Skip to main content

Vestibuloautonomic Interactions: A Teleologic Perspective

  • Chapter
The Vestibular System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 19))

7. Summary and Conclusions

A number of lines of evidence suggest that multiple sensory inputs that are influenced by gravitoinertial accelerations, including those from the vestibular labyrinth, retina, cutaneous and muscle receptors, baroreceptors, and abdominal visceral receptors, are integrated to produce an accurate perception of the location of the body in space, particularly during unusual conditions (e.g., swimming underwater). Such a processing of multiple sensory inputs appears to be important in coordinating appropriate motor and autonomic responses during movement and changes in posture. Although particular effector systems are most strongly influenced by particular sensory inputs (e.g., extraocular muscle contractions are driven powerfully be signals from semicircular canals, whereas components of the sympathetic nervous system that innervate vascular smooth muscle are strongly regulated by baroreceptor inputs), the “secondary inputs” and cerebellar contributions can potentially shape the responses, reduce their latency, and improve their accuracy. Because movement frequently requires coordinated changes in limb, axial, and respiratory muscle activity, accompanied by stereotyped adjustments in the cardiovascular system, it is important to explore the organization of components of “central motor programs” or “central pattern generators” that coordinate both motor and autonomic responses during the execution of movement. In addition to motor control, it is important to acknowledge the implications of the extensive convergence of vestibular and autonomic afferent information in the brain stem and cerebellum for spatial perception and affective changes associated with motion sickness and vestibular dysfunction. It appears that responses of vestibular and nonvestibular receptors to gravitoinertial challenges are integrated centrally to generate perceptual representations of gravitoinertial challenges. In addition, the visceral manifestations of motion sickness and vestibular dysfunction may be regarded as referred visceral discomfort related to gravitoinertial stimulation in the same sense that angina pectoris is a referred somatic pain related to cardiac dysfunction (Balaban 1999). Because these referred complaints are unpleasant and are not readily attributed to balance function, they may serve as eliciting or reinforcing stimuli for conditioned avoidance of situations that evoke discomfort. This conditioned avoidance may be one aspect of the linkage between balance disorders, height vertigo, and agoraphobia (Balaban 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agostoni E (1970) Statics. In: Campbell EJM, Agostoni E, and Davis JN (eds) The Respiratory Muscles: Mechanics and Neural Control, Second edition. Philadelphia: W.B. Saunders Company, pp. 48–79.

    Google Scholar 

  • Agostoni E (1977) Transpulmonary pressure. In: West JB (ed) Regional Differences in the Lung. New York: Academic Press, pp. 245–280.

    Google Scholar 

  • Ammons WS (1988) Renal and somatic input to spinal neurons antidromically activated from the ventrolateral medulla. J Neurophysiol 60:1967–1981.

    CAS  PubMed  Google Scholar 

  • Anastasopoulos D, Haslwanter T, Bronstein A, Fetter M, Dichgans J (1997) Dissociation between the perception of body verticality and visual vertical in acute peripheral vestibular disorder in humans. Neurosci Lett 233:151–153.

    Article  CAS  PubMed  Google Scholar 

  • Asch SE, Witkin HA (1948) Studies in space orientation. II. Perception of the upright with displaced visual fields and with body tilted. J Exp Psychol 38:455–477.

    Google Scholar 

  • Aston-Jones G, Shipley MT, Chouvet GEM, van Bockstaele E, Pieribone V, Shiekhatter R, Akaoka H, Drolet G, Atier B, Charléty P, Valentino RJ, Williams JT (1991a) Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. In: Barnes CD, Pompeiano O (eds) Neurobiology of the Locus Coeruleus. Amsterdam: Elsevier, pp. 47–75.

    Google Scholar 

  • Aston-Jones G, Chiang C, Alexinsky T (1991b) Discharge of noradrenergic locus coeruleus neurons in behaving rats and monkeys suggests a role in vigilance. In: Barnes CD, Pompeiano O (eds) Neurobiology of the Locus Coeruleus. Amsterdam: Elsevier, pp. 501–520.

    Google Scholar 

  • Babkin BP, Bornstein MB (1943) Effect of swinging and binaural galvanic stimulation on the motility of the stomach in dogs. Rev Can Biol 2:336–349.

    Google Scholar 

  • Balaban CD (1984) Olivovestibular and cerebellovestibular connections in albino rabbits. Neuroscience 12:129–149.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD (1996a) Efferent projections from the cerebellar nodulus and uvula in rabbits: potential substrates for cerebellar modulation of vestibulo-autonomic interactions. Abstracts, 1996 Midwinter Research Meeting of the Association for Research in Otolaryngology, p. 176. ARO, Mount Royal NJ.

    Google Scholar 

  • Balaban CD (1996b) The role of the cerebellum in vestibular autonomic function. In: Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. Boca Raton: CRC Press, pp. 127–144.

    Google Scholar 

  • Balaban CD (1996c) Vestibular nucleus projections to the parabrachial nucleus in rabbits: implications for vestibular influences on autonomic function. Exp Brain Res 108:367–381.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD (1997) Projections from the parabrachial nucleus to the vestibular nuclei in rabbits: a visceral relay to vestibular circuits. Abstracts, Midwinter Meeting of Association for Research in Otolaryngology, p. 69. ARO, Mount Royal NJ.

    Google Scholar 

  • Balaban CD (1999) Vestibular autonomic regulation. Curr Opin Neurol 12:29–33.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD (2002) Neural substrates linking balance control and anxiety. Physiol Behav 77:469–475.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD (2003) Vestibular nucleus projections to the Edinger-Westphal and anteromedian nuclei of rabbits. Brain Res., 963:121–131.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD, Beryozkin G (1994) Vestibular nucleus projections to nucleus tractus solitarius and the dorsal motor nucleus of the vagus nerve: potential substrates for vestibulo-autonomic interactions. Exp Brain Res 98:200–212.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD, Porter JD (1998) Neuroanatomical substrates for vestibulo-autonomic interactions. J Vestib Res 8:7–16.

    Article  CAS  PubMed  Google Scholar 

  • Balaban CD, Thayer JF (2001) Neurological bases for balance-anxiety links. J Anxiety Disord 15:53–79.

    CAS  PubMed  Google Scholar 

  • Balaban CD, McGee DM, Zhou J, Scudder CA (2002) Responses of primate caudal parabrachial nucleus and Kölliker-Fuse nucleus neurons to whole body rotation. J Neurophysiol 88:3175–3193.

    PubMed  Google Scholar 

  • Bankoul S, Neuhuber WL (1990) A cervical primary afferent input to vestibular nuclei as demonstrated by retrograde transport of wheat germ agglutininhorseradish peroxidase in the rat. Exp Brain Res 79:405–411.

    Article  CAS  PubMed  Google Scholar 

  • Bankoul S, Goto T, Yates B, Wilson VJ (1995) Cervical primary afferent input to vestibulospinal neurons projecting to the cervical dorsal horn: an anterograde and retrograde tracing study in the cat. J Comp Neurol 353:529–538.

    Article  CAS  PubMed  Google Scholar 

  • Barber HO, Stockwell CW (1980) Manual of Electronystagmography, Second edition. St. Louis: C.V. Mosby Company.

    Google Scholar 

  • Barmack NH, Fagerson MH (1994) Vestibularly evoked activity of single units in the dorsomedial cell column of the inferior olive of the rabbit. Neurosci Abstr 20:1190.

    Google Scholar 

  • Barnes CD, Manzoni D, Pompeiano O, Stampacchia G, d’Ascanio P (1989) Responses of locus coeruleus and subcoeruleus neurons to sinusoidal neck rotation in decerebrate cat. Neuroscience 31:317–392.

    Article  Google Scholar 

  • Bassal M, Bianchi AL (1982) Inspiratory onset or termination induced by electrical stimulation of the brain. Respir Physiol 50:23–40.

    Article  CAS  PubMed  Google Scholar 

  • Batini C, Corvisier J, Hardy O, Jassik-Gerschenfeld D (1978) Brain stem nuclei giving fibers to lobules VI and VII of the cerebellar vermis. Brain Res 152: 241–261.

    Google Scholar 

  • Baumgarten HG, Grozdanovic Z (1997) Anatomy of central serotonergic projection systems. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 5-HT receptors in the CNS. Berlin: Springer, pp. 41–89.

    Google Scholar 

  • Baxter GM, Williamson TH, McKillop G, Dutton GN (1992) Color Doppler ultrasound of orbital and optic nerve blood flow: effects of posture and timolol 0.5%. Invest Ophthalmol Vis Sci 33:604–610.

    CAS  PubMed  Google Scholar 

  • Berkley KJ, Hubscher CH (1995) Are there separate central nervous system pathways for touch and pain? Nat Med 1:766–773.

    Article  CAS  PubMed  Google Scholar 

  • Berne RM, Levy MN (1983) Physiology. St. Louis: Mosby.

    Google Scholar 

  • Biederman-Thorson M, Thorson J (1973) Rotation-compensating reflexes independent of the labyrinth and eye. J Comp Physiol 83:103–122.

    Article  Google Scholar 

  • Billig I, Foris JM, Enquist LW, Card JP, Yates BJ (2000) Definition of neuronal circuitry controlling the activity of phrenic and abdominal motoneurons in the ferret using recombinant strains of pseudorabies virus. J Neurosci 20:7446–7454.

    CAS  PubMed  Google Scholar 

  • Bizzi EO, Pompeiano O, Somogyi I (1964) Vestibular nuclei: activity of single neurons during natural sleep and wakefulness. Science 145:414–415.

    CAS  PubMed  Google Scholar 

  • Bolton PS, Goto T, Schor RH, Wilson VJ, Yamagata Y, Yates BJ (1992) Response of pontomedullary reticulospinal neurons to vestibular stimuli in vertical planes. Role in vertical vestibulospinal reflexes of the decerebrate cat. J Neurophysiol 67:639–647.

    CAS  PubMed  Google Scholar 

  • Boyle R, Pompeiano O (1980) Responses of vestibulospinal neurons to sinusoidal rotation of the neck. J Neurophysiol 44:633–649.

    CAS  PubMed  Google Scholar 

  • Boyle R, Pompeiano O (1981) Convergence and interaction of neck and macular vestibular inputs on vestibulospinal neurons. J Neurophysiol 45:852–868.

    CAS  PubMed  Google Scholar 

  • Bradley DJ, Gherlarducci B, Paton JFR, Spyer KM (1987a) The cardiovascular responses elicited from the posterior cerebellar cortex in the anaesthetized and decerebrate rabbit. J Physiol 383:537–550.

    CAS  PubMed  Google Scholar 

  • Bradley DJ, Pascoe JP, Paton JFR, Spyer KM (1987b) Cardiovascular responses and respiratory responses evoked from the posterior cerebellar cortex and fastigial nucleus in the cat. J Physiol 393:107–121.

    CAS  PubMed  Google Scholar 

  • Bramble DM, Jenkins FA Jr (1993) Mammalian locomotor-respiratory integration: implications for diaphragmatic and pulmonary design. Science 262:235–240.

    CAS  PubMed  Google Scholar 

  • Bremner JD, Krystal JH, Southwick SM, Charney DS (1996) Noradrenergic mechanisms in stress and anxiety: I. Preclinical studies. Synapse 23:28–38.

    CAS  PubMed  Google Scholar 

  • Buchanan RA, Williams TD (1985) Intraocular pressure, ocular pulse pressure, and body position. Am J Optom Physiol Opt 62:59–62.

    CAS  PubMed  Google Scholar 

  • Buettner UW, Büttner U, Henn V (1978) Transfer characteristics of neurons in vestibular nuclei of the alert monkey. J Neurophysiol 41:1614–1628.

    CAS  PubMed  Google Scholar 

  • Burian M, Gstoettner W, Mayr R (1990) Brainstem projection of the vestibular nerve in the guinea pig: an HRP (horseradish peroxidase) and WGA-HRP (wheat germ agglutinin-HRP) study. J Comp Neurol 293:165–177.

    Article  Google Scholar 

  • Bushnell MC, Goldberg ME, Robinson DL (1981) Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. J Neurophysiol 46:755–771.

    CAS  PubMed  Google Scholar 

  • Cadden SW, Morrison JF (1991) Effects of visceral distension on the activities of neurones receiving cutaneous inputs in the rat lumber dorsal horn: comparison with effects of remote noxious stimuli. Brain Res 558:63–74.

    Article  CAS  PubMed  Google Scholar 

  • Campbell EJM, Agostoni E, Davis JN (1970) The Respiratory Muscles: Mechanics and Neural Control, Second edition. Philadelphia: Saunders.

    Google Scholar 

  • Carleton SC, Carpenter MB (1984) Distribution of primary vestibular fibers in the brainstem and cerebellum of the monkey. Brain Res 294:281–298.

    Article  CAS  PubMed  Google Scholar 

  • Carlton SM, Leichnetz GR, Young EG, Mayer DJ (1983) Supramedullary afferents of the nucleus rephe magnus in the rat: a study using transcannula HRP gel and autoradiographic techniques. J Comp Neurol 214:43–58.

    Article  CAS  PubMed  Google Scholar 

  • Cavada C, Goldman-Rakic PS (1989) Posterior parietal cortex in rhesus monkeys: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. J Comp Neurol 287:422–445.

    CAS  PubMed  Google Scholar 

  • Cedarbaum JM, Aghajanian GK (1978) Afferent projections of the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178:1–16.

    Article  CAS  PubMed  Google Scholar 

  • Clark B, Randle RJ, Stewart JD (1975) Vestibulo-ocular accommodation reflex in man. Aviat Space Environ Med 46:1336–1339.

    CAS  PubMed  Google Scholar 

  • Cobbold AF, Meghirian D, Sherrey JH (1968) Vestibular evoked activity in autonomic motor outflows. Arch Ital Biol 106:113–123.

    CAS  PubMed  Google Scholar 

  • Collins WE (1988) Some effects of sleep loss on vestibular responses. Aviat Space Environ Med 59:523–529.

    CAS  PubMed  Google Scholar 

  • Collins WE, Guedry FE Jr (1961) Arousal effects and nystagmus during prolonged constant acceleration. Acta Otolaryngol (Stockh) 54:349–362.

    Google Scholar 

  • Collins WE, Poe RH (1962) Amphetamine arousal and human vestibular nystagmus. J Pharmacol Exp Ther 138:120–125.

    CAS  PubMed  Google Scholar 

  • Cotter LA, Arendt HE, Jasko JG, Sprando C, Cass SP, Yates BJ (2001) Effects of postural changes and vestibular lesions on diaphragm and vectus abdominis activity in awake cats. J Appl Physiol 91:137–144.

    CAS  PubMed  Google Scholar 

  • Cyon É de (1911) L’oreille: Organe d’Orientation dans le Temps et dans l’Espace. Paris: Librairie Félix Alcan.

    Google Scholar 

  • Delius JD, Vollrath FW (1973) Rotation compensating reflexes independent of the labyrinth: neurosensory correlates in pigeons. J Comp Physiol 83:123–134.

    Article  Google Scholar 

  • DeSantis M, Gernandt BE (1971) Effect of vestibular stimulation on pupillary size. Exp Neurol 30:66–77.

    Article  CAS  PubMed  Google Scholar 

  • De Troyer A (1989) The mechanism of the inspiratory expansion of the rib cage. J Lab Clin Med 114:97–104.

    PubMed  Google Scholar 

  • Dibona GF, Kopp UC (1997) Neural control of renal function. Physiol Rev 77: 75–197.

    CAS  PubMed  Google Scholar 

  • Ding YQ, Takada M, Shigemoto R, Mizuno N (1995) Spinoparabrachial tract neurons showing substance P receptor-like immunoreactivity in the lumbar spinal cord of the rat. Brain Res 674:336–340.

    Article  CAS  PubMed  Google Scholar 

  • Doba N, Reis DJ (1974) Role of cerebellum and vestibular apparatus in regulation of orthostatic reflexes in the cat. Circ Res 34:9–18.

    Google Scholar 

  • Dodge R (1922) Habituation to rotation. J Exp Psychol 6:1–35.

    Google Scholar 

  • Domyancic AV, Morilak DA (1997) Distributution of α1A-adrenergic receptor mRNA in the rat brain visualized by in situ hybridization. J Comp Neurol 386:358–378.

    Article  CAS  PubMed  Google Scholar 

  • Dow RS, Moruzzi G (1958) The Physiology and Pathology of the Cerebellum. Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Dowd PJ, Moore EW, Cramer RL (1975) Relationships of fatigue and motion sickness to vestibulo-ocular responses to Coriolis stimulation. Hum Factors 17:98–105.

    CAS  PubMed  Google Scholar 

  • Doyle DJ, Mark PWS (1990) Reflex bradycardia during surgery. Can J Anaesth 37:219–222.

    CAS  PubMed  Google Scholar 

  • Drance SM (1962) Studies in the susceptibility of the eye to raised intraocular pressure. Arch Ophthalmol 68:478–485.

    CAS  PubMed  Google Scholar 

  • Ezure K (1990) Synaptic connections between medullary respiratory neurons and considerations on the generation of respiratory rhythm. Prog Neurobiol 35: 429–450.

    Article  CAS  PubMed  Google Scholar 

  • Ezure K (1996) Respiratory control. In: Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. Boca Raton: CRC Press, pp. 53–84.

    Google Scholar 

  • Faugier-Grimaud S, Ventre J (1989) Anatomic connections of inferior parietal cortex (area 7) with subcortical structures related to vestibulo-ocular function in a monkey (Macaca fascicularis). J Comp Neurol 280:1–14.

    Article  CAS  PubMed  Google Scholar 

  • Fay RA, Norgren R (1997) Identification of rat brainstem multisynaptic connections to the oral motor nuclei using pseudorabies virus. III. Lingual muscle motor systems. Brain Res Rev 25:291–311.

    CAS  PubMed  Google Scholar 

  • Feil K, Herbert H (1995) Topographic organization of spinal and trigeminal somatosensory pathways to the rat parabrachial and Kölliker-Fuse nuclei. J Comp Neurol 353:506–528.

    Article  CAS  PubMed  Google Scholar 

  • Feldman JL (1986) Neurophysiology of breathing in mammals. In: Bloom FE (ed) Handbook of Physiology. The Nervous System. IV. Intrinsic Regulatory Systems of the Brain. Bethesda, MD: American Physiological Society, pp. 463–524.

    Google Scholar 

  • Foote SL, Berridge CW, Adams LM, Pineda JA (1991) Electrophysiological evidence for the involvement of the locus coeruleus in alerting, orienting and attending. In: Barnes CD, Pompeiano O (eds) Neurobiology of the Locus Coeruleus. Amsterdam: Elsevier, pp. 521–532.

    Google Scholar 

  • Friberg TR, Weinreb RN (1985) Ocular manifestations of gravity inversion. JAMA 253:1755–1757.

    Article  CAS  PubMed  Google Scholar 

  • Froese AB, Bryan AC (1974) Effects of anesthesia and diaphragmatic mechanics in man. Anesthesiology 41:242–255.

    CAS  PubMed  Google Scholar 

  • Fuchs A, Kornhuber HH (1969) Extraocular muscle afferents to the cerebellum of the cat. J Physiol 200:713–722.

    CAS  PubMed  Google Scholar 

  • Fulweiler CE, Saper C (1984) Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res Rev 7:229–259.

    Google Scholar 

  • Fung SJ, Reddy RM, Barnes CD (1987) Differential labeling of the vestibular complex following unilateral injections of horseradish peroxidase into the cat and rat locus coeruleus. Brain Res 401:347–352.

    Article  CAS  PubMed  Google Scholar 

  • Furman JM, Jacob RG (2001). A clinical taxonomy of dizziness and anxiety in the otoneurologic setting. J Anxiety Disord 15:9–26.

    Article  CAS  PubMed  Google Scholar 

  • Furman JM, O’Leary DM, Wolfe JW (1981) Changes in the horizontal vestibuloocular reflex of the rhesus monkey with behavioral and pharmacologic alerting. Brain Res 206:490–494.

    Article  CAS  PubMed  Google Scholar 

  • Furman JM, Jacob RG, Redfern MS (1998) Clinical evidence that the vestibular system participates in autonomic control. J Vestib Res 8:27–34.

    CAS  PubMed  Google Scholar 

  • Gallagher JP, Phelan KD, Shinnick-Gallagher P (1992) Modulation of excitatory transmission at the rat medial vestibular nucleus synapse. Ann N Y Acad Sci 656:630–644.

    CAS  PubMed  Google Scholar 

  • Gdowski GT, McCrea RA (2000) Neck proprioceptive inputs to primate vestibular nucleus neurons. Exp Brain Res 135:511–526.

    Article  CAS  PubMed  Google Scholar 

  • Gerrits NM, Voogd J, Magras IN (1985) Vestibular nuclear efferents to the nucleus raphe pontis, the nucleus reticularis tegmenti pontis and the nucleus pontis in the cat. Neurosci Lett 54:357–362.

    Article  CAS  PubMed  Google Scholar 

  • Giolli RA, Blanks RHI, Torigoe Y (1984) Pretectal and brain stem projections of the medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. J Comp Neurol 227:228–251.

    Article  CAS  PubMed  Google Scholar 

  • Giolli RA, Blanks RHI, Torigoe Y, Williams DD (1985) Projections of the medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 232:99–116.

    Article  CAS  PubMed  Google Scholar 

  • Giolli RA, Torigoe Y, Blanks RHI, McDonald HM (1988) Projections of the dorsal and lateral terminal accessory optic nuclei and of the interstitial nucleus of the superior fasciculus (posterior fibers) in the rabbit and rat. J Comp Neurol 277: 608–620.

    Article  CAS  PubMed  Google Scholar 

  • Goodhill V (1979) Ear Diseases, Deafness and Dizziness. Hagerstown, MD: Harper & Row.

    Google Scholar 

  • Gorman JM, Liebowitz MR, Fyer AJ, Stein J (1989) A neuroanatomical hypothesis for panic disorder. Am J Psychiatry 146:148–161.

    CAS  PubMed  Google Scholar 

  • Gowers WR (1903) A Manual of Diseases of the Nervous System, Second edition. Philadelphia: P. Blakiston’s Son & Co.

    Google Scholar 

  • Grélot L, Miller AD (1996) Neural control of respiratory muscle activity during vomiting. In: Miller AD, Bianchi AL, Bishop BP (eds) Neural Control of the Respiratory Muscles. Boca Raton: CRC Press, pp. 239–248.

    Google Scholar 

  • Griffith CR (1920) The organic effects of complete body rotation. J Exp Psychol 3:15–47.

    Google Scholar 

  • Griffith CR (1924) A note on the persistence of the “practice effect” in rotation experiments. J Comp Psychol 4:137–149.

    Google Scholar 

  • Grillner S, Nilsson J, Thorstensson (1978) Intra-abdomimal pressure changes during natural movements in man. Acta Physiol Scand 103:275–283.

    CAS  PubMed  Google Scholar 

  • Guedry, FE Jr (1974) Psychophysics of vestibular sensation. In: Kornhuber HH (ed) Handbook of Sensory Physiology: Vestibular System. Psychophysics, Applied Aspects, and General Interpretation. Berlin: Springer-Verlag, Volume VI, Chapter 2, pp. 4–190.

    Google Scholar 

  • Guyton AC, Hall JE (1996) Textbook of Medical Physiology, Ninth edition. Philadelphia: Saunders.

    Google Scholar 

  • Halberstadt AL, Balaban CD (2003) Organization of projections from the raphe nuclei to the vestibular nuclei in rats. Neuroscience 120:571–592.

    Article  Google Scholar 

  • Henn V, Baloh RW, Hepp K (1984) The sleep-wake transition in the oculomotor system. Exp Brain Res 54:166–176.

    Article  CAS  PubMed  Google Scholar 

  • Henry RT, Connor JD, Balaban CD (1989) Nodulus-uvula depressor response: central GABA-mediated inhibition of a-adrenergic outflow. Am J Physiol 256: H1601–H1608.

    CAS  PubMed  Google Scholar 

  • Hokffer BJ, Mitra J, Snider RS (1972) Cerebellar influences on the cardiovascular system. In: Hockman CH (ed) Limbic System Mechanisms and Autonomic Function. Springfield, IL: Charles C. Thomas, pp. 91–112.

    Google Scholar 

  • Holstege G (1989) Anatomical study of the final common pathway for vocalization in the cat. J Comp Neurol 284:242–252.

    Article  CAS  PubMed  Google Scholar 

  • Hood JD, Pfaltz CR (1954) Observations upon the effects of repeated stimulation upon rotational and caloric nystagmus. J Physiol (Lond) 124:130–144.

    CAS  Google Scholar 

  • Hosoba M, Bando T, Tsukahara N (1978) The cerebellar control of accommodation of the eye in the cat. Brain Res 153:495–505.

    Article  CAS  PubMed  Google Scholar 

  • Huang Q, Zhou D, St John WM (1991) Vestibular and cerebellar modulation of expiratory motor activities in the cat. J Physiol (Lond) 436:385–404.

    CAS  Google Scholar 

  • Huang Q, Zhou D, St John WM (1993) Cerebellar control of expiratory activities of medullary neurons and spinal nerves. J Appl Physiol 74:1934–1940.

    CAS  PubMed  Google Scholar 

  • Hubscher CH, Berkley KJ (1994) Responses of neurons in caudal solitary nucleus of female rats to stimulation of the vagina, uterine horn and colon. Brain Res 664:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Irwin JA (1881) The pathology of sea-sickness. Lancet 2:907–909.

    Google Scholar 

  • Ishikawa T, Miyazawa T (1980) Sympathetic responses evoked by vestibular stimulation and their interactions with somato-sympathetic reflexes. J Auton Res 1:243–254.

    CAS  Google Scholar 

  • Ito J, Honjo I (1990) Central fiber connections of the vestibulo-autonomic reflex arc in cats. Acta Otolaryngol (Stockh) 110:379–385.

    CAS  Google Scholar 

  • Ito M (1984) The Cerebellum and Neural Control. New York: Raven Press.

    Google Scholar 

  • Ito T, Sanda Y (1965) Location of receptors for righting reflexes acting upon the body in primates. Jpn J Physiol 15:235–242.

    Google Scholar 

  • Ito Y, Gresty MA (1997) Subjective postural orientation and visual vertical during slow pitch tilt for the seated human subject. Aviat Space Environ Med 68:3–12.

    CAS  PubMed  Google Scholar 

  • Jacob RG, Furman JM, Balaban CD (1996a) Psychiatric aspects of vestibular disorders. In: Baloh RW, Halmagyi GM (eds) Handbook of Neurotology/Vestibular System: New York: Oxford University Press, pp. 509–528.

    Google Scholar 

  • Jacob RG, Furman JM, Perel JM (1996b) Panic, phobia, and vestibular dysfunction. In: Yates BJ, Miller AD (eds) Vestibular Autonomic Regulation. Boca Raton: CRC Press, pp. 197–227.

    Google Scholar 

  • Jacobs BL, Azmitia E (1992) Structure and function of the brain serotonin system. Physiol Rev 72:165–229.

    CAS  PubMed  Google Scholar 

  • Jacobs BL, Fornal CA (1993) 5-HT and motor control: a hypothesis. Trends Neurosci 16:346–352.

    Article  CAS  PubMed  Google Scholar 

  • Jasmin L, Burkey AR, Card JP, Basbaum AI (1997) Transneuronal labeling of a nociceptive pathway, the spino-(trigemino-)parabrachio-amygdaloid, in the rat. J Neurosci 17:3751–3765.

    CAS  PubMed  Google Scholar 

  • Jian BJ, Cotter LA, Emanuel BA, Cass SP, Yates BJ (1999) Effects of bilateral vestibular lesions on orthostatic tolerance in awake cats. J Appl Physiol 86: 1552–1560.

    CAS  PubMed  Google Scholar 

  • Jian BJ, Shintani T, Emanuel BA, Yates BJ (2002) Convergence of limb, visceral and vertical semicircular canal or otolith in puts onto vestibular nucleus neurons. Eyp Brain Res 144:247–257.

    CAS  Google Scholar 

  • Johnston AR, Murnion B, McQueen DS, Dutia MB (1993) Excitation and inhibition of rat medial vestibular nucleus neurons by 5-hydroxytryptamine. Exp Brain Res 93:293–298.

    Article  CAS  PubMed  Google Scholar 

  • Jones IH (1918) Equilibrium and Vertigo. Philadelphia: J.B. Lippincott Co.

    Google Scholar 

  • Kalen P, Karlson M, Wiklund L (1985) Possible excitatory amino acid afferents to nucleus raphe dorsalis of the rat investigated with retrograde wheat germ agglutinin and [3H]aspartate tracing. Brain Res 360:285–297.

    Article  CAS  PubMed  Google Scholar 

  • Kandel ER, Schwartz JH, Jessell TM (1991) Principles of Neural Science, Third edition. New York: Elsevier.

    Google Scholar 

  • Kano M, Kano M-S, Kusonoki M, Maekawa K (1990) Nature of optokinetic response and zonal organization of climbing fiber afferents in the vestibulocerebellum of the rabbit. II. The nodulus. Exp Brain Res 80:238–251.

    Article  CAS  PubMed  Google Scholar 

  • Kasper J, Diefenhardt A, Mackert A, Thoden U (1992) The vestibulo-ocular response during transient arousal shifts in man. Acta Otolaryngol (Stockh) 112:1–6.

    CAS  Google Scholar 

  • Kaufman MP, Forster HV (1996) Reflexes controlling circulatory, ventilatory and airway responses to exercise. In: Rowell L, Shepherd J (eds) Handbook of Physiology, Section 12, Exercise: Regulation and Integration of Multiple Systems. Bethesda, MD: American Physiological Society/Oxford University Press, pp. 381–447.

    Google Scholar 

  • Kawano K, Sasaki M, Yamashita M (1980) Vestibular input to visual tracking neurons in the posterior parietal association cortex of the monkey. Neurosci Lett 17:55–60.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki T, Sato Y (1981) Afferent projections to the caudal part of the dorsal nucleus of the raphe in cats. Brain Res 211:439–444.

    Article  CAS  PubMed  Google Scholar 

  • Keane PE, Soubrié P (1997) Animal models of integrated serotonergic functions: their predictive value for the clinical applicability of drugs interfering with serotonergic transmission. In: Baumgarten HG, Gothert M (eds) Serotonergic neurons and 55-HT receptors in the CNS. Berlin: Springer, pp. 707–725.

    Google Scholar 

  • Kerman IA, Yates BJ (1998) Regional and functional differences in the distribution of vestibular-sympathetic reflexes. Am J Physiol Reg Integ Comp Physiol 44:R828–R835.

    Google Scholar 

  • Kevetter GA, Perachio AA (1989) Projections from the sacculus to the cochlear nuclei in the mongolian gerbil. Brain Behav Evol 34:193–200.

    CAS  PubMed  Google Scholar 

  • Kirsten EB, Sharma JA (1976) Characteristics and response differences to iontophoretically applied norepinephrine, D-amphetamine and acetylcholine on neurons in the medial and lateral vestibular nuclei of the cat. Brain Res 112:77–90.

    Article  CAS  PubMed  Google Scholar 

  • Kishimoto T, Sasa M, Takaori S (1991) Inhibition of lateral vestibular nucleus neurons by 5-hydroxytryptamine derived from the dorsal raphe nucleus. Brain Res 553:229–237.

    Article  CAS  PubMed  Google Scholar 

  • Kolev OI, Altaparmakov IA (1996) Changes in the gastrointestinal electric pattern to motion sickness in susceptibles and insusceptibles during fasting. J Vestib Res 6:15–21.

    Article  CAS  PubMed  Google Scholar 

  • Korner PI (1971) Integrative neural cardiovascular control. Physiol Rev 51:312–367.

    CAS  PubMed  Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Cerebellar afferent projections from the vestibular nuclei in the cat: an experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31:591–604.

    CAS  PubMed  Google Scholar 

  • Kothe AC (1994) The effect of posture on intraocular pressure and pulsatile ocular blood flow in normal and glaucomatous eyes. Surv Ophthalmol Suppl 38:S191–S197.

    Google Scholar 

  • Kothe AC, Lovasik JV (1988) Neural effects of body inversion: photopic oscillatory potentials. Curr Eye Res 7:1221–1229.

    CAS  PubMed  Google Scholar 

  • Krieglstein GK, Langham ME (1975) Influence of body position on the intraocular pressure of normal and glaucomatous eyes. Ophthalmologica (Basel) 171:132–145.

    CAS  Google Scholar 

  • Kummer W, Fischer A, Kurkowski R, Heym C (1992) The sensory and sympathetic innervation of the guinea-pig lung and trachea as studied by retrograde neuronal tracing and double-labelling immunohistochemistry. Neuroscience 49:715–737.

    Article  CAS  PubMed  Google Scholar 

  • Kuo DC, DeGroat WC (1985) Primary afferent projections of the major splanchnic nerve to the spinal cord and nucleus gracilis of the cat. J Comp Neurol 231: 421–434.

    Article  CAS  PubMed  Google Scholar 

  • Kuo DC, Nadelhaft I, Hisamitsu T, DeGroat WC (1983) Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. J Comp Neurol 216:162–174.

    Article  CAS  PubMed  Google Scholar 

  • Kuo DC, Oravitz JJ, DeGroat WC (1984) Tracing of afferent and efferent pathways of the left inferior cardiac nerve of the cat using retrograde and transganglionic transport of horseradish peroxidase. Brain Res 321:111–118.

    Article  CAS  PubMed  Google Scholar 

  • La Noce A, Bradley DJ, Goring MA, Spyer KM (1991) The influence of lobule IX of the cerebellar posterior vermis on the baroreceptor reflex in the decerebrate rabbit. J Auton Nerv Syst 32:31–36.

    PubMed  Google Scholar 

  • Lam AKC, Douthwaite WA (1997) Does the change of anterior chamber depth or/and episcleral venous pressure cause intraocular pressure change in postural variation? Optom Vis Sci 74:664–667.

    CAS  PubMed  Google Scholar 

  • Langham ME (1975) Vascular pathology of the ocular postural response. A pneumotonographic study. Trans Ophthalmol Soc U K 95:281–287.

    CAS  PubMed  Google Scholar 

  • Leigh RJ, Zee DS (1991) The Neurology of Eye Movements, second edition Contemporary Neurology Series No. 35. Philadelphia: Davis.

    Google Scholar 

  • Leoni Lunensis D (1576) Ars medendi humanos, particuaresque; morbos à capite, usque; ad pedes. Bononiae: Apud Io. Rossium.

    Google Scholar 

  • Licata F, LiVolsi G, Maugeri G, Ciranna L, Santangelo F (1993a) Serotonin-evoked modifications of the neuronal firing rate in the superior vestibular nucleus. Neuroscience 52:941–949.

    Article  CAS  PubMed  Google Scholar 

  • Licata F, LiVolsi G, Maugeri G, Ciranna L, Santangelo F (1993b) Effects of noradrenaline on the firing rate of vestibular neurons. Neuroscience 53:149–158.

    Article  CAS  PubMed  Google Scholar 

  • Licata F, LiVolsi G, Maugeri G, Ciranna L, Santangelo F (1993c) Effects of 5-hydroxytryptamine on the firing rates of neurons in the lateral vestibular nucleus of rats. Exp Brain Res 79:293–298.

    Google Scholar 

  • Licata F, LiVolsi G, Maugeri G, Santangelo F (1995) Neuronal responses in vestibular nuclei to dorsal raphe electrical stimulation. J Vestib Res 5:137–145.

    Article  CAS  PubMed  Google Scholar 

  • Linder BJ, Trick GL (1987) Simulation of spaceflight with whole-body head-down tilt: influence on intraocular pressure and retinocortical processing. Aviat Space Environ Med Suppl 58:A139–A142.

    CAS  Google Scholar 

  • Linder BJ, Trick GL, Wolf ML (1988) Altering body position affects intraocular pressure and visual function. Invest Ophthalmol Vis Sci 29:1492–1497.

    CAS  PubMed  Google Scholar 

  • Lloyd TC (1983) Effect of inspiration on inferior caval blood flow in dogs. J Appl Physiol 55:1701–1708.

    PubMed  Google Scholar 

  • Loewy AD, Spyer KM (1990) Central Regulation of Autonomic Functions. New York: Oxford University Press.

    Google Scholar 

  • Lovasik JV, Kothe AC (1989) Ocular refraction with body orientation. Aviat Space Environ Med 60:321–328.

    CAS  PubMed  Google Scholar 

  • Lynch JC, Mountcastle VB, Talbot WH, Yin TCT (1977) Parietal lobe mechanisms for directed visual attention. J Neurophysiol 40:362–389.

    CAS  PubMed  Google Scholar 

  • Mameli O, Tolu E (1985) Visual input to the hypoglossal nucleus. Exp Neurol 90:341–349.

    Article  CAS  PubMed  Google Scholar 

  • Mameli O, Tolu E (1986) Vestibular ampullary modulation of hypoglossal neurons. Physiol Behav 37:773–775.

    Article  CAS  PubMed  Google Scholar 

  • Mameli O, Tolu E (1987) Hypoglossal responses to macular stimulation in the rabbit. Physiol Behav 39:273–275.

    Article  CAS  PubMed  Google Scholar 

  • Mameli O, Tolu E, Melis F, Caria MA (1988) Labyrinthine projection to the hypoglossal nucleus. Brain Res Bull 20:83–88.

    Article  CAS  PubMed  Google Scholar 

  • Manzoni D, Pompeiano O, Stampacchia G, Srivastava UC (1983) Responses of medullary reticulospinal cells to sinusoidal stimulation of labyrinth receptors in decerebrate cat. J Neurophysiol 50:1059–1079.

    CAS  PubMed  Google Scholar 

  • Manzoni D, Pompeiano O, Barnes CD, Stampacchia G, D’Ascanio P (1989a) Convergence and interaction of neck and macular vestibular inputs on locus coeruleus and subcoeruleus neurons. Pflügers Arch 413:580–598.

    Article  CAS  PubMed  Google Scholar 

  • Manzoni D, Pompeiano O, Barnes CD, Stampacchia G, D’Ascanio P (1989b) Responses of locus coeruleus neurons to convergent neck and vestibular inputs. Acta Otolaryngol (Stockh) 468:129–135.

    CAS  Google Scholar 

  • Markham CH, Estes MS, Blanks RHI (1973) Vestibular influences on ocular accommodation in cats. Int J Equilibrium Res 3:102–115.

    CAS  Google Scholar 

  • Markham CH, Diamond SG, Simpson NE (1977) Ocular accommodative changes in humans induced by positional changes with respect to gravity. Electroencephalog Clin Neurophysiol 42:332–340.

    CAS  Google Scholar 

  • Mayo H (1837) Outlines of Human Physiology, Fourth edition. London: Henry Renshaw and J. Churchill.

    Google Scholar 

  • McKelvey-Briggs DK, Saint-Cyr JA, Spence SJ, Partlow GD (1989) A reinvestigation of the spinovestibular projection in the cat using axonal transport techniques. Anat Embryol 180:281–291.

    Article  CAS  PubMed  Google Scholar 

  • Megirian D (1968) Vestibular control of laryngeal and phrenic motoneurons of cat. Arch Ital Biol 106:333–342.

    CAS  PubMed  Google Scholar 

  • Megirian D, Manning JW (1967) Input-output relations in the vestibular system. Arch Ital Biol 105:15–30.

    CAS  PubMed  Google Scholar 

  • Merrill EG (1974) Finding a respiratory function for the medullary respiratory neurons. In: Bellairs R, Gray EG (eds) Essays on the Nervous System. Oxford: Clarendon, pp. 451–486.

    Google Scholar 

  • Miller AD, Yamaguchi T, Siniaia MS, Yates BJ (1995) Ventral respiratory group bulbospinal inspiratory neurons participate in vestibular-respiratory reflexes. J Neurophysiol 73:1303–1307.

    CAS  PubMed  Google Scholar 

  • Miller AD, Nonaka S, Jakus J, Yates BJ (1996) Modulation of vomiting by the medullary midline. Brain Res 737:51–58.

    Article  CAS  PubMed  Google Scholar 

  • Mittelstaedt H (1996) Somatic graviception. Biol Psychol 42:53–74.

    Article  CAS  PubMed  Google Scholar 

  • Mittelstaedt H, Glasauer S (1993) Illusions of verticality in weightlessness. Clin Invest 71:732–739.

    Article  CAS  Google Scholar 

  • Mixter G (1953) Respiratory augmentation of inferior venal caval flow demonstrated by a low-resistance phasic flowmeter. Am J Physiol 172:446–456.

    PubMed  Google Scholar 

  • Miyazaki T, Yoshida YHMST, Kanaseki T (1981) Central location of the motoneurons supplying the thyrohyoid and the geniohyoid muscles as demonstrated by horseradish peroxidase method. Brain Res 219:423–427.

    Article  CAS  PubMed  Google Scholar 

  • Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168.

    Article  CAS  PubMed  Google Scholar 

  • Moreno AH, Burchell AR, Burke JH (1967) Respiratory regulation of splanchnic and systemic venous return. Am J Physiol 213:455–465.

    CAS  PubMed  Google Scholar 

  • Moruzzi G (1938) Action inhibitrice du paléocervelet sur les réflexes circulatoires et respiratoires d’origine sino-carotidienne. C R Soc Belge Biol 128: 533–538

    Google Scholar 

  • Moruzzi G (1940) Paleocerebellar inhibition of vasomotor and respiratory carotid sinus reflexes. J Neurophysiol 3:20–32.

    Google Scholar 

  • Moruzzi G (1950) Problems in Cerebellar Physiology. Springfield, IL: Charles C. Thomas.

    Google Scholar 

  • Motter B, Mountcastle VB (1981) The functional properties of the light-sensitive neurons of the posterior parietal cortex studied in waking monkeys: foveal sparring and opponent vector organization. J Neurosci 1:3–26.

    CAS  PubMed  Google Scholar 

  • Nakazawa K, Zheng Y, Umezaki T, Miller AD (1997) Vestibular inputs to bulbar respiratory interneurons in the cat. Neuroreport 8:3395–3398.

    CAS  PubMed  Google Scholar 

  • Nelson JG (1968) Effect of water immersion and body position upon perception of the gravitational vertical. Aerosp Med 39:806–811.

    CAS  PubMed  Google Scholar 

  • Neuhuber WL, Zenker W (1989) Central distribution of cervical primary afferents in the rat, with emphasis on proprioceptive projections to vestibular, perihypoglossal, and upper thoracic spinal nuclei. J Comp Neurol 280:231–253.

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AP, Pieribone VA, Hökfelt T (1993a) Cellular localization of messenger RNA for beta-1 and beta-2 adrenergic receptors in rat brain: an in situ hybridization study. Neuroscience 56:1024–1039.

    Article  Google Scholar 

  • Nicholas AP, Pieribone VA, Hökfelt T (1993b) Distribution of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328:575–594.

    Article  CAS  PubMed  Google Scholar 

  • Nisimaru N (1977) Depressant action of the posterior lobe of the cerebellum upon renal sympathetic nerve activity. Brain Res 133:371–375.

    Article  CAS  PubMed  Google Scholar 

  • Nisimaru N, Watanabe Y (1985) A depressant area in the lateral nodulus-uvula of the cerebellum for renal sympathetic nerve activity and systemic blood pressure in the rabbit. Neurosci Res 3:177–181.

    Article  CAS  PubMed  Google Scholar 

  • Nisimaru N, Yamamoto M, Shimoyama I (1984) Inhibitory effects of cerebellar cortical stimulation on sympathetic nerve activity in rabbits. Jpn J Physiol 34:539–551.

    CAS  PubMed  Google Scholar 

  • Nisimaru N, Okahara K, Nagao S (1991) Olivocerebellar projection to the cardiovascular zone of rabbit cerebellum. Neurosci Res 12:240–250.

    Article  CAS  PubMed  Google Scholar 

  • Noda H, Fujikado T (1987) Topography of the oculomotor area of the cerebellar vermis in macaques as determined by microstimulation. J Neurophysiol 58: 359–378.

    CAS  PubMed  Google Scholar 

  • Okahara K, Nisimaru N (1991) Climbing fiber responses evoked in lobule VII of the posterior cerebellum from the vagal nerve in rabbits. Neurosci Res 12:232–239.

    Article  CAS  PubMed  Google Scholar 

  • Paige GD, Tomko DL (1991a) Eye movement responses to linear head motion in the squirrel monkey. I. Basic characteristics. J Neurophysiol 65:1170–1182.

    CAS  PubMed  Google Scholar 

  • Paige GD, Tomko DL (1991b) Eye movement responses to linear head motion in the squirrel monkey. II. Visual-vestibular interactions and kinematic considerations. J Neurophysiol 65:1183–1196.

    CAS  PubMed  Google Scholar 

  • Paintal AS (1973) Vagal sensory receptors and their reflex effects. Physiol Rev 53:159–227.

    CAS  PubMed  Google Scholar 

  • Paton JFR, LaNoce A, Sykes RM, Sebastiani L, Bagnoli P, Gherlarducci B, Bradley DJ (1991) Efferent connections of lobule IX of the posterior cerebellar cortex in the rabbit—some functional considerations. J Auton Nerv Syst 36:209–224.

    Article  CAS  PubMed  Google Scholar 

  • Pazos A, Palacios J (1985a) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. I. Serotonin-1 receptors. Brain Res 346:205–230.

    CAS  PubMed  Google Scholar 

  • Pazos A, Palacios J (1985b) Quantitative autoradiographic mapping of serotonin receptors in the rat brain. II. Serotonin-2 receptors. Brain Res 346:231–249.

    CAS  PubMed  Google Scholar 

  • Person RJ (1989) Somatic and vagal afferent convergence on solitary tract neurons in cat: electrophysiological characteristics. Neuroscience 30:283–295.

    Article  CAS  PubMed  Google Scholar 

  • Pfaller K, Arvidsson J (1988) Central distribution of trigeminal as upper cervical primary afferents in the rat studied by anterograde transport of horseradish peroxidate conjugated to wheat germ agglutinin. J Comp Nerol 268:91–108.

    CAS  Google Scholar 

  • Pollack LL, Boshes B, Zivin I, Pyzik SW, Finkle JR, Tigay ELKBH, Arieff AJ, Finkelman I, Brown M, Dobin NB (1955) Body reflexes acting on the body. AMA Arch Neurol Psychiatry 74:527–533.

    Google Scholar 

  • Pompeiano O, Manzoni D, Srivastava UC, Stampacchia G (1984) Convergence and interaction of neck and macular vestibular inputs on reticulospinal cells. Neuroscience 12:111–128.

    Article  CAS  PubMed  Google Scholar 

  • Pompeiano O, Mazoni S, Marchand AR, Stampacchia G (1987) Effects of roll tilt and neck rotation on different size vestibulospinal neurons in decerebrate cats with the cerebellum intact. Pflügers Arch 409:24–38.

    Article  CAS  PubMed  Google Scholar 

  • Porter JD, Balaban CD (1997) Connections between the vestibular nuclei and regions that mediate autonomic function in the rat. J Vestib Res 7:63–76.

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar NR, Marek W, Lowschcke HH (1985) Altered breathing pattern elicited by stimulation of abdominal visceral afferents. J Appl Physiol 58:1755–1760.

    CAS  PubMed  Google Scholar 

  • Ramu A, Bergmann F (1966) The role of the cerebellum in blood pressure regulation. Experientia 23:383–384.

    Google Scholar 

  • Rasheed BMA, Manchanda SK, Anand BK (1970) Effects of stimulation of paleocerebellum on certain vegetative functions in the cat. Brain Res 20:293–308.

    Article  CAS  PubMed  Google Scholar 

  • Revelette R, Reynolds S, Brown D, Taylor R (1992) Effect of abdominal compression on diaphragmatic tendon organ activity. J Appl Physiol 72:288–292.

    CAS  PubMed  Google Scholar 

  • Road JD (1990) Phrenic afferents and ventilatory control. Lung 168:137–149.

    CAS  PubMed  Google Scholar 

  • Rocco AG, Vandam LD (1954) Changes in circulation consequent to manipulation during abdominal surgery. JAMA 164:14–18.

    Google Scholar 

  • Ross HE, Crickmar SD, Sills NV, Owen EP (1969) Orientation to the vertical in free divers. Aerosp Med 40:728–732.

    CAS  PubMed  Google Scholar 

  • Rossiter CD, Yates BJ (1996) Vestibular influences on hypoglossal nerve activity in the cat. Neurosci Lett 211:25–28.

    Article  CAS  PubMed  Google Scholar 

  • Rossiter CD, Hayden NL, Stocker SD, Yates BJ (1996) Changes in outflow to respiratory muscles produced by natural vestibular stimulation. J Neurophysiol 76:3274–3284.

    CAS  PubMed  Google Scholar 

  • Ruggiero DA, Mtui EP, Otake K, Anwar M (1996) Vestibular afferents to the dorsal vagal complex: substrate for vestibulo-autonomic interactions in the rat. Brain Res 743:294–302.

    Article  CAS  PubMed  Google Scholar 

  • Saint-Cyr JA, Woodward DJ (1980a) Activation of mossy and climbing fiber pathways to the cerebellar cortex by stimulation of the fornix in the rat. Exp Brain Res 40:1–12.

    CAS  PubMed  Google Scholar 

  • Saint-Cyr JA, Woodward DJ (1980b) A topographic analysis of limbic and somatic inputs to the cerebellar cortex in the rat. Exp Brain Res 40:13–22.

    CAS  PubMed  Google Scholar 

  • Sanborn GE, Friberg TR, Allen R (1987) Optic nerve dysfunction during gravity inversion. Arch Ophthalmol 105:774–776.

    CAS  PubMed  Google Scholar 

  • Sato A (1997) Neural mechanisms of autonomic responses elicited by somatic sensory information. Neurosci Behav Physiol 27:610–621.

    CAS  PubMed  Google Scholar 

  • Schöne H (1964) On the role of gravity in human spatial orientation. Aerosp Med 35:764–772.

    Google Scholar 

  • Schor RH, Steinbacher BC Jr, Yates BJ (1998) Horizontal linear and angular responses of neurons in the medial vestibular nucleus of the decerebrate cat. J Vestib Res 8(1):107–116.

    CAS  PubMed  Google Scholar 

  • Schreihofer AM, Sved AF (1994) The use of sinoaortic denervation to study the role of baroreceptors in cardiovascular regulation-special communication. Am J Physiol 266:R1705–R1710.

    CAS  PubMed  Google Scholar 

  • Schuerger RJ, Balaban CD (1993) Noradrenergic projections to the vestibular nuclei in monkey. Soc Neurosci Abstr 19:136.

    Google Scholar 

  • Schuerger RJ, Balaban CD (1999) Organization of the coeruleo-vestibular pathway in rats, rabbits and monkeys. Brain Res Rev 30:189–217.

    Article  CAS  PubMed  Google Scholar 

  • Scott AB, Morris A (1967) Visual field changes produced by artificially elevated intraocular pressure. Am J Ophthalmol 63:308–312.

    CAS  PubMed  Google Scholar 

  • Searles RV, Balaban CD, Severs WB (1996) Interaction between head-down tilt and anterior chamber infusions on intraocular pressure of anesthetized rats. Exp Eye Res 62:621–626.

    Article  CAS  PubMed  Google Scholar 

  • Sebastiani L, La Noce A, Paton JFR, Gherlarducci B (1992) Influence of the cerebellar posterior vermis on the acquisition of the classically conditioned bradycardic response in the rabbit. Exp Brain Res 88:193–198.

    Article  CAS  PubMed  Google Scholar 

  • Seltzer JL, Ritter DE, Starsnic MA, Marr AT (1985) The hemodynamic response to traction on the abdominal mesentery. Anesthesiology 63:96–99.

    CAS  PubMed  Google Scholar 

  • Shiba K, Siniaia MS, Miller AD (1996) Role of ventral respiratory group bulbospinal expiratory neurons in vestibular-respiratory reflexes. J Neurophysiol 76:2271–2279.

    CAS  PubMed  Google Scholar 

  • Shinoda Y, Ohgaki T, Futami T (1986) The morphology of single lateral vestibulospinal tract axons in the lower cervical spinal cord of the cat. J Comp Neurol 249:226–241.

    Article  CAS  PubMed  Google Scholar 

  • Shinoda Y, Ohgaki T, Sugiuchi Y, Futami T (1989) Comparison of the branching patterns of lateral and medial vestibulospinal tract axons in the cervical spinal cord. Prog Brain Res 80:137–147.

    CAS  PubMed  Google Scholar 

  • Siegel RE (1976) Galen On the Affected Parts. Translation of De locis affectus. Basel: S. Karger, pp. 98–99.

    Google Scholar 

  • Siniaia MS, Miller AD (1996) Vestibular effects on upper airway musculature. Brain Res 736:160–164.

    Article  CAS  PubMed  Google Scholar 

  • Smith BH (1953) Nature and treatment of the celiac-plexus reflex in man. Lancet 2:223–227.

    Google Scholar 

  • Sokolov YN (1963) Perception and the Conditioned Reflex. New York: Pergamon Press/MacMillan Company.

    Google Scholar 

  • Somana R, Walberg F (1979) The cerebellar projection from the parabrachial nucleus in the cat. Brain Res 172:144–149.

    Article  CAS  PubMed  Google Scholar 

  • Spiegel EA (1936) Respiratory reactions upon vertical movements. Am J Physiol 117:349–354.

    Google Scholar 

  • Spiegel EA (1946) Effect of labyrinthine reflexes on the vegetative nervous system. Arch Otolaryngol 44:61–72.

    Google Scholar 

  • Spiegel EA, Démétriades TD (1922) Beiträge zum Studium des vegetativen Nervensystems. III. Metteilung. Der einflub des Vestibularapparates auf das Gefäβsystem. Pflügers Arch 196:185–199

    Google Scholar 

  • Spiegel EA, Démétriades TD (1924) Beiträge zum Studium des vegetativen Nervensystems. VII. Metteilung. Der zentrale Mechanismus der vestibulären Blutdrucksenkung und ihre Bedeutung für die Entstehung des Labyrinthschwindels. Pflügers Arch 205:328–337

    Article  Google Scholar 

  • Spiegel EA, Sommer I (1944) Vestibular mechanisms. In: Glasser O (ed) Medical Physics. Chicago: Year Book Publishers, Volume 1, pp. 1638–1653.

    Google Scholar 

  • Steinbacher BC, Yates BJ (1996a) Brainstem neurons necessary for vestibular influences on sympathetic outflow. Brain Res 720:204–210.

    CAS  PubMed  Google Scholar 

  • Steinbacher BC, Yates BJ (1996b) Processing of vestibular and other inputs by the caudal ventrolateral reticular formation. Am J Physiol Regul Integ Comp Physiol 40:R1070–R1077.

    Google Scholar 

  • Steinbusch HWM (1991) Distribution of histaminergic neurons and fibers in rat brain. Comparison with noradrenergic and serotonergic innervation of the vestibular system. Acta Otolaryngol (Stockh) Suppl 479:12–23.

    CAS  Google Scholar 

  • Stewart TG (1898) Lectures on Giddiness and Hysteria in the Male, second edition. Edinburgh and London: Young J. Pentland.

    Google Scholar 

  • Stocker SD, Steinbacher BC, Balaban CD, Yates BJ (1997) Connections of the caudal ventrolateral medullary reticular formation in the cat brainstem. Exp Brain Res 116:270–282.

    Article  CAS  PubMed  Google Scholar 

  • Stürup G, Bolton B, Williams DJ, Carmichael EA (1935) Vasomotor responses in hemiplegic patients. Brain 58:456–469.

    Google Scholar 

  • Supple WF Jr, Kapp BS (1994) Anatomical and physiological relationships between the anterior cerebellar vermis and the pontine parabrachial nucleus in the rabbit. Brain Res Bull 33:561–574.

    Article  PubMed  Google Scholar 

  • Supple WF Jr, Leaton RN (1990) Cerebellar vermis: essential for classically conditioned bradycardia in the rat. Brain Res 509:17–23.

    Article  PubMed  Google Scholar 

  • Takata M, Robotham JL (1992) Effects of diaphragm descent on inferior vena caval venous return. J Appl Physiol 72:597–607.

    CAS  PubMed  Google Scholar 

  • Tan J, Gerrits NM, Nanhoe R, Simpson JI, Voogd J (1995) Zonal organization of the climbing fiber projection to the flocculus and nodulus of the rabbit: a combined axonal tracing and acetylcholinesterase histochemistry tracing study. J Comp Neurol 356:23–50.

    CAS  PubMed  Google Scholar 

  • Tang PC, Gernandt BE (1969) Autonomic responses to vestibular stimulation. Exp Neurol 24:558–578.

    Article  CAS  PubMed  Google Scholar 

  • Thompson DG, Richelson E, Malagelada J-R (1982) Perturbation of gastric emptying and duodenal motility through the central nervous system. Gastroenterology 83:1200–1206.

    CAS  PubMed  Google Scholar 

  • Tong G, Robertson LT, Brons J (1993) Climbing fiber representation of the renal afferent nerve in the vermal cortex of the cat cerebellum. Brain Res 601:65–75.

    Article  CAS  PubMed  Google Scholar 

  • Uchino Y, Kudo N, Tsuda K, Iwamura Y (1970) Vestibular inhibition of sympathetic nerve activities. Brain Res 22:195–206.

    Article  CAS  PubMed  Google Scholar 

  • Uemura M, Matsuda K, Kume M, Takeuchi Y, Matsushima R, Mizuno N (1979) Topographical arrangement of hypoglossal motoneurons: an HRP study in the cat. Neurosci Lett 13:99–104.

    Article  CAS  PubMed  Google Scholar 

  • Umezaki T, Zheng Y, Shiba K, Miller AD (1997) Role of nucleus retroambigualis in respiratory reflexes evoked by superior laryngeal and vestibular nerve afferents in emesis. Brain Res 769:347–356.

    Article  CAS  PubMed  Google Scholar 

  • Ventre J, Faugier-Grimaud S (1988) Projections of the temporo-parietal cortex on vestibular complex in the macaque monkey (Macaca fascicularis). Exp Brain Res 72:653–658.

    Article  CAS  PubMed  Google Scholar 

  • Waldrop TG, Eldridge FL, Iwamoto GA, Mitchell JH (1996) Central neural control of respiration and circulation during exercise. In: Rowell LB, Shepherd JT (eds) Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. New York: American Physiological Society/Oxford University Press, pp. 333–380.

    Google Scholar 

  • Wanaka A, Kiyama H, Murakami T, Matsumoto M, Kamada T, Malbon CC, Tohyama M (1989) Immunohistochemical localization of b-adrenergic receptors in rat brain. Brain Res 485:125–140.

    Article  CAS  PubMed  Google Scholar 

  • West JB (1977) Regional Differences in the Lung. New York: Academic Press.

    Google Scholar 

  • West JB, Elliott AR, Guy HJB, Prisk GK (1997) Pulmonary function in space. JAMA 277:1957–1961.

    Article  CAS  PubMed  Google Scholar 

  • Wiggers K (1943) The influence of the cerebellum on the heart and circulation of the blood. II. Arch Physiol (Neerl) 27:301–303.

    Google Scholar 

  • Willis T (1692) The London Practice of Physick, being the Practical Part of Physick Contain’d in the Works of the Famous Dr. Willis. London: T. Basset, T. Dring, C. Harper and W Crook.

    Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian Vestibular Physiology. New York: Plenum.

    Google Scholar 

  • Wilson VJ, Yamagata Y, Yates BJ, Schor RH, Nonaka S (1990) Response of vestibular neurons to head rotations in vertical planes. III. Responses of vestibulocollic neurons to vestibular and neck stimulation. J Neurophysiol 64:1695–1703.

    CAS  PubMed  Google Scholar 

  • Wolfe JW, Brown JH (1969) Effects of sleep deprivation on the vestibulo-ocular reflex. Aerosp Med 39:947–949.

    Google Scholar 

  • Woodring SF, Yates BJ (1997) Responses of ventral respiratory group neurons of the cat to natural vestibular stimulation. Am J Physiol Regul Integr Comp Physiol 42:R1946–R1956.

    Google Scholar 

  • Woodring SF, Rossiter CD, Yates BJ (1997) Pressor response elicited by nose-up vestibular stimulation in cats. Exp Brain Res 113:165–168.

    CAS  PubMed  Google Scholar 

  • Woodworth RS, Schlosberg H (1954) Experimental Psychology (Revised edition). New York: Henry Holt and Company.

    Google Scholar 

  • Yamamoto C (1967) Pharmacologic studies of norepinephrine, acetylcholine and related compounds on neurons in Deiters’ nucleus and the cerebellum. J Pharmacol Exp Ther 156:39–47.

    CAS  PubMed  Google Scholar 

  • Yates BJ, Miller AD (1994) Properties of sympathetic reflexes elicited by natural vestibular stimulation: implications for cardiovascular control. J Neurophysiol 71:2087–2092.

    CAS  PubMed  Google Scholar 

  • Yates BJ, Mickle JP, Hedden WJ, Thompson FJ (1987) Tracing of afferent pathways from the femoral-saphenous vein to dorsal root ganglia using transport of horseradish peroxidase. J Auton Nerv Syst 20:1–11.

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Yamagata Y, Bolton PS (1991) The ventrolateral medulla of the cat mediates vestibulosympathetic reflexes. Brain Res 552:265–272.

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Goto T, Bolton PS (1993a) Responses of neurons in rostral ventrolateral medulla of the cat to natural stimulation. Brain Res 601:255–264.

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Goto T, Kerman I, Bolton PS (1993b) Responses of caudal medullary raphe neurons to natural vestibular stimulation. J Neurophysiol 70:938–946.

    CAS  PubMed  Google Scholar 

  • Yates BJ, Jakus J, Miller AD (1993c) Vestibular effects on respiratory outflow in the decerebrate cat. Brain Res 629:209–217.

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Grelot L, Kerman IA, Balaban CD, Jakus J, Miller AD (1994) The organization of vestibular inputs to nucleus tractus solitarius (NTS) and adjacent structures in the cat brainstem. Am J Physiol 267:R974–R983.

    CAS  PubMed  Google Scholar 

  • Yates BJ, Balaban CD, Miller AD, Endo K, Yamaguchi Y (1995a) Vestibular inputs to the lateral tegmental field of the cat: potential role in autonomic control. Brain Res 689:197–206.

    Article  CAS  PubMed  Google Scholar 

  • Yates BJ, Siniaia MS, Miller AD (1995b) Descending pathways necessary for vestibular influences on sympathetic and inspiratory outflow. Am J Physiol Regul Integr Comp Physiol 37:R1381–R1385.

    Google Scholar 

  • Yates BJ, Jian BJ, Cotter LA, Cass SP (2000) Responses of vestibular nucleus neurons to tilt following chronic bilateral removal of vestibular inputs. Exp Brain Res 130:151–158.

    Article  CAS  PubMed  Google Scholar 

  • Youmans WB, Tjioe DT, Tong EY (1974) Control of involuntary activity of abdominal muscles. Am J Phys Med 53:57–74.

    CAS  PubMed  Google Scholar 

  • Zhang SP, Davis PJ, Carrive P, Bandler R (1992) Vocalization and marked pressor effect evoked from the region of nucleus retroambigualis in the caudal ventral medulla of the cat. Neurosci Lett 140:103–107.

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Umezaki T, Nakazawa K, Miller AD (1997) Role of pre-inspiratory neurons in vestibular and laryngeal reflexes and in swallowing and vomiting. Neurosci Lett 225:161–164.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Balaban, C.D., Yates, B.J. (2004). Vestibuloautonomic Interactions: A Teleologic Perspective. In: Highstein, S.M., Fay, R.R., Popper, A.N. (eds) The Vestibular System. Springer Handbook of Auditory Research, vol 19. Springer, New York, NY. https://doi.org/10.1007/0-387-21567-0_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-21567-0_7

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98314-1

  • Online ISBN: 978-0-387-21567-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics