Skip to main content

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 17))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashmore JF (1987) A fast motile response in guinea-pig outer hair cells: the cellular basis of the cochlear amplifier. J Physiol (Lond) 388:323–347.

    CAS  Google Scholar 

  • Brownell WE, Bader CR, Bertrand D, de Ribaupierre Y (1985) Evoked mechanical responses of isolated cochlear outer hair cells. Science 227:194–196.

    CAS  PubMed  Google Scholar 

  • Dallos P (1988) Cochlear neurobiology: some key experiments and concepts of the past two decades. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 153–189.

    Google Scholar 

  • Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585.

    CAS  PubMed  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90.

    Article  CAS  PubMed  Google Scholar 

  • Delgutte B (1996) Physiological models for basic auditory percepts. In: Hawkins HL, McMullen TA, Popper AN, Fay RR (eds) Auditory Computation. New York: Springer-Verlag, pp. 157–220.

    Google Scholar 

  • Egan JP, Hake HW (1950) On the masking pattern of a simple auditory stimulus. J Acoust Soc Am 22:622–630.

    Article  Google Scholar 

  • Evans EF (1981) The dynamic range problem: place and time coding at the level of cochlear nerve and nucleus. In: Syka J, Aitkin L (eds) Neuronal Mechanisms in Hearing. New York: Plenum Press, pp. 69–85.

    Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–65.

    Article  Google Scholar 

  • Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138.

    Article  CAS  PubMed  Google Scholar 

  • Greenwood DD (1961) Critical bandwidth and the frequency coordinates of the basilar membrane. J Acoust Soc Am 33:1344–1356.

    Article  Google Scholar 

  • Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605.

    Article  CAS  PubMed  Google Scholar 

  • Hicks ML, Bacon SP (1999) Effects of aspirin on psychophysical measures of frequency selectivity, two-tone suppression, and growth of masking. J Acoust Soc Am 106:1436–1451.

    Article  CAS  PubMed  Google Scholar 

  • Hicks ML, Bacon SP (2000) The effects of aspirin on a psychophysical estimate of basilar membrane compression. J Acoust Soc Am 107:2914.

    Article  Google Scholar 

  • Holley MC (1996) Outer hair cell motility. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 386–434.

    Google Scholar 

  • Jarboe JK, Hallworth R (1999) The effect of quinine on outer hair cell shape, compliance and force. Hear Res 132:43–50.

    Article  CAS  PubMed  Google Scholar 

  • Kachar B, Brownell WE, Altschuler R, Fex J (1986) Electrokinetic shape changes of cochlear outer hair cells. Nature 322:365–368.

    Article  CAS  PubMed  Google Scholar 

  • Karlsson KK, Flock Ã… (1990) Quinine causes isolated outer hair cells to change length. Neurosci Lett 116:101–105.

    Article  CAS  PubMed  Google Scholar 

  • Kros CJ (1996) Physiology of mammalian cochlear hair cells. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 318–385.

    Google Scholar 

  • Levitt H (1982) Speech discrimination ability in the hearing impaired: spectrum considerations. In: Studebaker GA, Bess FH (eds) The Vanderbilt Hearing Aid Report (Monographs in Contemporary Audiology). Upper Darby, Pa, pp. 32–43.

    Google Scholar 

  • Liberman MC (1982) Single-neuron labeling in the cat auditory nerve. Science 216:1239–1241.

    CAS  PubMed  Google Scholar 

  • Liberman MC, Oliver ME (1984) Morphometry of intracellularly labeled neurons of the auditory nerve: correlations with functional properties. J Comp Neurol 223: 163–176.

    Article  CAS  PubMed  Google Scholar 

  • Mayer AM (1876) Researches in acoustics. Philos Mag 2:500–507.

    Google Scholar 

  • Moore BCJ (1986) Parallels between frequency selectivity measured psychophysically and in cochlear mechanics. Scand Audiol Suppl 25:139–152.

    CAS  PubMed  Google Scholar 

  • Moore BCJ (1993) Frequency analysis and pitch perception. In: Yost WA, Popper AN, Fay RR (eds) Human Psychophysics. New York: Springer-Verlag, pp. 56–115.

    Google Scholar 

  • Moore BCJ (1998) Cochlear Hearing Loss. London: Whurr Publishers.

    Google Scholar 

  • Nelson DA, Schroder AC, Wojtczak M (2001) A new procedure for measuring peripheral compression in normal-hearing and hearing-impaired listeners. J Acoust Soc Am 110:2045–2064.

    Article  CAS  PubMed  Google Scholar 

  • Oxenham AJ, Plack CJ (1997) A behavioral measure of basilar-membrane nonlinearity in listeners with normal and impaired hearing. J Acoust Soc Am 101:3666–3675.

    Article  CAS  PubMed  Google Scholar 

  • Patuzzi R (1996) Cochlear micromechanics and macromechanics. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 186–257.

    Google Scholar 

  • Recio A, Ruggero MA (1995) Effects of quinine on basilar-membrane responses to sound. Assoc Res Otolaryngol Midwinter Mtg Abstr 18:200.

    Google Scholar 

  • Rhode WS, Recio A (2000) Study of mechanical motions in the basal region of the chinchilla cochlea. J Acoust Soc Am 107:3317–3332.

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (1984) Horseradish peroxidase injection of physiologically characterised afferent and efferent neurons in the guinea pig spiral ganglion. Hear Res 15:113–121.

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352.

    CAS  PubMed  Google Scholar 

  • Ruggero MA (1992) Physiology and coding of sound in the auditory nerve. In: Popper AN, Fay RR (eds) The Mammalian Auditory Pathway: Neurophysiology. New York: Springer-Verlag, pp. 34–93.

    Google Scholar 

  • Ruggero MA, Rich NC, Robles L, Recio A (1996) The effects of acoustic trauma, other cochlear injury, and death on basilar-membrane responses to sound. In: Axelsson A, Borchgrevink H, Hamernik RP, Hellström P, Henderson D, Salvi RJ (eds) Scientific Basis of Noise-Induced Hearing Loss. New York: Thieme, pp. 23–35.

    Google Scholar 

  • Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163.

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ Jr, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci USA 99:3318–3323.

    Article  CAS  PubMed  Google Scholar 

  • Slepecky NB (1996) Structure of the mammalian cochlea. In: Dallos P, Popper AN, Fay RR (eds) The Cochlea. New York: Springer-Verlag, pp. 44–129.

    Google Scholar 

  • Viemeister NF (1988a) Intensity coding and the dynamic range problem. Hear Res 34:267–274.

    Article  CAS  PubMed  Google Scholar 

  • Viemeister NF (1988b) Psychophysical aspects of auditory intensity coding. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory Function: Neurobiological Bases of Hearing. New York: John Wiley and Sons, pp. 213–242.

    Google Scholar 

  • Viemeister NF, Bacon SP (1988) Intensity discrimination, increment detection, and magnitude estimation for 1-kHz tones. J Acoust Soc Am 84:172–178.

    Article  CAS  PubMed  Google Scholar 

  • von Békésy G (1960) Experiments In Hearing. New York: McGraw-Hill.

    Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one sound by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285.

    Article  Google Scholar 

  • Zenner HP (1986) Motile responses in outer hair cells. Hear Res 22:83–90.

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Shen W, He DZ, Long KB, Madison LD, Dallos P (2000) Prestin is the motor protein of cochlear outer hair cells. Nature 405:149–155.

    Article  CAS  PubMed  Google Scholar 

  • Zheng J, Ren T, Parthasarathi A, Nuttall AL (2001) Quinine-induced alterations of electrically evoked otoacoustic emissions and cochlear potentials in guinea pigs. Hear Res 154:124–134.

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E, Flottorp G, Stevens SS (1957) Critical band width in loudness summation. J Acoust Soc Am 29:548–557.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Bacon, S.P. (2004). Overview of Auditory Compression. In: Bacon, S.P., Fay, R.R., Popper, A.N. (eds) Compression: From Cochlea to Cochlear Implants. Springer Handbook of Auditory Research, vol 17. Springer, New York, NY. https://doi.org/10.1007/0-387-21530-1_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-21530-1_1

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-00496-9

  • Online ISBN: 978-0-387-21530-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics