Skip to main content

The Domestic Robot - A Friendly Cognitive System Takes Care of your Home

  • Chapter
Ambient Intelligence: Impact on Embedded Sytem Design

Abstract

The system we describe in this paper is an indoor intelligent system, that is still under development. Our goal is to evolve the system with abilities suitable for a domestic robot, that has to cope with a continuously evolving ambient, the house. The interest of the system relies in its architecture that has been studied and designed for the purpose of integrating some specific cognitive behavior like perception, symbolic map construction and making decisions in a whole hierarchy of intercommunicating levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

    Google Scholar 

  2. I. Asimov. Runaround. Faucett Crest, New York, 1942.

    Google Scholar 

  3. I. Asimov. I Robot. Doubleday, 1950.

    Google Scholar 

  4. F. Bacchus, J. Halpern and H. Levesqueč. “Reasoning about noisy sensors in the situation calculus.” Artificial Intelligence, 111:171–208, 1999.

    Article  MathSciNet  Google Scholar 

  5. R.E. Bellman. An Introduction to Artificial Intelligence: Can Computers Think? Boyd and Fraser Publishing Company, 1978.

    Google Scholar 

  6. I. Biederman. “Recognition by components-a theory of human image understanding.” Psychological Review, 94(2): 115–147, 1987.

    Article  Google Scholar 

  7. R. Bischoff. “Towards the development of ‘plug-and-play’ personal robots.” In Proceedings of 1st IEEE-RAS International Conference on Humanoid Robot, 2000.

    Google Scholar 

  8. R. Brooks. “A Robust Layered Control System for a Mobile Robot.” IEEE Journal of Rototics and Automation, 1(2): 14–23, 1986.

    MathSciNet  Google Scholar 

  9. R. Brooks. “Intelligence without representation.” Artificial Intelligence, 47:139–129, 1991.

    Article  Google Scholar 

  10. W. Burgard, A. Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W. Steiner and S. Thrun. “The interactive museum tourguide robot.” In Proceedings of AAAI’98, Madison, Wi, pages 11–18, 1998.

    Google Scholar 

  11. A.R. Cassandra. “Optimal policies for partially observable markov decision processes.” Technical Report CS-94-14, CS, 1994.

    Google Scholar 

  12. S. Dickinson and D. Metaxas. “Integrating qualitative and quantitative shape recovery.” IJCV, 13(3):311–330, 1994.

    Article  Google Scholar 

  13. G. Dissanayake, P. Newman, S. Clark, H. Durrant-Whyte and M. Csorba. “A solution to the simultaneous localisation and map building (SLAM) problem.” IEEE Transaction of Robotics and Autonation, 17(3):229–241, 2001.

    Google Scholar 

  14. G. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark and M. Csorba. “An experimental and theoretical investigation into simultaneous localisation and map building (SLAM)”. In Proceedings of 6th International Symposium on Experimental Robotics, pages 171–180. Sydney, Australia, March 1999.

    Google Scholar 

  15. G. Dissanayake, P. Newman, H. Durrant-Whyte, S. Clark and M. Csorba. “An experimental and theoretical investigation into simultaneous localisation and map building (SLAM)”. In P. Corke and J. Trevelyan, eds, Experimental Robotics VI, pages 265–274. Springer, London, 2000.

    Google Scholar 

  16. A. Finzi and F. Pirri. “Combining probabilities, failures and safety in robot control”. In Proceedings of IJCAI-01, volume 2, pages 1331–1336. Seattle (WA), USA, 2001.

    Google Scholar 

  17. A. Finzi, F. Pirri, M. Pirrone, M. Romano and M. Vaccaro. “Autonomous mobile manipulators managing perception and failures.” In AGENTS’01, The Fifth International Conference on Autonomous Agents, pages 196–203, 2001.

    Google Scholar 

  18. A. Finzi, F. Pirri and R. Reiter. “Open world planning in the situation calculus.” In Proceedings of AAAI-2000, pages 754–760, 2000.

    Google Scholar 

  19. A. Finzi, F., Pirri and M. Schaerf. “A system integrating high level and low level planning with a 3d-visualizer.” In International Symposium on Artificial Intelligence, Robotics and Automation in Space (ISAIRAS), pages 521–528, 1999.

    Google Scholar 

  20. R. Firby, P. Propopowicz and M. Swain. “The animate agent architecture.” In Kortenkamp, D., Bonasso, R., and Murphy, R., editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, chapter 10. AAAI Press/The MIT Press, ISBN 0262611376, 1998.

    Google Scholar 

  21. E. Gat. “Three layered architectures.” In Kortenkamp, D., Bonasso, R., and Murphy, R., editors, Artificial Intelligence and Mobile Robots: Case Studies of Successful Robot Systems, chapter 8. AAAI Press/The MIT Press, ISBN 0262611376, 1998.

    Google Scholar 

  22. B. Graf, R. Schraft and J. Neugebauer. “A mobile robot platform for assistance and entertainment.” In Proceedings of 31st Int. Symposium on Robotics, Montreal, pages 252–253, 2000.

    Google Scholar 

  23. H. Grosskreutz and G. Lakemeyer. “On-line execution of cc-golog plans.” In Proceedings of IJCAI 2001, pages 12–18, 2001.

    Google Scholar 

  24. M. Haegele, J. Neugebauer and R. Schraft. “From robots to robot assistants.” In Proceedings of the 32nd International Symposium on Robotics ISR 2001, volume 1, pages 404–409. Seoul, Korea, 2001.

    Google Scholar 

  25. F. Ingrand and F. Py. “Online execution control checking for autonomous systems.” In 7th International Conference on Autonomous Systems, IAS-7, pages 273–280. Marina del Rey, USA, 23–25 March 2002.

    Google Scholar 

  26. L. Itti, C. Koch and E. Niebur. “A model of saliency-based visual attention for rapid scene analysis.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11): 1254–1259, 1998.

    Article  Google Scholar 

  27. K. Konolige, K.L., Myers, E.H., Ruspini and A. Saffiotti. “The Saphira architecture: A design for autonomy.” Journal of experimental & theoretical artificial intelligence: JETAI, 9(1):215–235, 1997.

    Google Scholar 

  28. Y. Koren and J. Borestein. “Potential field methods and their limitations for mobile robot navigation”. In Proceedings of IEEE International Conference on Robotics and Automation, pages 1398–1404, 1991.

    Google Scholar 

  29. B. Kuipers. “The spatial sematic hierarchy.” Artificial Intelligence, 119:191–233, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  30. J.E. Laird, A. Newell and P.S. Rosenbloom. “Soar: An architecture for general intelligence.” Artificial Intelligence, 33:1–64, 1987.

    Article  Google Scholar 

  31. C. Lee. “Fuzzy logic in control systems: Fuzzy Logic Controller”. IEEE Trans. Sys. Man Cyber., 2(20):404–435, 1990.

    MATH  Google Scholar 

  32. Y. Lespérance, K. Tam and M. Jenkin. “Reactivity in a logic-based robot programming framework (extended version).” In Levesque, H. J. and Pirri, F., editors, Logical Foundation for Cognitive Agents: Contributions in Honor of Ray Reiter, pages 190–207. Springer, 1999.

    Google Scholar 

  33. H. Levesque, R. Reiter, Y. Lesperance, F. Lin and R. Scherl. “Golog: A logic programming language for dynamic domains.” Journal of Logic Programming, 31:59–84, 1997.

    Article  MathSciNet  Google Scholar 

  34. E. Mamdami and S. Assilian. “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller”. Int. J. Man Machine Studies, 7(1): 1–13, 1975.

    Google Scholar 

  35. D. Marr. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W.H. Freeman, ISBN 0716715678, San Francisco, 1982.

    Google Scholar 

  36. M.J, Mataric. “Behavior-based control: Examples from navigation, learning, and group behavior.” Journal of Experimental and Theoretical Artificial Intelligence, Vol. 9(2–3):323–336, 1997.

    Google Scholar 

  37. J. McCarthy. “Programs with common sense”. In Proceedings of the Symposium on Mechanisation of Thought Processes, Vol 1, pages 77–84, 1958.

    MathSciNet  Google Scholar 

  38. J. McCarthy. Situations, actions and causal laws. MIT Press, Cambridge, MA, 1969.

    Google Scholar 

  39. W. McCulloch and W. Pitts. “A logical calculus of the ideas immanent in nervous activity”. Bulletin of Mathematical Biophysics, 5:115–137, 1943.

    MathSciNet  Google Scholar 

  40. H.P. Moravec. “The cmu rover.” In Proceedings of AAAI 1982, pages 377–380, 1982.

    Google Scholar 

  41. N. Muscettola, P.P. Nayak, B. Pell and B.C. Williams. “Remote agent: To boldly go where no AI system has gone before.” Artificial Intelligence, 103(1–2):5–47, 1998.

    Google Scholar 

  42. N. Nilsson. “Shakey the robot.” Technical report, A.I. Center Technical Note 323, SRI International, 1984.

    Google Scholar 

  43. L.N. Patel and P.O. Holt. “Modelling visual complexity using geometric primitives: Implications for visual control tasks.” In Proceedings of the 19th European Annual Conference on Human Decision Making and Manual Control, pages 3–8, 2000.

    Google Scholar 

  44. A. Pentland. “Perceptual organization and the representation of natural form.” Artificial Intelligence, 28(2):293–331, 1986.

    MathSciNet  Google Scholar 

  45. C.S. Pierce. “Abduction and induction.” In J. Buchler, editor, Philosophical writings of Pierce, pages 150–156. New York, Dover Publications, Inc, 1903.

    Google Scholar 

  46. F. Pirri and A. Finzi. “An approach to perception in theory of actions: Part I.” ETAI, 4, 1999.

    Google Scholar 

  47. F. Pirri and R. Reiter. “Some contributions to the metatheory of the situation calculus.” Journal of the ACM, 46(3):325–362, 1999.

    Article  MathSciNet  Google Scholar 

  48. F. Pirri and R. Reiter. “Planning with natural actions in the situation calculus.” In J. Minker, editor, Logic-Based Artificial Intelligence. Kluwer, 2000.

    Google Scholar 

  49. F. Pirri and M. Romano. “A situation-bayes view of object recognition based on symgenons.” In The Third International Cognitive Robotics Workshop, pages 25–34, 2002.

    Google Scholar 

  50. R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. A Bradford book. MIT press, 1998.

    Google Scholar 

  51. R. Reiter. Knowledge in Action: Logical Foundations for Describing and Implementing Dynamical Systems. MIT press, 2001.

    Google Scholar 

  52. A. Saffiotti. “Fuzzy Logic in Autonomous Robotics: behavior coordination”. In Proceedings of the 6th IEEE International Conference on Fuzzy System, pages 573–578, 1997.

    Google Scholar 

  53. A. Saffiotti, E. Ruspini and K. Konolige. “Blending reactivity and goal-directness in a fuzzy controller”. In Proceedings of IEEE International Conference on Fuzzy Systems, pages 134–139, 1993.

    Google Scholar 

  54. L. Savage. The Foundation of Statistics. Wiley, 1954.

    Google Scholar 

  55. R. Simmons, R. Goodwin, K. Haigh, S. Koenig, J. O’Sullivan and M. Veloso. “Xavier: Experience with layered robot architecture.” ACM SIGART Bullettin Intelligence, pages 1–4, 1997.

    Google Scholar 

  56. R. Smith, M. Self and P. Cheeseman. “Estimating uncertain spatial relationships in robotics.” In I.G. Cox and G.T. Wilfong, eds, Autonomous Robot Vehicles, pages 167–193. Springer, 1990.

    Google Scholar 

  57. S. Thrun. “Probabilistic algorithms in robotics.” AI Magazine, 21(4):93–109, 2000.

    Google Scholar 

  58. S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte and D. Schulz. “Probabilistic algorithms and the interactive museum tour-guide robot minerva.” Journal of Robotics Research, 19(11):972–999, 2000.

    Google Scholar 

  59. J. Tsotsos. “Analyzing vision at the complexity level.” Behavioral and Brain Sci., 13:423–469, 1990.

    Google Scholar 

  60. J. Tsotsos, G. Verghese, S. Dickinson, M. Jenkin, A. Jepson, E. Milios, F. Nuflot, S. Stevenson, M. Black, D. Metaxas, S. Culhane, Y. Ye and R. Mann. “Playbot: A visually-guided robot for physically disabled children.” Image and Vision Computing, 16(4):275–292, April 1998.

    Google Scholar 

  61. D. Wang and F. Qi. “Trajectory Planning for a Four-Wheel-Steering Vehicle”. In Proceedings of the IEEE International Conference on Robotics and Autonamtion, pages 3320–3325. Seoul, Korea, May 21–26, 2001.

    Google Scholar 

  62. B.C. Williams, S. Chung, and V. Gupta. “Mode estimation of model-based programs: Monitoring systems with complex behaviour.” In Proceedings of IJCAI 2001, pages 579–585, 2001.

    Google Scholar 

  63. K. Wu and M. Levin. “3D object representation using parametric geons.” Technical Report CIM-93-13, CIM, 1993.

    Google Scholar 

  64. L. Zadeh. “Fuzzy sets.” Information and Control, 8:338–353, 1965.

    Article  MATH  MathSciNet  Google Scholar 

  65. J. Zhang and A. Knoll. Integrating deliberative and reactive strategies via fuzzy modular control. In D. Driankov and A. Safflotti, eds, Fuzzy Logic for Autonomous Vehicle Navigation, Springer, 2001.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Pirri, F., Mentuccia, I., Storri, S. (2003). The Domestic Robot - A Friendly Cognitive System Takes Care of your Home. In: Basten, T., Geilen, M., de Groot, H. (eds) Ambient Intelligence: Impact on Embedded Sytem Design. Springer, Boston, MA. https://doi.org/10.1007/0-306-48706-3_8

Download citation

  • DOI: https://doi.org/10.1007/0-306-48706-3_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7668-8

  • Online ISBN: 978-0-306-48706-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics