Skip to main content

Localizing Sites for Plasticity in the Vestibular System

  • Chapter
The Vestibular System

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 19))

4.4. Conclusions

The identification of potential sites for plasticity in the VOR has thus far been limited mainly to the investigation of very specific signal components that are modified following a particular reflex-training paradigm (i.e., broadband reflex training). Yet, the richness of different behavioral observations associated with different training paradigms points to the existence of multiple potential adaptation sites within the VOR pathways and the use of different adaptation strategies that thus far remain virtually unexplored. Although the ability to explicitly localize sites for plasticity to individual cells is currently limited by incomplete knowledge of network structure, the use of innovative analysis and modeling approaches that are less sensitive to a priori assumptions can aid in conceptualizing such strategies and in identifying additional sites for plasticity. At the present time, therefore, an apparent step back toward more process-oriented models and interpretation may be required to make further progress in identifying sites for plasticity at the level of individual neurons. Hence, despite much progress in identifying the neural correlates for motor learning in the VOR, the story is far from complete. The VOR system remains an excellent model system for the investigation of the neural correlates for motor learning and in particular for investigating learning strategies that are context-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akaike H (1973) Information theory and extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) 2nd Intl Symposium on Information Theory. Budapest: Akademiai Kiado, pp. 267–281.

    Google Scholar 

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61.

    Article  Google Scholar 

  • Angelaki DE, Hess BJM (1998) Visually induced adaptation in three dimensional organization of primate vestibuloocular reflex. J Neurophysiol 79:791–807.

    CAS  PubMed  Google Scholar 

  • Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 11:480–487.

    Google Scholar 

  • Baker JF, Harrison REW, Isu N, Wickland C, Peterson B (1986) Dynamics of adaptive change in vestibuloocular reflex. II. Sagittal plane rotations. Brain Res 371: 166–170.

    Article  CAS  PubMed  Google Scholar 

  • Baker JF, Wickland C, Peterson BW (1987) Dependence of cat vestibuloocular reflex direction adaptation on animal orientation during adaptation and rotation in darkness. Brain Res 408:339–343.

    Article  CAS  PubMed  Google Scholar 

  • Baker R, Precht W, Llinas R (1972) Cerebellar modulatory action on the vestibulotrochlear pathway in the cat. Exp Brain Res 15:364–385.

    Article  CAS  PubMed  Google Scholar 

  • Barnes GR (1993) Visual-vestibular interaction in the control of head and eye movement: the role of visual feedback and predictive mechanisms. Prog Neurobiol 41:435–472.

    Article  CAS  PubMed  Google Scholar 

  • Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399.

    Article  CAS  PubMed  Google Scholar 

  • Bello S, Paige GD, Highstein SM (1991) The squirrel monkey vestibuloocular reflex and adaptive plasticity in yaw, pitch and roll. Exp Brain Res 87:57–66.

    Article  CAS  PubMed  Google Scholar 

  • Bliss TV, Collingridge GL (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31–39.

    Article  CAS  PubMed  Google Scholar 

  • Brindley CS (1964) The use made by the cerebellum of the information that it receives from sense organs. Int Brain Res Org Bull 3:80.

    Google Scholar 

  • Brontë-Stewart HM, Lisberger SG (1994) Physiological properties of vestibular primary afferents that mediate motor learning and normal performance of the vestibulo-ocular reflex in monkeys. J Neurosci 14:1290–1308.

    PubMed  Google Scholar 

  • Broussard DM, Lisberger SG (1992) Vestibular inputs to brain stem neurons that participate in motor learning in the primate vestibuloocular reflex. J Neurophysiol 68:1906–1909.

    CAS  PubMed  Google Scholar 

  • Broussard DM, Bronte-Stewart HM, Lisberger SG (1992) Expression of motor learning in the response of the primate vestibuloocular reflex pathway to electrical stimulation. J Neurophysiol 67:1493–1508.

    CAS  PubMed  Google Scholar 

  • Bures J, Fenton AA, Kaminsky Y, Zinyuk L (1997) Place cells and place navigation. Proc Natl Acad Sci U.S.A 94:343–350.

    Article  CAS  PubMed  Google Scholar 

  • Cannon SC, Robinson DA (1987) Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey. J Neurophysiol 57:1383–1409.

    CAS  PubMed  Google Scholar 

  • Cheron G, Godaux E (1987) Disabling of the oculomotor neural integrator by kainic acid injections in the prepositus-vestibular complex of the cat. J Physiol (Lond) 394:267–290.

    CAS  Google Scholar 

  • Clendaniel RA, Lasker DM, Minor LB (2001) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation. J Neurophysiol 86:1594–1611.

    CAS  PubMed  Google Scholar 

  • Collewijn H, Grootendorst AF (1979) Adaptation of optokinetic and vestibuloocular reflexes to modified visual input in the rabbit. Prog Brain Res 50:772–781.

    Google Scholar 

  • Collewijn H, Martins AJ, Steinman RM (1983) Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification. J Physiol (Lond) 340:259–286.

    CAS  Google Scholar 

  • Cullen KE, McCrea RA (1993) Firing behavior of brain stem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. I. Secondary vestibular neurons. J Neurophysiol 70:828–843.

    CAS  PubMed  Google Scholar 

  • Cullen KE, Chen-Huang C, McCrea RA (1993) Firing behavior of brainstem neurons during voluntary cancellation of the horizontal vestibuloocular reflex. II. Eye movement related neurons. J Neurophysiol 70:844–856.

    CAS  PubMed  Google Scholar 

  • Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural, and clinical consequences of unilateral vestibular loss. J Vestib Res 5:67–107.

    Article  CAS  PubMed  Google Scholar 

  • Daniel H, Levenes C, Crepel F (1998) Cellular mechanisms of cerebellar LTD. Trends Neurosci 21:401–407.

    Article  CAS  PubMed  Google Scholar 

  • Dieringer N (1995) “Vestibular compensation”: neural plasticity and its relations to functional recovery after labyrinthine lesions in frogs and other vertebrates. Prog Neurobiol 46:97–129.

    Article  CAS  PubMed  Google Scholar 

  • Dufosse M, Ito M, Jastreboff PJ, Miyashita Y (1978) A neuronal correlate in rabbit’s cerebellum to adaptive modification of the vestibuloocular reflex. Brain Res 150:611–616.

    Article  CAS  PubMed  Google Scholar 

  • du Lac S, Raymond JL, Sejnowski TJ, Lisberger SG (1995) Learning and memory in the vestibuloocular reflex. Annu Rev Neurosci 18:409–441.

    Article  PubMed  Google Scholar 

  • Escudero M, De La Cruz RR, Delgado-Garcia JM (1992) A physiological study of vestibular and prepositus hypoglossi neurones projecting to the abducens nucleus in the alert cat. J Physiol (Lond) 458:539–560.

    CAS  Google Scholar 

  • Fujita M (1982) Adaptive filter model of the cerebellum. Biol Cybern 45:195–206.

    CAS  PubMed  Google Scholar 

  • Galiana HL (1986) A new approach to understanding adaptive visual-vestibular interactions in the central nervous system. J Neurophysiol 55:349–374.

    CAS  PubMed  Google Scholar 

  • Galiana HL, Green AM (1998) Vestibular adaptation: how models can affect data interpretations. Otolaryngol Head Neck Surg 119:231–243.

    Article  CAS  PubMed  Google Scholar 

  • Galiana HL, Outerbridge JS (1984) A bilateral model for central neural pathways in the vestibulo-ocular reflex. J Neurophysiol 51:210–241.

    CAS  PubMed  Google Scholar 

  • Gauthier GM, Robinson DA (1975) Adaptation of the human vestibuloocular reflex to magnifying lenses. Brain Res 92:331–335.

    Article  CAS  PubMed  Google Scholar 

  • Godaux E, Halleux J, Gobert C (1983) Adaptive change of the vestibuloocular reflex in the cat: the effects of a longterm frequency selective procedure. Exp Brain Res 49:28–34.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg JM, Fernández C (1971) Physiology of peripheral neurons innervating semicircular canals of the squirrel monkey. I. Resting discharge and response to constant angular accelerations. J Neurophysiol 34:635–660.

    CAS  PubMed  Google Scholar 

  • Gomi H, Kawato M (1992) Adaptive feedback control models of the vestibulocerebellum and spinocerebellum. Biol Cybern 68:105–114.

    Article  CAS  PubMed  Google Scholar 

  • Gonshor A, Melvill Jones G (1971) Plasticity in the adult human vestibuloocular reflex arc. Proc Can Fed Biol Soc 14:11.

    Google Scholar 

  • Gonshor A, Melvill Jones G (1976a) Shortterm adaptive changes in the human vestibuloocular reflex arc. J Physiol (Lond) 256:361–379.

    Google Scholar 

  • Gonshor A, Melvill Jones G (1976b) Extreme vestibuloocular adaptation induced by prolonged optical reversal of vision. J Physiol (Lond) 256:381–414.

    Google Scholar 

  • Green AM (2000) Visual-vestibular interaction in a bilateral model of the rotational and translational vestibulo-ocular reflexes: an investigation of viewing-context-dependent reflex performance. Ph.D. Thesis, McGill University, Montreal, Canada.

    Google Scholar 

  • Green A, Galiana HL (1996) Exploring sites for short-term VOR modulation using a bilateral model. Ann N Y Acad Sci 781:625–628.

    CAS  PubMed  Google Scholar 

  • Harrison REW, Baker JF, Isu N, Wickland CR, Peterson BW (1986) Dynamics of adaptive change in vestibuloocular reflex direction. I. Rotation in the horizontal plane. Brain Res 371:162–165.

    Article  CAS  PubMed  Google Scholar 

  • Highstein SM (1973) Synaptic linkage in the vestibulo-ocular and cerebello-vestibular pathways to the VIth nucleus in the rabbit. Exp Brain Res 17:301–314.

    CAS  PubMed  Google Scholar 

  • Highstein SM (1998) Role of the flocculus of the cerebellum in motor learning of the vestibulo-ocular reflex. Otolaryngol Head Neck Surg 119:212–220.

    Article  CAS  PubMed  Google Scholar 

  • Highstein SM, Partsalis A, Arikan R (1997) Role of Y-group of the vestibular nuclei and flocculus of the cerebellum in motor learning of the vertical vestibulo-ocular reflex. Prog Brain Res 114:383–397.

    CAS  PubMed  Google Scholar 

  • Hirata Y, Highstein SM (2001) Acute adaptation of the vestibuloocular reflex: signal processing by floccular and ventral parafloccular Purkinje cells. J Neurophysiol 85:2267–2288.

    CAS  PubMed  Google Scholar 

  • Hirata Y, Lockard JM, Highstein SM (2002) Capacity of vertical VOR adaptation in squirrel monkey. J Neurophysiol 88:3194–3207.

    CAS  PubMed  Google Scholar 

  • Hirata Y, Takeuchi I, Highstein SM (2003) A dynamical model for the vertical vestibuloocular reflex and optokinetic response in primate. Neurocomputing 52–54:531–540.

    PubMed  Google Scholar 

  • Ito M (1972) Neural design of the cerebellar motor control system. Brain Res 40:81–84.

    Article  CAS  PubMed  Google Scholar 

  • Ito M (1989) Long-term depression. Annu Rev Neurosci 12:85–102.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Shiida T, Yagi N, Yamamoto M (1974) The cerebellar modification of rabbit’s horizontal vestibuloocular reflex induced by sustained head rotation combined with visual stimulation. Proc Jpn Acad 50:85–89.

    Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1977) Specific patterns of neuronal connexions involved in the control of the rabbit’s vestibulo-ocular reflexes by the cerebellar flocculus. J Physiol (Lond) 265:833–854.

    CAS  Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1981) Evidence for modifiability of parallel fiber-Purkinje cell synapses. In: Szentagothai J, Hamori J, Palkovits M (eds) Advances in Physiological Sciences, Volume 2. Oxford: Pergamon Press, pp. 97–105.

    Google Scholar 

  • Ito M, Sakurai M, Tongroach P (1982) Climbing fibre induced depression of both mossy fibre responsiveness and glutamate sensitivity of cerebellar Purkinje cells. J Physiol (Lond) 324:113–134.

    CAS  Google Scholar 

  • Kaneko CR (1997) Eye movement deficits after ibotenic acid lesions of the nucleus preositus hypoglossi in monkeys. I. Saccades and fixation. J Neurophysiol 78:1753–1768.

    CAS  PubMed  Google Scholar 

  • Kaneko CR (1999) Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. II. Pursuit, vestibular, and optokinetic responses. J Neurophysiol 81:668–681.

    CAS  PubMed  Google Scholar 

  • Keller EL, Precht W (1979) Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. J Neurophysiol 42:896–911.

    CAS  PubMed  Google Scholar 

  • Khater TT, Quinn KJ, Pena J, Baker JF, Peterson BW (1993) The latency of the cat vestibulo-ocular reflex before and after shortterm and longterm adaptation. Exp Brain Res 94:16–32.

    Article  CAS  PubMed  Google Scholar 

  • Kim JJ, Thompson RF (1997) Cerebellar circuits and synaptic mechanisms involved in classical eyeblink conditioning. Trends Neurosci 20:177–181.

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Kawano K, Takemura A, Inoue Y, Kitama T, Gomi H, Kawato M (1998) Temporal firing patterns of Purkinje cells in the cerebellar ventral parafloccular during ocular following responses in monkeys. II. Complex spikes. J Neurophysiol 80:832–848.

    CAS  PubMed  Google Scholar 

  • Kramer PD, Shelhamer M, Zee DS (1995) Short-term adaptation of the phase of the vestibulo-ocular reflex (VOR) in normal human subjects. Exp Brain Res 106:318–326.

    Article  CAS  PubMed  Google Scholar 

  • Kramer PD, Shelhamer M, Peng GCY, Zee DS (1998) Context-specific short-term adaptation of the phase of the vestibulo-ocular reflex. Exp Brain Res 120:184–192.

    Article  CAS  PubMed  Google Scholar 

  • Kukreja S, Galiana HL, Smith HLH, Kearney RE (1999) Parametric identification of non-linear hybrid systems. Proc BMES/IEEE-EMBS Ann Conf 21:991.

    Google Scholar 

  • Lisberger SG (1984) The latency of pathways containing the site of motor learning in the monkey vestibulo-ocular reflex. Science 225:74–76.

    CAS  PubMed  Google Scholar 

  • Lisberger SG (1988) The neural basis for learning of simple motor skills. Science 242:728–735.

    CAS  PubMed  Google Scholar 

  • Lisberger SG (1994) Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning. J Neurophysiol 72:974–998.

    CAS  PubMed  Google Scholar 

  • Lisberger SG (1998) Physiologic basis for motor learning in the vestibulo-ocular reflex. Otolaryngol Head Neck Surg 119:43–48.

    Article  CAS  PubMed  Google Scholar 

  • Lisberger SG, Fuchs AF (1978) Role of primate flocculus during rapid behavioral modification of vestibuloocular reflex. I. Purkinje cell activity during visually guided horizontal smooth-pursuit eye movements and passive head rotation. J Neurophysiol 41:733–763.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Miles FA (1980) Role of primate medial vestibular nucleus in longterm adaptive plasticity of vestibuloocular reflex. J Neurophysiol 43:1725–1745.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA (1986) Vestibular signals carried by pathways subserving plasticity of the vestibulo-ocular reflex. J Neurosci 6:346–354.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA (1988) Brain stem neurons in modified pathways for motor learning in the primate vestibulo-ocular reflex. Science 242:771–773.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Sejnowski TJ (1992) Motor learning in a recurrent network model based on the vestibulo-ocular reflex. Nature 360:159–161.

    Article  CAS  PubMed  Google Scholar 

  • Lisberger S, Evinger C, Johanson G, Fuchs A (1981) Relationship between eye acceleration and retinal image velocity during foveal smooth pursuit in man and monkey. J Neurophysiol 46:229–249.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Miles FA, Optican LM (1983) Frequency-selective adaptation: evidence for channels in the vestibulo-ocular reflex? J Neurosci 3:1234–1244.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Miles FA, Zee DS (1984) Signals used to compute errors in monkey vestibuloocular reflex: possible role of flocculus. J Neurophysiol 52:1140–1153.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA, Broussard DM (1994a) Responses during eye movements of brain stem neurons that receive monosynaptic inhibition from the flocculus and ventral paraflocculus in monkeys. J Neurophysiol 72:909–927.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA, Broussard DM (1994b) Neural basis for motor learning in the vestibuloocular reflex of primates. I. Changes in responses of brain stem neurons. J Neurophysiol 72:928–953.

    CAS  PubMed  Google Scholar 

  • Lisberger SG, Pavelko TA, Brontë-Stewart HM, Stone LS (1994c) Neural basis for motor learning in the vestibuloocular reflex of primates. II. Changes in the responses of horizontal gaze velocity Purkinje cells in the cerebellar flocculus and ventral paraflocculus. J Neurophysiol 72:954–973.

    CAS  PubMed  Google Scholar 

  • Llinás R, Lang EJ, Welsh JP (1997) The cerebellum, LTD, and memory: alternative views. Learn Mem 3:445–455.

    PubMed  Google Scholar 

  • Lopez-Barneo J, Ribas J, Delgado-Garcia JM (1981) Identification of prepositus neurons projecting to the oculomotor nucleus in the cat. Brain Res 214:174–179.

    Article  CAS  PubMed  Google Scholar 

  • Luebke AE, Robinson DA (1994) Gain changes of the cat’s vestibulo-ocular reflex after flocculus deactivation. Exp Brain Res 98:379–390.

    Article  CAS  PubMed  Google Scholar 

  • Marmarelis PD, Marmarelis VZ (1978) Analysis of physiological systems. New York: Plenum Press.

    Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiol (Lond) 202:437–470.

    CAS  Google Scholar 

  • Mauk MD (1997) Roles of cerebellar cortex and nuclei in motor learning: contradictions or clues? Neuron 18:343–346.

    Article  CAS  PubMed  Google Scholar 

  • Mauk MD, Garcia KS, Medina JF, Steele PM (1998) Does cerebellar LTD mediate motor learning? Toward a resolution without a smoking gun. Neuron 20:359–362.

    Article  CAS  PubMed  Google Scholar 

  • McCrea RA, Yoshida K, Evinger C, Berthoz A (1981) The location, axonal arborization and termination sites of eye-movement-related secondary vestibular neurons demonstrated by intra-axonal HRP injection in the alert cat. In: Fuchs A, Becker W (eds) Progress in Oculomotor Research. Amsterdam: Elsevier, pp. 379–386.

    Google Scholar 

  • McCrea RA, Strassman A, May A, Highstein SM (1987) Anatomical and physiological characteristics of vestibular neurons mediating the horizontal vestibulo-ocular reflex of the squirrel monkey. J Comp Neurol 264:547–570.

    CAS  PubMed  Google Scholar 

  • McElligott JG, Beeton P, Polk J (1998) Effect of cerebellar inactivation by lidocaine microdialysis on the vestibuloocular reflex in goldfish. J Neurophysiol 79:1286–1294.

    CAS  PubMed  Google Scholar 

  • McFarland JL, Fuchs AF (1992) Discharge patterns in nucleus prepositus hypoglossi and adjacent medial vestibular nucleus during horizontal eye movement in behaving macaques. J Neurophysiol 68:319–332.

    CAS  PubMed  Google Scholar 

  • McNaughton BL (1998) The neurophysiology of reminiscence. Neurobiol Learn Mem 70:252–267.

    Article  CAS  PubMed  Google Scholar 

  • Melvill Jones G, Davies P (1976) Adaptation of cat vestibulo-ocular reflex to 200 days of optically reversed vision. Brain Res 103:551–554.

    Article  Google Scholar 

  • Mettens P, Godaux E, Cheron G, Galiana HL (1994) Effect of muscimol micro-injections into the prepositus hypoglossi and the medial vestibular nuclei on cat eye movements. J Neurophysiol 72:785–802.

    CAS  PubMed  Google Scholar 

  • Miles FA, Eighmy BB (1980) Long-term adaptive changes in primate vestibuloocular reflex. I. Behavioral observations. J Neurophysiol 43:1406–1425.

    CAS  PubMed  Google Scholar 

  • Miles FA, Fuller JH (1974) Adaptive plasticity in the vestibulo-ocular responses of the rhesus monkey. Brain Res 80:512–516.

    Article  CAS  PubMed  Google Scholar 

  • Miles FA, Lisberger SG (1981) Plasticity in the vestibulo-ocular reflex: a new hypothesis. Annu Rev Neurosci 4:273–299.

    Article  CAS  PubMed  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980a) Long-term adaptive changes in primate vestibuloocular reflex. III. Electrophysiological observations in flocculus of normal monkeys. J Neurophysiol 43:1437–1476.

    CAS  PubMed  Google Scholar 

  • Miles FA, Braitman DJ, Dow BM (1980b) Long-term adaptive changes in primate vestibuloocular reflex. IV. Electrophysiological observations in flocculus of adapted monkeys. J Neurophysiol 43:1477–1493.

    CAS  PubMed  Google Scholar 

  • Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I. Normal responses. J Neurophysiol 82:1254–1270.

    CAS  PubMed  Google Scholar 

  • Nagao S (1983) Effects of vestibulocerebellar lesions upon dynamic characteristics and adaptation of vestibulo-ocular and optokinetic responses in pigmented rabbits. Exp Brain Res 53:36–46.

    Article  CAS  PubMed  Google Scholar 

  • Nagao S (1989) Behavior of floccular Purkinje cells correlated with adaptation of vestibulo-ocular reflex in pigmented rabbits. Exp Brain Res 77:531–540.

    CAS  PubMed  Google Scholar 

  • Neville HJ, Bavelier D (1998) Neural organization and plasticity of language. Curr Opin Neurobiol 8:254–258.

    Article  CAS  PubMed  Google Scholar 

  • Nikias CL, Raghuveer MR (1987) Bispectrum estimation: a digital signal processing framework. Proc IEEE 75:869–891.

    Google Scholar 

  • Paige GD (1983a) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. I. Response characteristics in normal animals. J Neurophysiol 49:134–151.

    CAS  PubMed  Google Scholar 

  • Paige GD (1983b) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. J Neurophysiol 49:152–168.

    CAS  PubMed  Google Scholar 

  • Paige GD, Sargent EW (1991) Visually-induced adaptive plasticity in the human vestibulo-ocular reflex. Exp Brain Res 84:25–34.

    Article  CAS  PubMed  Google Scholar 

  • Partsalis AM, Zhang Y, Highstein SM (1995a) Dorsal Y group in squirrel monkey. I. Neuronal responses during rapid and long-term modifications of the vertical VOR. J Neurophysiol 73:615–631.

    CAS  PubMed  Google Scholar 

  • Partsalis AM, Zhang Y, Highstein SM (1995b) Dorsal Y group in the squirrel monkey. II. Contribution of the cerebellar flocculus to neuronal responses in normal and adapted animals. J Neurophysiol 73:632–650.

    CAS  PubMed  Google Scholar 

  • Pastor AM, De La Cruz RR, Baker R (1992) Characterization and adaptive modification of the goldfish vestibuloocular reflex by sinusoidal and velocity step vestibular stimulation. J Neurophysiol 68:2003–2015.

    CAS  PubMed  Google Scholar 

  • Pastor AM, De La Cruz RR, Baker R (1994) Cerebellar role in adaptation of the goldfish vestibuloocular reflex. J Neurophysiol 72:1383–1394.

    CAS  PubMed  Google Scholar 

  • Pastor AM, De La Cruz RR, Baker R (1997) Characterization of Purkinje cells in the goldfish cerebellum during eye movement and adaptive modification of the vestibulo-ocular reflex. Prog Brain Res 114:359–381.

    CAS  PubMed  Google Scholar 

  • Powell KD, Quinn KJ, Rude SA, Peterson BW, Baker JF (1991) Frequency dependence of cat vestibulo-ocular reflex direction adaptation: single frequency and multifrequency rotations. Brain Res 550:137–141.

    Article  CAS  PubMed  Google Scholar 

  • Powell KD, Peterson BW, Baker JF (1996) Phase-shifted direction of adaptation of the vestibulo-ocular reflex in cat. J Vestib Res 6:277–293.

    Article  CAS  PubMed  Google Scholar 

  • Quinn KJ, Schmajuk N, Baker JF, Peterson BW (1992a) Simulation of adaptive mechanisms in the vestibulo-ocular reflex. Biol Cybern 67:103–112.

    CAS  PubMed  Google Scholar 

  • Quinn KJ, Schmajuk N, Baker JF, Peterson BW (1992b) Vestibulo-ocular reflex arc analysis using an experimentally constrained neural network. Biol Cybern 67:113–122.

    CAS  PubMed  Google Scholar 

  • Raphan T, Matsuo V, Cohen B (1979) Velocity storage in the vestibulo-ocular reflex arc (VOR). Exp Brain Res 35:229–248.

    Article  CAS  PubMed  Google Scholar 

  • Rashbass C (1961) The relationship between saccadic and smooth tracking eye movements. J Physiol (Lond) 159:326–338.

    CAS  Google Scholar 

  • Raymond JL, Lisberger SG (1996) Behavioral analysis of signals that guide learned changes in the amplitude and dynamics of the vestibulo-ocular reflex. J Neurosci 16:7791–7802.

    CAS  PubMed  Google Scholar 

  • Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1130.

    CAS  PubMed  Google Scholar 

  • Rey C, Galiana HL (1993) Transient analysis of vestibular nystagmus. Biol Cybern 69:395–405.

    CAS  PubMed  Google Scholar 

  • Rissanen J (1986) Stochastic complexity and modeling. Annals of statistics 14:1080–1100.

    Google Scholar 

  • Robinson DA (1974) The effect of cerebellectomy on the cat’s vestibulo-ocular integrator. Brain Res 71:195–207.

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA (1976) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. J Neurophysiol 39:954–969.

    CAS  PubMed  Google Scholar 

  • Robinson DA (1977) Linear addition of optokinetic and vestibular signals in the vestibular nucleus. Exp Brain Res 30:447–450.

    Article  CAS  PubMed  Google Scholar 

  • Robinson DA (1981) The use of control systems analysis in the neurophysiology of eye movements. Annu Rev Neurosci 4:463–503.

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Kawasaki T (1987) Target neurons of floccular caudal zone inhibition in Y-group nucleus of vestibular nucleus complex. J Neurophysiol 57:460–480.

    CAS  PubMed  Google Scholar 

  • Sato Y, Kanda K-I, Kawasaki T (1988) Target neurons of floccular middle zone inhibition in medial vestibular nucleus. Brain Res 446:225–235.

    Article  CAS  PubMed  Google Scholar 

  • Schairer JO, Bennett MVL (1981) Cerebellectomy in goldfish prevents adaptive gain control of the VOR without affecting the optokinetic system. In: Gualtierotti T (ed) The Vestibular System: Function and Morphology. New York: Springer-Verlag, pp. 463–477.

    Google Scholar 

  • Schetzen M (1980) The Volterra and Wiener theories of nonlinear systems. New York: Wiley.

    Google Scholar 

  • Schultheis LW, Robinson DA (1981) Directional plasticity of the vestibulo-ocular reflex in the cat. Ann N Y Acad Sci 374:504–512.

    CAS  PubMed  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Annals of Statistics 6:461–464.

    Google Scholar 

  • Scudder CA, Fuchs AF (1992) Physiological and behavioral identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. J Neurophysiol 68:244–264.

    CAS  PubMed  Google Scholar 

  • Seidenberg MS (1997) Language acquisition and use: learning and applying probabilistic constraints. Science 275:1599–1603.

    Article  CAS  PubMed  Google Scholar 

  • Seidman SH, Paige GD, Tomko DL (1999) Adaptive plasticity in the naso-occipital linear vestibulo-ocular reflex. Exp Brain Res 125:485–494.

    Article  CAS  PubMed  Google Scholar 

  • Shidara M, Kawano K, Gomi H, Kawato M (1993) Inverse dynamics model eye movement control by Purkinje cells in the cerebellum. Nature 365:50–52.

    Article  CAS  PubMed  Google Scholar 

  • Silva AJ, Giese KP, Fedorov NB, Frankland PW, Kogan JH (1998) Molecular, cellular, and neuroanatomical substrates of place learning. Neurobiol Learn Mem 70:44–61.

    Article  CAS  PubMed  Google Scholar 

  • Skavenski AA, Robinson DA (1973) Role of abducens neurons in vestibuloocular reflex. J Neurophysiol 36:724–738.

    CAS  PubMed  Google Scholar 

  • Snyder LH, King WM (1988) Vertical vestibuloocular reflex in cat: asymmetry and adaptation. J Neurophysiol 59:279–298.

    CAS  PubMed  Google Scholar 

  • Stone LS, Lisberger SG (1990) Visual response of Purkinje cells in the cerebellar floccular during smooth-pursuit eye movements in monkeys. I. Simple spikes. J Neurophysiol 63:1241–1261.

    CAS  PubMed  Google Scholar 

  • Tabata H, Yamamoto K, Kawato M (2002) Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory. J Neurophysiol 87:2176–2189.

    PubMed  Google Scholar 

  • Thach WT (1998) A role for the cerebellum in learning movement coordination. Neurobiol Learn Mem 70:177–188.

    Article  CAS  PubMed  Google Scholar 

  • Tiliket C, Shelhamer M, Roberts D, Zee DS (1994) Short-term vestibulo-ocular reflex adaptation in humans. I. Effect on the ocular motor velocity-to-position neural integrator. Exp Brain Res 100:316–327.

    Article  CAS  PubMed  Google Scholar 

  • Toda N, Usui S (1991) An overview of biological signal processing: non-linear and non-stationary aspects. Front Med Biol Eng 3:125–129.

    PubMed  Google Scholar 

  • Tychsen L, Lisberger SG (1986) Visual motion processing for the initiation of smooth-pursuit eye movements in humans. J Neurophysiol 56:953–968.

    CAS  PubMed  Google Scholar 

  • Watanabe E (1984) Neuronal events correlated with long-term adaptation of the horizontal vestibulo-ocular reflex in the primate flocculus. Brain Res 297:169–174.

    Article  CAS  PubMed  Google Scholar 

  • Wei M, Angelaki DE (2001) Cross-axis adaptation of the translational vestibulo-ocular reflex. Exp Brain Res 138:304–312.

    Article  CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Green, A.M., Hirata, Y., Galiana, H.L., Highstein, S.M. (2004). Localizing Sites for Plasticity in the Vestibular System. In: Highstein, S.M., Fay, R.R., Popper, A.N. (eds) The Vestibular System. Springer Handbook of Auditory Research, vol 19. Springer, New York, NY. https://doi.org/10.1007/0-387-21567-0_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-21567-0_10

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98314-1

  • Online ISBN: 978-0-387-21567-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics