–1806.

    Article  CAS  PubMed  Google Scholar 

  • Leek MR, Dorfman MF, Summerfield Q (1987) Minimum spectral contrast for vowel identification by normal-hearing and hearing-impaired listeners. J Acoust Soc Am 81:148–154.

    Article  CAS  PubMed  Google Scholar 

  • Levitt H (1991) Future directions in signal processing hearing aids. Ear Hear 12: 125–130.

    Article  Google Scholar 

  • Levitt H, Neuman AC (1991) Evaluation of orthogonal polynomial compression. J Acoust Soc Am 90:241–252.

    Article  CAS  PubMed  Google Scholar 

  • Levitt H, Neuman A, Mills R, Schwander T (1986) A digital master hearing aid. J Rehabil Res Dev 23:79–87.

    CAS  PubMed  Google Scholar 

  • Levitt H, Bakke M, Kates J, Neuman A, Schwander T, Weiss M (1993) Signal processing for hearing impairment. Scand Audiol 38:7–19.

    CAS  Google Scholar 

  • Liberman MC, Kiang NY (1978) Acoustic trauma in cats: cochlear pathology and auditory-nerve pathology. Acta Otolaryngol Suppl (Stockh) 358:1–63.

    CAS  Google Scholar 

  • Lim JS (1983) Speech Enhancement. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Lim JS, Oppenheim AV (1979) Enhancement and bandwidth compression of noisy speech. Proc IEEE Int Conf Acoust Speech Signal Proc, pp. 1586–1604.

    Google Scholar 

  • Lim JS, Oppenheim AV, Braida LD (1978) Evaluation of an adaptive comb filtering method for enhancing speech degraded by white noise addition. IEEE Trans Speech Signal Proc 26:354–358.

    Article  Google Scholar 

  • Lindemann E (1997) The Continuous Frequency Dynamic Range Compressor. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York.

    Google Scholar 

  • Lippmann RP, Braida LD, Durlach NI (1981) Study of multichannel amplitude compression and linear amplification for persons with sensorineural hearing loss. J Acoust Soc Am 69:524–534.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Wheeler BC, O’Brien WD Jr, Bilger RC, Lansing CR, Feng AS (2000) Localization of multiple sound sources with two microphones. J Acoust Soc Am 108:1888–1905.

    Article  CAS  PubMed  Google Scholar 

  • Lunner T, Arlinger S, Hellgren J (1993) 8-channel digital filter bank for hearing aid use: preliminary results in monaural, diotic and dichotic modes. Scand Audiol 38:75–81.

    CAS  Google Scholar 

  • Lunner T, Hellgren J, Arlinger S, Elberling C (1997) A digital filterbank hearing aid: predicting user preference and performance for two signal processing algorithms. Ear Hear 18:12–25.

    CAS  PubMed  Google Scholar 

  • Lutman ME, Clark J (1986) Speech identification under simulated hearing-aid frequency response characteristics in relation to sensitivity, frequency resolution and temporal resolution. J Acoust Soc Am 80:1030–1040.

    Article  CAS  PubMed  Google Scholar 

  • Lybarger SF (1947) Development of a new hearing aid with magnetic microphone. Elect Manufact 1–13.

    Google Scholar 

  • Makhoul J, McAulay R (1989) Removal of Noise from Noise-Degraded Speech Signals. Washington, DC: National Academy Press.

    Google Scholar 

  • Miller GA (1951) Language and Communication. New York: McGraw-Hill.

    Google Scholar 

  • Miller GA, Nicely PE (1955) An analysis of perceptual confusions among some English consonants. J Acoust Soc Am 27:338–352.

    Article  Google Scholar 

  • Miller RL, Schilling JR, Franck KR, Young ED (1997) Effects of acoustic trauma on the representation of the vowel /e/ in cat auditory nerve fibers. J Acoust Soc Am 101:3602–3616.

    Article  CAS  PubMed  Google Scholar 

  • Miller RL, Calhoun BM, Young ED (1999) Contrast enhancement improves the representation of /e/-like vowels in the hearing-impaired auditory nerve. J Acoust Soc Am 106:2693–2708.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ (1991) Characterization and simulation of impaired hearing: implications for hearing aid design. Ear Hear 12:154–161.

    Article  Google Scholar 

  • Moore BCJ (1996) Perceptual consequences of chochlear hearing loss and their implications for the design of hearing aids. Ear Hear 17:133–161.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1988) A comparison of four methods of implementing automatic gain control (AGC) in hearing aids. Br J Audiol 22:93–104.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR (1997) A model of loudness perception applied to cochlear hearing loss. Audiol Neurosci 3:289–311.

    Google Scholar 

  • Moore BC, Glasberg BR (2001) Temporal modulation transfer functions obtained using sinusoidal carriers with normally hearing and hearing-impaired listeners. J Acoust Soc Am 110:1067–1073.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Oxenham AJ (1998) Psychoacoustic consequences of compression in the peripheral auditory system. Psychol Rev 105:108–124.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Laurence RF, Wright D (1985) Improvements in speech intelligibility in quiet and in noise produced by two-channel compression hearing aids. Br J Audiol 19:175–187.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Stone MA (1991) Optimization of a slow-acting automatic gain control system for use in hearing aids. Br J Audiol 25:171–182.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Lynch C, Stone MA (1992) Effects of the fitting parameters of a two-channel compression system on the intelligibility of speech in quiet and in noise. Br J Audiol 26:369–379.

    CAS  PubMed  Google Scholar 

  • Moore BCJ, Wojtczak M, Vickers DA (1996) Effects of loudness recruitment on the perception of amplitude modulation. J Acoust Soc Am 100:481–489.

    Article  Google Scholar 

  • Moore BCJ, Glasberg BR, Baer T (1997) A model for the prediction of thresholds, loudness, and partial loudness. J Audiol Eng Soc 45:224–240.

    Google Scholar 

  • Moore BCJ, Glasberg BR, Vickers DA (1999a) Further evaluation of a model of loudness perception applied to cochlear hearing loss. J Acoust Soc Am 106:898–907.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Peters RW, Stone MA (1999b) Benefits of linear amplification and multichannel compression for speech comprehension in backgrounds with spectral and temporal dips. J Acoust Soc Am 105:400–411.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Vickers DA, Plack CJ, Oxenham AJ (1999c) Inter-relationship between different psychoacoustic measures assumed to be related to the cochlear active mechanism. J Acoust Soc Am 106:2761–2778.

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Huss M, Vickers DA, Glasberg BR, Alcantara JI (2000) A test for the diagnosis of dead regions in the cochlea. Br J Audiol 34:5–244.

    Google Scholar 

  • Moore BCJ, Glasberg BR, Alcantara JI, Launer S, Kuehnel V (2001) Effects of slow-and fast-acting compression on the detection of gaps in narrow bands of noise. Br J Audiol 35:365–374.

    CAS  PubMed  Google Scholar 

  • Morrow CT (1971) Point-to-point correlation of sound pressures in reverberant chambers. J Sound Vib 16:29–42.

    Article  Google Scholar 

  • Nabelek AK, Robinson PK (1982) Monaural and binaural speech perception in reverberation for listeners of various ages. J Acoust Soc Am 71:1242–1248.

    Article  CAS  PubMed  Google Scholar 

  • Nabelek IV (1983) Performance of hearing-impaired listeners under various types of amplitude compression. J Acoust Soc Am 74:776–791.

    Article  CAS  PubMed  Google Scholar 

  • Nabelek IV (1984) Discriminability of the quality of amplitude-compressed speech. J Speech Hear Res 27:571–577.

    CAS  PubMed  Google Scholar 

  • Nelson DA, Schroder AC, Wojtczak M (2001) A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 110:2045–2064.

    Article  CAS  PubMed  Google Scholar 

  • Neuman AC, Schwander TJ (1987) The effect of filtering on the intelligibility and quality of speech in noise. J Rehabil Res Dev 24:127–134.

    CAS  PubMed  Google Scholar 

  • Neuman AC, Bakke MH, Mackersie C, Hellman S, Levitt H (1995) Effect of release time in compression hearing aids: paired-comparison judgements of quality. J Acoust Soc Am 98:3182–3187.

    Article  CAS  PubMed  Google Scholar 

  • Noordhoek IM, Drullman R (1997) Effect of reducing temporal intensity modulations on sentence intelligibility. J Acoust Soc Am 101:498–502.

    Article  CAS  PubMed  Google Scholar 

  • Olsen WO, Van Tasell DJ, Speaks CE (1997) Phoneme and word recognition for words in isolation and in sentences. Ear Hear 18:175–188.

    CAS  PubMed  Google Scholar 

  • Ono H, Kanzaki J, Mizoi K (1983) Clinical results of hearing aid with noise-level-controlled selective amplification. Audiology 22:494–515.

    CAS  PubMed  Google Scholar 

  • Owens E, Talbott C, Schubert E (1968) Vowel discrimination of hearing-impaired listeners. J Speech Hear Res 11:648–655.

    CAS  PubMed  Google Scholar 

  • Owens E, Benedict M, Schubert E (1972) Consonant phonemic errors associated with pure-tone configurations and certain kinds of hearing impairment. J Speech Hear Res 15:308–322.

    CAS  PubMed  Google Scholar 

  • Oxenham AJ (2001) Forward masking: adaptation or integration? J Acoust Soc Am 109:732–741.

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Plack CJ (1997) A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am 101:3666–3675.

    Article  CAS  PubMed  Google Scholar 

  • Pascoe DP (1975) Frequency responses of hearing aids and their effects on the speech perception of hearing-impaired subjects. Ann Otol Rhinol Laryngol 84(suppl 23).

    Google Scholar 

  • Patterson RD, Allerhand MH, Giguere C (1995) Time-domain modeling of peripheral auditory processing: a modular architecture and a software platform. J Acoust Soc Am 98:1890–1894.

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic CV (1984) Use of articulation index for assessing residual auditory function in listeners with sensorineural hearing impairment. J Acoust Soc Am 75:1253–1258.

    Article  CAS  PubMed  Google Scholar 

  • Pavlovic CV, Studebaker GA, Sherbecoe RL (1986) An articulation index based procedure for predicting the speech recognition performance of hearing-impaired individuals. J Acoust Soc Am 80:50–57.

    Article  CAS  PubMed  Google Scholar 

  • Pearsons KS, Bennett RL, Fidell S (1977) Speech levels in various noise environments (EPA-600/1-77-025). Office of Health and Ecological Effects, Office of Research and Development, U.S. Environmental Protection Agency.

    Google Scholar 

  • Pekkarinen E, Salmivalli A, Suonpaa J (1990) Effect of noise on word discrimination by subjects with impaired hearing, compared with those with normal hearing. Scand Audiol 19:31–36.

    CAS  PubMed  Google Scholar 

  • Peterson GE, Lehiste I (1960) Duration of syllable nuclei in English. J Acoust Soc Am 30:693–703.

    Article  Google Scholar 

  • Peterson PM (1989) Adaptive array processing for multiple microphone hearing aids. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge.

    Google Scholar 

  • Pick GF, Evans EF, Wilson JP (1977) Frequency resolution in patients wit hearing loss of cochlear origin. In: Evans EF, Wilson JP (eds) Psychoacoustics and Physiology of Hearing. London: Academic Press.

    Google Scholar 

  • Pickett JM (1980) The Sounds of Speech Communication. Baltimore: University Park Press.

    Google Scholar 

  • Pickett JM, Martin ES, Johnson D, et al. (1970) On patterns of speech feature reception by deaf listeners. In: Fant G (ed) Speech Communication Ability and Profound Deafness. Washington DC: Alexander Graham Bell Association for the Deaf.

    Google Scholar 

  • Plack CJ, Moore BCJ (1991) Decrement detection in normal and impaired ears. J Acoust Soc Am 90:3069–3076.

    Article  CAS  PubMed  Google Scholar 

  • Plack CJ, Oxenham AJ (1998) Basilar-membrane nonlinearity and the growth of forward masking. J Acoust Soc Am 103:1598–1608.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1964) The rate of decay of auditory sensation. J Acoust Soc Am 36: 277–282.

    Article  Google Scholar 

  • Plomp R (1978) Auditory handicap of hearing impairment and the limited benefit of hearing aids. J Acoust Soc Am 63:533–549.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1988) The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation-transfer function. J Acoust Soc Am 83:2322–2327.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R (1994) Noise, amplification, and compression: considerations of three main issues in hearing aid design. Ear Hear 15:2–12.

    Article  CAS  PubMed  Google Scholar 

  • Plomp R, Mimpen AM (1979) Speech-reception threshold for sentences as a function of age and noise level. J Acoust Soc Am 66:1333–1342.

    Article  CAS  PubMed  Google Scholar 

  • Pollack I (1948) Effects of high pass and low pass filtering on the intelligibility of speech in noise. J Acoust Soc Am 20:259–266.

    Article  Google Scholar 

  • Preminger JE, Van Tasell DJ (1995) Quantifying the relation between speech quality and speech intelligibility. J Speech Hear Res 38:714–725.

    CAS  PubMed  Google Scholar 

  • Preves D (1997) Directional microphone use in ITE hearing instruments. Hear Rev 4(7):21–27.

    Google Scholar 

  • Price PJ, Simon HJ (1984) Perception of temporal differences in speech by “normal-hearing” adults: effects of age and intensity. J Acoust Soc Am 76:405–410.

    Article  CAS  PubMed  Google Scholar 

  • Punch JL, Beck EL (1980) Low-frequency response of hearing and judgements of aided speech quality. J Speech Hear Dis 45:325–335.

    CAS  Google Scholar 

  • Punch JL, Beck LB (1986) Relative effects of low-frequency amplification on syllable recognition and speech quality. Ear Hear 7:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Quatieri TF, McAuley RJ (1990) Noise reduction using a soft-decision sine-wave vector quantizer. Proc IEEE Int Conf Acoust Speech Signal Proc, pp. 821–823.

    Google Scholar 

  • Rankovic CM (1997) Understanding speech understanding. 2nd Hear Aid Res Dev Conf, Bethesda, MD.

    Google Scholar 

  • Robinson CE, Huntington DA (1973) The intelligibility of speech processed by delayed long-term averaged compression amplification. J Acoust Soc Am 54:314.

    Article  Google Scholar 

  • Rosen S, Walliker J, Brimacombe JA, Edgerton BJ (1989) Prosodic and segmental aspects of speech perception with the House/3M single-channel implant. J Speech Hear Res 32:93–111.

    CAS  PubMed  Google Scholar 

  • Rosenthal RD, Lang JK, Levitt H (1975) Speech reception with low-frequency speech energy. J Acoust Soc Am 57:949–955.

    Article  CAS  PubMed  Google Scholar 

  • Ruggero MA, Rich NC (1991) Furosemide alters organ of Corti mechanics: evidence for feedback of outer hair cells upon basilar membrane. J Neurosci 11:1057–1067.

    CAS  PubMed  Google Scholar 

  • Sasaki N, Kawase T, Hidaka H, et al. (2000) Apparent change of masking functions with compression-type digital hearing aid. Scand Audiol 29:159–169.

    Article  CAS  PubMed  Google Scholar 

  • Saunders GH, Kates JM (1997) Speech intelligibility enhancement using hearing-aid array processing. J Acoust Soc Am 102:1827–1837.

    Article  CAS  PubMed  Google Scholar 

  • Scharf B (1978) Comparison of normal and impaired hearing II. Frequency analysis, speech perception. Scand Audiol Suppl 6:81–106.

    PubMed  Google Scholar 

  • Schmidt JC, Rutledge JC (1995) 1st Hear Aid Res Dev Conf, Bethesda, MD.

    Google Scholar 

  • Schmidt JC, Rutledge JC (1996) Multichannel dynamic range compression for music signals. Proc IEEE Int Conf Acoust Speech Signal Proc 2:1013–1016.

    Google Scholar 

  • Schroder AC, Viemeister NF, Nelson DA (1994) Intensity discrimination in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 96:2683–2693.

    Article  CAS  PubMed  Google Scholar 

  • Schwander T, Levitt H (1987) Effect of two-microphone noise reduction on speech recognition by normal-hearing listeners. J Rehabil Res Dev 24:87–92.

    CAS  PubMed  Google Scholar 

  • Sellick PM, Patuzzi R, Johnstone BM (1982) Measurement of basilar membrane motion in the guinea pig using the Mössbauer technique. J Acoust Soc Am 72: 131–141.

    Article  CAS  PubMed  Google Scholar 

  • Shailer MJ, Moore BCJ (1983) Gap detection as a function of frequency, bandwidth, and level. J Acoust Soc Am 74:467–473.

    Article  CAS  PubMed  Google Scholar 

  • Shannon RV, Zeng FG, Kamath V, Wygonski J, Ekelid M (1995) Speech recognition with primarily temporal cues. Science 270:303–304.

    CAS  PubMed  Google Scholar 

  • Shields PW, Campbell DR (2001) Improvements in intelligibility of noisy reverberant speech using a binaural subband adaptive noise-cancellation processing scheme. J Acoust Soc Am 110:3232–3242.

    Article  CAS  PubMed  Google Scholar 

  • Sigelman J, Preves DA (1987) Field trials of a new adaptive signal processor hearing aid circuit. Hear J (April):24–29.

    Google Scholar 

  • Simon HJ, Aleksandrovsky I (1997) Perceived lateral position of narrow-band noise in hearing-impaired and normal-hearing listeners under conditions of equal sensation level and sound pressure level. J Acoust Soc Am 102:1821–1826.

    Article  CAS  PubMed  Google Scholar 

  • Skinner MW (1976) Speech intelligibility in noise-induced hearing loss: effects of high frequency compensation. Doctoral dissertation, Washington University, St. Louis.

    Google Scholar 

  • Skinner MW (1980) Speech intelligibility in noise-induced hearing loss: effects of high-frequency compensation. J Acoust Soc Am 67:306–317.

    Article  CAS  PubMed  Google Scholar 

  • Slaney M, Lyon RF (1993) On the importance of time—a temporal representation of sound. In: Cooke M, Beet S, Crawford M (eds) Visual Representations of Speech Signals. Chichester: John Wiley.

    Google Scholar 

  • Smoorenburg GF (1990) On the limited transfer of information with noise-induced hearing loss. Acta Otolaryngol 469:38–46.

    CAS  Google Scholar 

  • Snell KB, Ison JR, Frisina DR (1994) The effects of signal frequency and absolute bandwidth on gap detection in noise. J Acoust Soc Am 96:1458–1464.

    Article  CAS  PubMed  Google Scholar 

  • Soede W, Berhout A, Bilsen F (1993) Assessment of a directional microphone array for hearing-impaired listeners. J Acoust Soc Am 94:799–808.

    Article  CAS  PubMed  Google Scholar 

  • Souza PE, Bishop RD (1999) Improving speech audibility with wide dynamic range compression in listeners with severe sensorineural loss. Ear Hear 20:461–470.

    Article  CAS  PubMed  Google Scholar 

  • Souza PE, Turner CW (1999) Quantifying the contribution of audibility to recognition of compression-amplified speech. Ear Hear 20:12–20.

    CAS  PubMed  Google Scholar 

  • Staab WJ, Nunley J (1987) New development: multiple signal processor (MSP). Hear J August:24–26.

    Google Scholar 

  • Steeneken HJM, Houtgast T (1980) A physical method for measuring speech transmission quality. J Acoust Soc Am 67:318–326.

    Article  CAS  PubMed  Google Scholar 

  • Steeneken HJM, Houtgast T (1983) The temporal envelope spectrum of speech and its significance in room acoustics. Proc Int Cong Acoust 7:85–88.

    Google Scholar 

  • Stein LK, Dempesy-Hart D (1984) Listener-assessed intelligibility of a hearing aid self-adaptive noise filter. Ear Hear 5:199–204.

    Article  CAS  PubMed  Google Scholar 

  • Steinberg JC, Gardner MB (1937) The dependence of hearing impairment on sound intensity. J Acoust Soc Am 9:11–23.

    Article  Google Scholar 

  • Stelmachowicz PG, Jesteadt W, Gorga MP, Mott J (1985) Speech perception ability and psychophysical tuning curves in hearing-impaired listeners. J Acoust Soc Am 77:620–627.

    Article  CAS  PubMed  Google Scholar 

  • Stevens KN, Blumstein SE (1978) Invariant cues for place of articulation in stop consonsants. J Acoust Soc Am 64:1358–1368.

    Article  CAS  PubMed  Google Scholar 

  • Stillman JA, Zwislocki JJ, Zhang M, Cefaratti LK (1993) Intensity just-noticeable differences at equal-loudness levels in normal and pathological ears. J Acoust Soc Am 93:425–434.

    Article  CAS  PubMed  Google Scholar 

  • Stone MA, Moore BCJ (1992) Spectral feature enhancement for people with sensorineural hearing impairment: effects on speech intelligibility and quality. J Rehabil Res Dev 29:39–56.

    CAS  PubMed  Google Scholar 

  • Stone MA, Moore BCJ, Alcantara JI, Glasberg BR (1999) Comparison of different forms of compression using wearable digital hearing aids. J Acoust Soc Am 106:3603–3619.

    Article  CAS  PubMed  Google Scholar 

  • Strickland EA, Viemeister NF (1997) The effects of frequency region and bandwidth on the temporal modulation transfer function. J Acoust Soc Am 102:1799–1810.

    Article  CAS  PubMed  Google Scholar 

  • Stubbs RJ, Summerfield Q (1990) Algorithms for separating the speech of interfering talkers: evaluations with voiced sentences, and normal-hearing and hearing-impaired listeners. J Acoust Soc Am 87:359–372.

    Article  CAS  PubMed  Google Scholar 

  • Studebaker GA (1980) Fifty years of hearing aid research: an evaluation of progress. Ear Hear 1:57–62.

    Article  CAS  PubMed  Google Scholar 

  • Studebaker GA (1992) The effect of equating loudness on audibility-based hearing aid selection procedures. J Am Acad Audiol 3:113–118.

    CAS  PubMed  Google Scholar 

  • Studebaker GA, Taylor R, Sherbecoe RL (1994) The effect of noise spectrum on speech recognition performance-intensity functions. J Speech Hear Res 37:439–448.

    CAS  PubMed  Google Scholar 

  • Studebaker GA, Sherbecoe RL, Gwaltney CA (1997) Development of a monosyllabic word intensity importance function. 2nd Hear Aid Res Dev Conf, Bethesda, MD.

    Google Scholar 

  • Summerfield (1992) Lipreading and audio-visual speech perception. Philos Trans R Soc Lond B 335:71–78.

    CAS  Google Scholar 

  • Summerfield Q, Foster J, Tyler R, Bailey P (1985) Influences of formant bandwidth and auditory frequency selectivity on identification of place of articulation in stop consonants. Speech Commun 4:213–229.

    Article  Google Scholar 

  • Summers V (2000) Effects of hearing impairment and presentation level on masking period patterns for Schroeder-phase harmonic complexes. J Acoust Soc Am 108:2307–2317.

    Article  CAS  PubMed  Google Scholar 

  • Summers V, Leek MR (1994) The internal representation of spectral contrast in hearing-impaired listeners. J Acoust Soc Am 95:3518–3528.

    Article  CAS  PubMed  Google Scholar 

  • Summers V, Leek MR (1995) Frequency glide discrimination in the F2 region by normal-hearing and hearing-impaired listeners. J Acoust Soc Am 97:3825–3832.

    Article  CAS  PubMed  Google Scholar 

  • Summers V, Leek MR (1997) Intraspeech spread of masking in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 101:2866–2876.

    Article  CAS  PubMed  Google Scholar 

  • Syrdal AK, Gopal HS (1986) A perceptual model of vowel recognition based on the auditory representation of American English vowels. Lang Speech 29:39–57.

    Google Scholar 

  • Takahashi GA, Bacon SP (1992) Modulation detection, modulation masking, and speech understanding in noise and in the elderly. J Speech Hear Res 35:1410–1421.

    CAS  PubMed  Google Scholar 

  • Thibodeau LM, Van Tasell DJ (1987) Tone detection and synthetic speech discrimination in band-reject noise by hearing-impaired listeners. J Acoust Soc Am 82:864–873.

    Article  CAS  PubMed  Google Scholar 

  • Thompson SC (1997) Directional patterns obtained from dual microhpones. Knowles Tech Rep, October 13.

    Google Scholar 

  • Thornton AR, Abbas PJ (1980) Low-frequency hearing loss: perception of filtered speech, psychophysical tuning curves, and masking. J Acoust Soc Am 67:638–643.

    Article  CAS  PubMed  Google Scholar 

  • Tillman TW, Carhart R, Olsen WO (1970) Hearing aid efficiency in a competing speech situation. J Speech Hear Res 13:789–811.

    CAS  PubMed  Google Scholar 

  • Trees DE, Turner CW (1986) Spread of masking in normal subjects and in subjects with high-frequency hearing loss. Audiology 25:70–83.

    CAS  PubMed  Google Scholar 

  • Turner CW, Hurtig RR (1999) Proportional frequency compression of speech for listeners with sensorineural hearing loss. J Acoust Soc Am 106:877–886.

    Article  CAS  PubMed  Google Scholar 

  • Turner CW, Robb MP (1987) Audibility and recognition of stop consonants in normal and hearing-impaired subjects. J Acoust Soc Am 81:1566–1573.

    Article  CAS  PubMed  Google Scholar 

  • Turner CW, Smith SJ, Aldridge PL, Stewart SL (1997) Formant transition duration and speech recognition in normal and hearing-impaired listeners. J Acoust Soc Am 101:2822–2825.

    Article  CAS  PubMed  Google Scholar 

  • Tyler RS (1986) Frequency resolution in hearing impaired listeners. In: Moore BCJM (ed) Frequency Selectivity in Hearing. London: Academic Press, pp. 309–371.

    Google Scholar 

  • Tyler RS (1988) Signal processing techniques to reduce the effects of impaired frequency resolution. Hear J 9:34–47.

    Google Scholar 

  • Tyler RS, Kuk FK (1989) The effects of “noise suppression” hearing aids on consonant recognition in speech-babble and low-frequency noise. Ear Hear 10:243–249.

    Article  CAS  PubMed  Google Scholar 

  • Tyler RS, Baker LJ, Armstrong-Bednall G (1982a) Difficulties experienced by hearing-aid candidates and hearing-aid users. Br J Audiol 17:191–201.

    Google Scholar 

  • Tyler RS, Summerfield Q, Wood EJ, Fernandes MA (1982b) Psychoacoustic and temporal processing in normal and hearing-impaired listeners. J Acoust Soc Am 72:740–752.

    Article  CAS  PubMed  Google Scholar 

  • Uzkov AI (1946) An approach to the problem of optimum directive antenna design. C R Acad Sci USSR 35:35.

    Google Scholar 

  • Valente M, Fabry DA, Potts LG (1995) Recognition of speech in noise with hearing aids using dual-microphones. J Am Acad Audiol 6:440–449.

    CAS  PubMed  Google Scholar 

  • van Buuren RA, Festen JM, Houtgast T (1996) Peaks in the frequency response of hearing aids: evaluation of the effects on speech intelligibility and sound quality. J Speech Hear Res 39:239–250.

    PubMed  Google Scholar 

  • van Dijkhuizen JN, Anema PC, Plomp R (1987) The effect of varying the slope of the amplitude-frequency response on the masked speech-reception threshold of sentences. J Acoust Soc Am 81:465–469.

    Article  PubMed  Google Scholar 

  • van Dijkhuizen JN, Festen JM, Plomp R (1989) The effect of varying the amplitude-frequency response on the masked speech-reception threshold of sentences for hearing-impaired listeners. J Acoust Soc Am 86:621–628.

    Article  PubMed  Google Scholar 

  • van Dijkhuizen JN, Festen JM, Plomp R (1991) The effect of frequency-selective attenuation on the speech-reception threshold of sentences in conditions of low-frequency noise. J Acoust Soc Am 90:885–894.

    Article  PubMed  Google Scholar 

  • van Harten-de Bruijn H, van Kreveld-Bos CSGM, Dreschler WA, Verschuure H (1997) Design of two syllabic nonlinear multichannel signal processors and the results of speech tests in noise. Ear Hear 18:26–33.

    PubMed  Google Scholar 

  • Van Rooij JCGM, Plomp R (1990) Auditive and cognitive factors in speech perception by elderly listeners. II: multivariate analyses. J Acoust Soc Am 88: 2611–2624.

    Article  PubMed  Google Scholar 

  • Van Tasell DJ (1993) Hearing loss, speech, and hearing aids. J Speech Hear Res 36: 228–244.

    PubMed  Google Scholar 

  • Van Tasell DJ, Crain TR (1992) Noise reduction hearing aids: release from masking and release from distortion. Ear Hear 13:114–121.

    PubMed  Google Scholar 

  • Van Tasell DJ, Yanz JL (1987) Speech recognition threshold in noise: effects of hearing loss, frequency response, and speech materials. J Speech Hear Res 30: 377–386.

    PubMed  Google Scholar 

  • Van Tasell DJ, Fabry DA, Thibodeau LM (1987a) Vowel identification and vowel masking patterns of hearing-impaired subjects. J Acoust Soc Am 81:1586–1597.

    Article  PubMed  Google Scholar 

  • Van Tasell DJ, Soli SD, Kirby VM, Widin GP (1987b) Speech waveform envelope cues for consonant recognition. J Acoust Soc Am 82:1152–1161.

    Article  PubMed  Google Scholar 

  • Van Tasell DJ, Larsen SY, Fabry DA (1988) Effects of an adaptive filter hearing aid on speech recognition in noise by hearing-impaired subjects. Ear Hear 9:15–21.

    PubMed  Google Scholar 

  • Van Tasell DJ, Clement BR, Schroder AC, Nelson DA (1996) Frequency resolution and phoneme recognition by hearing-impaired listeners. J Acoust Soc Am 4: 2631(A).

    Google Scholar 

  • Van Veen BD, Buckley KM (1988) Beamforming: a versatile approach to spatial filtering. IEEE Acoust Speech Sig Proc Magazine 5:4–24.

    Google Scholar 

  • van Veen TM, Houtgast T (1985) Spectral sharpness and vowel dissimilarity. J Acoust Soc Am 77:628–634.

    Article  PubMed  Google Scholar 

  • Vanden Berghe J, Wouters J (1998) An adaptive noise canceller for hearing aids using two nearby microphones. J Acoust Soc Am 103:3621–3626.

    Article  Google Scholar 

  • Verschuure J, Dreschler WA, de Haan EH, et al. (1993) Syllabic compression and speech intelligibility in hearing impaired listeners. Scand Audiol 38:92–100.

    CAS  Google Scholar 

  • Verschuure J, Prinsen TT, Dreschler WA (1994) The effects of syllabic compression and frequency shaping on speech intelligibility in hearing impaired people. Ear Hear 15:13–21.

    Article  CAS  PubMed  Google Scholar 

  • Verschuure J, Maas AJJ, Stikvoort E, de Jong RM, Goedegebure A, Dreschler WA (1996) Compression and its effect on the speech signal. Ear Hear 17:162–175.

    CAS  PubMed  Google Scholar 

  • Vickers DA, Moore BC, Baer T (2001) Effects of low-pass filtering on the intelligibility of speech in quiet for people with and without dead regions at high frequencies. J Acoust Soc Am 110:1164–1175.

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF (1988) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function. New York: John Wiley.

    Google Scholar 

  • Viemeister NF, Plack CJ (1993) Time analysis. In: Yost W, Popper A, Fay R (eds) Human Psychophysics. New York: Springer-Verlag.

    Google Scholar 

  • Viemeister NF, Urban J, Van Tasell D (1997) Perceptual effects of anplitude compression. Second Biennial Hearing Aid Research and Development Conference, 41.

    Google Scholar 

  • Villchur E (1973) Signal processing to improve speech intelligibility in perceptive deafness. J Acoust Soc Am 53:1646–1657.

    Article  CAS  PubMed  Google Scholar 

  • Villchur E (1974) Simulation of the effect of recruitment on loudness relationships in speech. J Acoust Soc Am 56:1601–1611.

    Article  CAS  PubMed  Google Scholar 

  • Villchur E (1987) Multichannel compression for profound deafness. J Rehabil Res Dev 24:135–148.

    CAS  PubMed  Google Scholar 

  • Villchur E (1989) Comments on “The negative effect of amplitude compression in multichannel hearing aids in the light of the modulation transfer function.” J Acoust Soc Am 86:425–427.

    Article  Google Scholar 

  • Villchur E (1996) Multichannel compression in hearing aids. In: Berlin CI (ed) Hair Cells and Hearing Aids. San Diego: Singular, pp. 113–124.

    Google Scholar 

  • Villchur E (1997) Comments on “Compression? Yes, but for low or high frequencies, for low or high intensities, and with what response times?” Ear Hear 18:172–173.

    Google Scholar 

  • Wakefield GH, Viemeister NF (1990) Discrimination of modulation depth of sinusoidal amplitude modulation (SAM) noise. J Acoust Soc Am 88:1367–1373.

    Article  CAS  PubMed  Google Scholar 

  • Walker G, Dillon H (1982) Compression in hearing aids: an analysis, a review and some recommendations. NAL Report No. 90, National Acoustic Laboratories, Chatswood, Australia.

    Google Scholar 

  • Wang DL, Lim JS (1982) The unimportance of phase in speech enhancement. IEEE Trans Acoust Speech Signal Proc 30:1888–1898.

    Article  Google Scholar 

  • Wang MD, Reed CM, Bilger RC (1978) A comparison of the effects of filtering and sensorineural hearing loss on patterns of consonant confusions. J Speech Hear Res 21:5–36.

    CAS  PubMed  Google Scholar 

  • Weiss M (1987) Use of an adaptive noise canceler as an input preprocessor for a hearing aid. J Rehabil Res Dev 24:93–102.

    CAS  PubMed  Google Scholar 

  • Weiss MR, Aschkenasy E, Parsons TW (1974) Study and development of the INTEL technique for improving speech intelligibility. Nicolet Scientific Corp., final report NSC-FR/4023.

    Google Scholar 

  • White NW (1986) Compression systems for hearing aids and cochlear prostheses. J Rehabil Dev 23:25–39.

    CAS  Google Scholar 

  • Whitmal NA, Rutledge JC, Cohen J (1996) Reducing correlated noise in digital hearing aids. IEEE Eng Med Biol 5:88–96.

    Article  Google Scholar 

  • Widrow B, Glover JJ, McCool J, et al. (1975) Adaptive noise canceling: principles and applications. Proc IEEE 63:1692–1716.

    Article  Google Scholar 

  • Wiener N (1949) Extrapolation, Interpolation and Smoothing of Stationary Time Series, with Engineering Applications. New York: John Wiley.

    Google Scholar 

  • Wightman F, McGee T, Kramer M (1977) Factors influencing frequency selectivity in normal hearing and hearing-impaired listeners. In Psychophysics and Physiology of Hearing, Evans EF, Wilson JP (eds). London, Academia Press.

    Google Scholar 

  • Wojtczak M (1996) Perception of intensity and frequency modulation in people with normal and impaired hearing. In: Kollmeier B (ed) Psychoacoustics, Speech, and Hearing Aids. Singapore: World Scientific, pp. 35–38.

    Google Scholar 

  • Wojtczak M, Viemeister NF (1997) Increment detection and sensitivity to amplitude modulation. J Acoust Soc Am 101:3082.

    Article  Google Scholar 

  • Wojtczak M, Schroder AC, Kong YY, Nelson DA (2001) The effect of basilar-membrane nonlinearity on the shapes of masking period patterns in normal and impaired hearing. J Acoust Soc Am 0109:1571–1586.

    Article  CAS  Google Scholar 

  • Wolinsky S (1986) Clinical assessment of a self-adaptive noise filtering system. Hear J 39:29–32.

    Google Scholar 

  • Yanick P (1976) Effect of signal processing on intelligibility of speech in noise for persons with sensorineural hearing loss. J Am Audiol Soc 1:229–238.

    PubMed  Google Scholar 

  • Yanick P, Drucker H (1976) Signal processing to improve intelligibility in the presence of noise for persons with ski-slope hearing impairment. IEEE Trans Acoust Speech Signal Proc 24:507–512.

    Article  Google Scholar 

  • Young ED, Sachs MB (1979) Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J Acoust Soc Am 66:1381–1403.

    Article  CAS  PubMed  Google Scholar 

  • Yund EW, Buckles KM (1995a) Multichannel compression in hearing aids: effect of number of channels on speech discrimination in noise. J Acoust Soc Am 97:1206–1223.

    Article  CAS  PubMed  Google Scholar 

  • Yund EW, Buckles KM (1995b) Enhanced speech perception at low signal-to-noise ratios with multichannel compression hearing aids. J Acoust Soc Am 97: 1224–1240.

    Article  CAS  PubMed  Google Scholar 

  • Yund EW, Buckles KM (1995c) Discrimination of mulitchannel-compressed speech in noise: long term learning in hearing-impaired subjects. Ear Hear 16:417–427.

    Article  CAS  PubMed  Google Scholar 

  • Yund EW, Simon HJ, Efron R (1987) Speech discrimination with an 8-channel compression hearing aid and conventional aids in background of speech-band noise. J Rehabil Res Dev 24:161–180.

    CAS  PubMed  Google Scholar 

  • Zhang C, Zeng FG (1997) Loudness of dynamic stimuli in acoustic and electric hearing. J Acoust Soc Am 102:2925–2934.

    Article  CAS  PubMed  Google Scholar 

  • Zurek PM, Delhorne LA (1987) Consonant reception in noise by listeners with mild and moderate sensorineural hearing impairment. J Acoust Soc Am 82:1548–1559.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E (1965) Temporal effects in simultaneous masking by white-noise bursts. J Acoust Soc Am 37:653–663.

    Article  Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical bandwidth in loudness summation. J Acoust Soc Am 29:548–557.

    Article  Google Scholar 

  • Zwicker E, Fastl H, Frater H (1990) Psychoacoustics: Facts and Models. Berlin: Springer-Verlag.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Edwards, B. (2004). Hearing Aids and Hearing Impairment. In: Speech Processing in the Auditory System. Springer Handbook of Auditory Research, vol 18. Springer, New York, NY. https://doi.org/10.1007/0-387-21575-1_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-21575-1_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00590-4

  • Online ISBN: 978-0-387-21575-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics