Skip to main content

Bayesian Adaptive Exploration

  • Conference paper
Statistical Challenges in Astronomy

Abstract

We describe a framework for adaptive astronomical exploration based on iterating an Observation-Inference-Design cycle that allows adjustment of hypotheses and observing protocols in response to the results of observation on-the-fly, as data are gathered. The framework uses a unified Bayesian methodology for the inference and design stages: Bayesian inference to quantify what we have learned from the available data; and Bayesian decision theory to identify which new observations would teach us the most. In the design stage, the utility of possible future observations is determined by how much information they are expected to add to current inferences as measured by the (negative) entropies of the probability distributions involved. Such a Bayesian approach to experimental design dates back to the 1970s, but most existing work focuses on linear models. We use a simple nonlinear problem—planning observations to best determine the orbit of an extrasolar planet—to illustrate the approach and demonstrate that it can significantly improve observing efficiency (i.e., reduce uncertainties at a rate faster than the familiar “root-N” rule) in some situations. We highlight open issues requiring further research, including dependence on model specification, generalizing the utility of an observation (e.g., to include observing “costs”), and computational issues.

This paper is followed by a commentary by David A. van Dyk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.C. Atkinson and V. V. Fedorov. Optimum design of experiments. In Samuel Kotz, Campbell B. Read, and David L. Banks, editors, Encyclopedia of statistical sciences, pages 107–114. Wiley, New York, 1997.

    Google Scholar 

  2. H. Cherno. Sequential Analysis and Optimal Design. SIAM, Philadelphia, 1972.

    Google Scholar 

  3. M. Clyde, P. Muller, and G. Parmigiani. Exploring expected utility surfaces by markov chains, 1995.

    Google Scholar 

  4. K. Chaloner and I. Verdinelli. Bayesian experimental design: A review. Stat. Sci., 10:273–304, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  5. V. V. Fedorov. Theory of Optimal Experiments. Academic, New York, 1972.

    Google Scholar 

  6. W. L. Freedman, S. M. Hughes, B. F. Madore, J. R. Mould, M. G. Lee, P. Stetson, R. C. Kennicutt, A. Turner, L. Ferrarese, H. Ford, J. A. Graham, R. Hill, J. G. Hoessel, J. Huchra, and G. D. Illingworth. The hubble space telescope extragalactic distance scale key project. 1: The discovery of cepheids and a new distance to m81. Ap. J., 427:628–655, June 1994.

    Article  ADS  Google Scholar 

  7. D. V. Lindley. On the measure of information provided by an experiment. Ann. Stat., 27:986–1005, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  8. D. V. Lindley. Bayesian statistics-a review. SIAM, Philadelphia, 1972.

    Google Scholar 

  9. T. J. Loredo. Computational technology for bayesian inference. In ASP Conf. Ser. 172: Astronomical Data Analysis Software and Systems VIII, volume 8, pages 297+, 1999.

    Google Scholar 

  10. D. MacKay. Information-based objective functions for active data selection. Neural Computation, 4 (4):590–604, 1992.

    Article  Google Scholar 

  11. P. Muller and G. Parmigiani. Numerical evaluation of information theoretic measures. In D. A. Berry, K. M Chaloner, and J. F. Geweke, editors, Bayesian Statistics and Econometrics: Essays in Honor of A. Zellner, pages 397–406. Wiley, New York, 1995.

    Google Scholar 

  12. Peter Muller and Giovanni Parmigiani. Optimal design via curve fitting of monte carlo experiments. J. Am. Stat. Assoc., 90:1322–1330, 1996.

    Article  MathSciNet  Google Scholar 

  13. P. Muller. Simulation based optimal design. In J. O. Berger, J. M. Bernardo, A. P. Dawid, and A. F. M. Smith, editors, Bayesian Statistics 6, 1999.

    Google Scholar 

  14. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge, 1992.

    Google Scholar 

  15. P. Sebastiani and R. Settimi. First-order optimal designs for non-linear models. J. Stat. Plan. Inf., 74:177–192, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Sebastiani and H. P. Wynn. Bayesian experimental design and shannon information. In 1997 Proceedings of the Section on Bayesian Statistical Science, pages 176–181. American Statistical Association, 1997.

    Google Scholar 

  17. P. Sebastiani and H. P. Wynn. Maximum entropy sampling and optimal bayesian experimental design. J. Roy. Stat. Soc. B, 62:145–157, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Toman. Bayesian experimental design for multiple hypothesis testing. J. Am. Stat. Assoc., 91:185–190, 1996.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. B. Toman. Bayesian experimental design. In Samuel Kotz and N. L. Johnson, editors, Encyclopedia of statistical sciences, Update Vol. 3, pages 35–39. Wiley, New York, 1999.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this paper

Cite this paper

Loredo, T.J., Chernoff, D.F. (2003). Bayesian Adaptive Exploration. In: Statistical Challenges in Astronomy. Springer, New York, NY. https://doi.org/10.1007/0-387-21529-8_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-21529-8_4

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95546-9

  • Online ISBN: 978-0-387-21529-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics