Skip to main content

Modulation of Immune Function by Novel Opioid Receptor Ligands

  • Chapter
  • 406 Accesses

Part of the book series: Infectious Agents and Pathogenesis ((IAPA))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Misicka, A. (1995). Peptide and nonpeptide ligands for opioid receptors. Acta Pol. Pharm. 2(5):349–363.

    Google Scholar 

  2. Gomez-Flores, R. and Weber, R. J. (1999a). Opioids, opioid receptors, and the immune system. In N. Plotnikoff, R. Faith, A. Murgo, and R. Good (eds), Cytokines—Stress and Immunity, CRC Press, Boca Ratón, FL, pp. 281–314.

    Google Scholar 

  3. Ishikawa, M., Tanno, K., Kamo, A., Takayanagi, Y., and Sasaki, K. (1993). Enhancement of tumor growth by morphine and its possible mechanism in mice. Biol. Pharm. Bull. 16:762–766.

    PubMed  CAS  Google Scholar 

  4. Yeager, M. P. and Colacchio, T. A. (1991). Effect of morphine on growth of metastatic colon cancer in vivo. Arch Surg. 126(4):454–456.

    PubMed  CAS  Google Scholar 

  5. McCarthy, L., Wetzel, M., Sliker, J. K., Eisenstein, T. K., and Rogers, T. J. (2001). Opioids, opioid receptors, and the immune response. Drug Alcohol Depend. 62(2):111–123.

    Article  PubMed  CAS  Google Scholar 

  6. Shavit, Y., Depaulis, A., Martin, F. C., Terman, G. W., Pechnick, R. N., Zane, C. J. et al. (1986). Involvement of brain opiate receptors in the immune-suppressive effect of morphine. Proc. Natl. Acad. Sci. USA 83:7114–7117.

    PubMed  CAS  Google Scholar 

  7. Weber, R. J. and Pert, A. (1989). The periaquaductal gray matter mediates opiate-induced immunosuppression. Science 245:188–190.

    PubMed  CAS  Google Scholar 

  8. Gomez-Flores, R. and Weber, R. J. (2000). Differential effects of buprenorphine and morphine on immune and neuroendocrine functions following acute administration in the rat mesencephalon periaqueductal gray. Immunopharmacology 48:145–156.

    Article  PubMed  CAS  Google Scholar 

  9. Gomez-Flores, R. and Weber, R. J. (1999b). Inhibition of IL-2 production and down regulation of IL-2 and transferrin receptors on rat splenic lymphocytes following PAG morphine administration: A role in NK and T cell suppression. J. Interferon Cytokine Res. 19:625–630.

    Article  PubMed  CAS  Google Scholar 

  10. Gomez-Flores, R., Jin-Liang, S., and Weber, R. J. (1999c). Suppression of splenic macrophage functions after acute morphine action in the rat mesencephalon periaqueductal gray. Brain Behav. Immun. 13:212–224.

    Article  PubMed  CAS  Google Scholar 

  11. Suo, J. L., Gomez-Flores, R., and Weber, R. J. (2002). Immunosuppression induced by central action of morphine is not blocked by mifepristone (RU 486). Life Sci. 71(22):2595–2602.

    Article  Google Scholar 

  12. Freier, D. O. and Fuchs, B. A. (1993). Morphine-induces alterations in thymocyte subpopulations of B6C3F1 mice. J. Pharmacol. Exp. Ther. 265:81–88.

    PubMed  CAS  Google Scholar 

  13. Carr, D. J. J., Mayo, S., Gebhardt, B. M., and Porter, J. (1994). Central α-adrenergic involvement in morphine-mediated suppression of splenic NK activity. J. Neuroimmunol. 53:53–63.

    Article  PubMed  CAS  Google Scholar 

  14. Carr, D. J. J., Gebhardt, B. M., and Paul, D. (1995). α-Adrenergic and μ2 opioid receptors are involved in morphine-induced suppression of splenocyte natural killer activity. J. Pharmacol. Exp. Ther. 264:1179–1186.

    Google Scholar 

  15. Hall, D. M., Suo, J.-L., and Weber, R. J. (1998). Opioid mediated effects on the immune system: Sympathetic nervous system involvement. J. Neuroimmunol. 83:29–35.

    Article  PubMed  CAS  Google Scholar 

  16. Flores, L. R., Hernandez, M. C., and Bayer, B. M. (1994). Acute immunosuppressive effects of morphine: Lack of involvement of pituitary and adrenal factors. J. Pharmacol. Exp. Ther. 268:1129–1134.

    PubMed  CAS  Google Scholar 

  17. Hernandez, M. C., Flores, L. R., and Bayer, B. M. (1993). Immunosuppression by morphine is mediated by central pathways. J. Pharmacol. Exp. Ther. 267:1336–1341.

    PubMed  CAS  Google Scholar 

  18. Weber, R. J. and Pert, A. (1984). Opiatergic modulation of the immune system. In E. Muller and A. Genazzani (eds), Central and Peripheral Endorphins: Basic and Clinical Aspects, New York, pp. 35–42.

    Google Scholar 

  19. Eisenstein, T. K., Meissler, J. J. Jr., Rogers, T. J., Geller, E. B., and Adler, M. W. (1995). Mouse strain differences in immunosuppression by opioids in vitro. J. Pharmacol. Exp. Ther. 275(3):1484–1489.

    PubMed  CAS  Google Scholar 

  20. Rojavin, M., Szabo, I., Bussiere, J. L., Rogers, T. J., Adler, M. W., and Eisenstein, T. K. (1993). Morphine treatment in vitro or in vivo decreases phagocytic functions of murine macrophages. Life Sci. 53:997–1006.

    Article  PubMed  CAS  Google Scholar 

  21. Taub, D. D., Eisenstein, T. K., Geller, E. B., Adler, M. W., and Rogers, T. J. (1991). Immunomodulatory activity of mu-and kappa-selective opioid agonists. Proc. Natl. Acad. Sci. USA 88(2):360–364.

    PubMed  CAS  Google Scholar 

  22. Rahim, R. T., Meissler, J. J. Jr., Cowan, A., Rogers, T. J., Geller, E. B., Gaughan, J. et al. (2001, October). Administration of mu-, kappa-or delta2-receptor agonists via osmotic minipumps suppresses murine splenic antibody responses. Int. Immunopharmacol. 1(11):2001–2009.

    Article  PubMed  CAS  Google Scholar 

  23. Bidlack, J. M. (2000). Detection and function of opioid receptors on cells from the immune system. Clin. Diagn. Lab. Immunol. 7(5):19–23.

    Article  Google Scholar 

  24. Sharp, B. M., Roy, S., and Bidlack, J. M. (1998). Evidence for opioid receptors on cells involved in host defense and the immune system. J. Neuroimmunol. 83(1–2):45–56.

    Article  PubMed  CAS  Google Scholar 

  25. Sanchez, S. R., Calderon, S. N., Rice, K. C., Riley, M. E., and Weber, R. J. (1996). Receptor mediated stimulation of lymphocyte proliferation by novel δ-selective opioid ligands, College for the Problems of Drug Dependence, 58th Annual Scientific Meeting, San Juan, Puerto Rico.

    Google Scholar 

  26. Riley, M. E., Ananthan, S., and Weber, R. J. (1998). Novel non-peptidic opioid compounds with immunopotentiating effects. Adv. Exp. Med. Biol. 437:183–187.

    PubMed  CAS  Google Scholar 

  27. Nowak, J. E., Gomez-Flores, R., Calderon, S. N., Rice, K. C., and Weber, R. J. (1998). Rat NK cell, T cell, and macrophage functions following intracerebroventricular injection of SNC 80. J. Pharmacol. Exp. Ther. 286:931–937.

    PubMed  CAS  Google Scholar 

  28. Hicks, M. E., Gomez-Flores, R., Wang, C., Mosberg, H., and Weber, R. J. (2001). Differential effects of the novel non-peptidic opioid 4-tyrosylamido-6-benzyl-1,2,3,4 tetrahydroquinoline (CGPM-9) on in vitro T lymphocyte and macrophage functions. Life Sci. 68:2685–2694.

    Article  PubMed  CAS  Google Scholar 

  29. Gomez-Flores, R. and Weber, R. J. (2001). Increased nitric oxide and TNF-α production by rat macrophages following in vitro stimulation and intravenous administration of SNC 80. Life Sci. 68:2675–2684.

    Article  PubMed  CAS  Google Scholar 

  30. Sharp, B. M., McAllen, K., Gekker, G., Shahabi, N. A., and Peterson, P. K. (2001). Immunofluorescence detection of delta opioid receptors (DOR) on human peripheral blood CD4+ T cells and DOR-dependent suppression of HIV-1 expression. J. Immunol. 167:1097–1102.

    PubMed  CAS  Google Scholar 

  31. Ordaz-Sanchez, I., Weber, R. J., Rice, K. C., Zhang, X., Rodríguez-Padilla, C., Tamez-Guerra, R. et al. (2003). Chemotaxis of human and rat leukocytes by the delta-selective non-peptidic opioid SNC 80. Rev. Latinoam. Microbiol. 45(1–2):16–23.

    PubMed  Google Scholar 

  32. Rogers, T. J., Steele, A. D., Howard, O. M., and Oppenheim, J. J. (2000). Bidirectional heterologous desensitization of opioid and chemokine receptors. Ann. N. Y. Acid. Sci. 917:19–28.

    Article  CAS  Google Scholar 

  33. Kataki, A., Scheid, P., Piet, M., Marie, B., Martinet, N., Martinet, Y. et al. (2002). Tumor infiltrating lymphocytes and macrophages have a potential dual role in lung cancer by supporting both host-defense and tumor progression. J. Lab. Clin. Med. 140:320–328.

    Article  PubMed  Google Scholar 

  34. Klimp, A. H., de Vries, E. G., Scherphof, G. L., and Daemen, T. (2002). A potential role of macrophage activation in the treatment of cancer. Crit. Rev. Oncol. Hematol. 44:143–161.

    PubMed  CAS  Google Scholar 

  35. Kamada, H., Tsutsumi, Y., Yamamoto, Y., Kihira, T., Kaneda, Y., Mu, Y. et al. (2000). Antitumor activity of tumor necrosis factor-alpha conjugated with polyvinylpyrrolidone on solid tumors in mice. Cancer Res. 60:6416–6420.

    PubMed  CAS  Google Scholar 

  36. Brennan, P. A. and Moncada, S. (2002). From pollutant gas to biological messenger: The diverse actions of nitric oxide in cancer. Ann. R. Coll. Surg. Engl. 84:75–78.

    PubMed  Google Scholar 

  37. Katsikis, P. D., Cohen, S. B., Londei, M., and Feldmann, M. (1995). Are CD4+ Th1 cells proinflammatory or anti-inflammatory? The ratio of IL-10 to IFN-gamma or IL-2 determines their function. Int. Immunol. 1995 7:1287–1294.

    PubMed  CAS  Google Scholar 

  38. Dredge, K., Marriott, J. B., Todryk, S. M., and Dalgleish, A. G. (2002). Adjuvants and the promotion of Th1-type cytokines in tumour immunotherapy. Cancer Immunol. Immunother. 51:521–531.

    Article  PubMed  CAS  Google Scholar 

  39. Pert, C. B. and Snyder, S. H. (1973). Properties of opiate-receptor binding in rat brain. Proc. Natl. Acad. Sci. USA 70:2243–2247.

    PubMed  CAS  Google Scholar 

  40. Carr, D. J. J., Gebhardt, B. M., and Paul, D. (1993). Alpha adrenergic and mu-2 opioid receptors are involved in morphine-induced suppression of splenocyte natural killer activity. J. Pharmacol. Exp. Ther. 264:1179–1186.

    PubMed  CAS  Google Scholar 

  41. Lysle, D. T., Hoffman, K. E., and Dykstra, L. A. (1996). Evidence for the involvement of the caudal region of the periaqueductal gray in a subset of morphine-induced alterations of immune status. J. Pharmacol. Exp. Ther. 277:1533–1540.

    PubMed  CAS  Google Scholar 

  42. Kowalski, J., Belowski, D., and Wielgus, J. (1995). Bidirectional modulation of mouse natural killer cell and macrophage cytotoxic activities by enkephalins. Pol. J. Pharmacol. 47:327–331.

    PubMed  CAS  Google Scholar 

  43. Pacifici, R., Patrini, G., Venier, I., Parolaro, D., Zuccaro, P., and Gori, E. (1994). Effect of morphine and methadone acute treatment on immunological activity in mice: Pharmacokinetic and pharmacodynamic correlates. J. Pharmacol. Exp. Ther. 269:1112–1116.

    PubMed  CAS  Google Scholar 

  44. Bessler, H., Sztein, M. B., and Serrate, S. A. (1990). Beta-endorphin modulation of IL-1-induced IL-2 production. Immunopharmacology 19:5–14.

    Article  PubMed  CAS  Google Scholar 

  45. van den Bergh, P., Dobber, R., Ramlal, S., Rozing, J., and Nagelkerken, L. (1994). Role of opioid peptides in the regulation of cytokine production by murine CD4+ T cells. Cell. Immunol. 154:109–122.

    Article  PubMed  Google Scholar 

  46. Ryng, S., Zimecki, M., Sonnenberg, Z., and Mokrosz, M. J. (1999). Immunomodulating action and structure-activity relationships of substituted phenylamides of 5-amino-3-methylisoxazole-4-carboxylic acid. Arch. Pharm. (Weinheim) 332:158–162.

    Article  CAS  Google Scholar 

  47. Colasanti, M. and Suzuki, H. (2000). The dual personality of NO. Trends Pharmacol. Sci. 21:249–252.

    Article  PubMed  CAS  Google Scholar 

  48. MacMicking, J., Xie, Q. W., and Nathan, C. (1997). Nitric oxide and macrophage function. Ann. Rev. Immunol. 15:323–350.

    Article  CAS  Google Scholar 

  49. Haynes, B. F. and Hale, L. P. (1999). Thymic function, aging, and AIDS. Hosp. Pract. (Off Ed). 34:59–60, 63–5:69–70.

    Article  CAS  Google Scholar 

  50. Wang, C., McFadyen, I. J., Traynor, J. R., and Mosberg, H. I. (1998). Design of a high affinity peptidomimetic opioid agonist from peptide pharmacophore models. Bioorg. Med. Chem. Lett. 8:2685–2688.

    Article  PubMed  CAS  Google Scholar 

  51. Roda, L. G., Bongiorno, L., Trani, E., Urbani, A., and Marini, M. (1996). Positive and negative immunomodulation by opioid peptides. Int. J. Immunopharmacol. 18:1–16.

    Article  PubMed  CAS  Google Scholar 

  52. Lysle, D. T., Coussons, M. E., Watts, V. J., Bennett, E. H., and Dykstra, L. A. (1993). Morphine-induced alterations of immune status: Dose dependency, compartment specificity and antagonism by naltrexone. J. Pharmacol. Exp. Ther. 265:1071–1078.

    PubMed  CAS  Google Scholar 

  53. Muñoz-Fernandez, M. A. and Fresno, M. (1998). The role of tumour necrosis factor, interleukin 6, interferon-gamma and inducible nitric oxide synthase in the development and pathology of the nervous system. Prog. Neurobiol. 56:307–340.

    Article  PubMed  Google Scholar 

  54. Albina, J. E., Cui, S., Mateo, R. B., and Reichner, J. S., (1993). Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J. Immunol. 1150:5080–5085.

    Google Scholar 

  55. Stein, C. S. and Strejan, G. H. (1993). Rat splenocytes inhibit antigen-specific lymphocyte proliferation through a reactive nitrogen intermediate (RNI)-dependent mechanism and exhibit increased RNI production in response to IFN-gamma. Cell. Immunol. 150:281–297.

    Article  PubMed  CAS  Google Scholar 

  56. Raber, J. and Bloom, F. E. (1994). IL-2 induces vasopressin release from the hypothalamus and the amygdala: Role of nitric oxide-mediated signaling. J. Neurosci. 14:6187–6195.

    PubMed  CAS  Google Scholar 

  57. Dunn, A. J. and Wang, J. (1995). Cytokine effects on CNS biogenic amines. Neuroimmunomodulation 2:319–328.

    PubMed  CAS  Google Scholar 

  58. Clarke, C. J., Hales, A., Hunt, A., and Foxwell, B. M. (1998). IL-10-mediated suppression of TNF-alpha production is independent of its ability to inhibit NF kappa B activity. Eur. J. Immunol. 28:1719–1726.

    Article  PubMed  CAS  Google Scholar 

  59. Hambrook, J. M., Morgan, B. A., Rance, M. J., and Smith, C. F. (1976). Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature 262:782–783.

    Article  PubMed  CAS  Google Scholar 

  60. Carr, D. J., Rogers, T. J., and Weber, R. J. (1996). The relevance of opioids and opioid receptors on immunocompetence and immune homeostasis. Proc. Soc. Exp. Biol. Med. 213:248–257.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Weber, R., Gomez, R. (2005). Modulation of Immune Function by Novel Opioid Receptor Ligands. In: Friedman, H., Klein, T.W., Bendinelli, M. (eds) Infectious Diseases and Substance Abuse. Infectious Agents and Pathogenesis. Springer, Boston, MA. https://doi.org/10.1007/0-306-48688-1_12

Download citation

Publish with us

Policies and ethics