Skip to main content

The Vertebrate Retina

  • Chapter

7. Summary and Conclusion

Histological analyses of presynaptic neurons and physiological recordings from postsynaptic cells suggest that photoreceptor, bipolar, and ganglion cells release glutamate as their neurotransmitter. Multiple glutamate receptor types are present and differentially distributed in the retina. iGluRs, found on neurons within the OFF pathway, directly gate ion channels and mediate rapid synaptic transmission. IGluRs are also present on ON-type amacrine and ganglion cells in proximal retina, while ON-bipolar cells express the metabotropic APB receptor. Signaling through the APB receptor is important during development as bipolar cell input to ganglion cells mediate the formation of ON and OFF processes in the IPL. Glutamate transporters are also present at retinal glutamatergic synapses. Transporters remove excess glutamate from the synaptic cleft to prevent neurotoxicity. Thus, postsynaptic responses to glutamate are determined by the distribution of receptors and transporters at glutamatergic synapses which, in retina, determine the conductance mechanisms underlying visual information processing and development within the ON and OFF pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, T., H. Sugihara, H., Nawa, R. Shigemoto, N. Mizuno, and S. Nakanishi (1992). Molecular characterization of a novel metabotropic glutamate receptor mGluR5 coupled to inositol phosphate/Ca+2 signal transduction. J. Biol. Chem. 267, 13361–13368.

    PubMed  CAS  Google Scholar 

  • Abrams, L., L.E. Politi, and R. Adler (1989). Differential susceptibility of isolated mouse retinal neurons and photoreceptors to kainic acid toxicity. Invest. Ophthal. Vis. Sci. 30, 2300–2308.

    PubMed  CAS  Google Scholar 

  • Aizenman, E., M.P. Frosch, and S.A. Lipton (1988). Responses mediated by excitatory amino acid receptors in solitary retinal ganglion cells from rat. J. Physiol. 396, 75–91.

    PubMed  CAS  Google Scholar 

  • Arriza, J.L., S. Eliasof, M.P. Kavanaugh, and S.G. Amara (1997). Excitatory amino acid transporter 5, a retinal glutamate transporter coupled to a chloride conductance. Proc. Natl. Acad. Sci. 94, 4155–4160.

    Article  PubMed  CAS  Google Scholar 

  • Awatramani, G.B. and M.M. Slaughter (2001). Intensity-dependent, rapid activation of presynaptic metabotropic glutamate receptors at a central synapse. J. Neurosci. 21, 741–749.

    PubMed  CAS  Google Scholar 

  • Bansal, A., J.H. Singer, B.J. Hwang, W. Zu, A. Beaudet, and M.B. Feller (2000). Mice lacking specific nicotinic acethycholine receptor subunits exhibit dramatically altered spontaneous activity patterns and reveal a limited role for retinal waves in forming ON and OFF circuits in the inner retina. J. Neurosci. 2000, 7672–7681.

    Google Scholar 

  • Barbour, B., H. Brew, and D. Attwell (1988). Electrogenic glutamate uptake in glial cells is activated by intracellular potassium. Nature 335, 433–435.

    Article  PubMed  CAS  Google Scholar 

  • Barbour, B., H. Brew, and D. Attwell (1991). Electrogenic uptake of glutamate and aspartate into glial cells isolated from the salamander (Ambystoma) retina. J. Physiol. 436, 169–193.

    PubMed  CAS  Google Scholar 

  • Bettler, B., J. Boulter, I. Hermans-Borgmeyer, O.A. Shea-Greenfield, E.S. Deneris, C. Moll et al. (1990). Cloning of a novel glutamate receptor subunit, GluR5: Expression in the nervous system during development. Neuron 5, 583–595.

    Article  PubMed  CAS  Google Scholar 

  • Bettler, B., J. Egebjerg, G. Sharma, G. Pecht, I. Hermans-Borgmeyer, C. Moll et al. (1992). Cloning of a putative glutamate receptor: a low affinity kainate-binding subunit. Neuron 8, 257–265.

    Article  PubMed  CAS  Google Scholar 

  • Bisti, S., C. Gargini, and L.M. Chalupa (1998). Blockade of glutamate-mediated activity in the developing retina perturbs the functional segregation of ON and OFF pathways. J. Neurosci. 18, 5019–5025.

    PubMed  CAS  Google Scholar 

  • Bodnarenko, S.R. and L.M. Chalupa (1993). Stratification of ON and OFF ganglion cell dendrites depends on glutamate-mediated afferent activity in the developing retina. Nature 364, 144–146.

    Article  PubMed  CAS  Google Scholar 

  • Bodnarenko, S.R., G. Jeyarasasingam, and L.M. Chalupa (1995). Developmental and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J. Neurosci. 15, 7037–7045.

    PubMed  CAS  Google Scholar 

  • Bodnarenko, S.R., G. Yeung, L. Thomas, and M. McCarthy (1999). The development of retinal ganglion cell dendritic stratification in ferrets. Neuroreport 10, 2955–2959.

    Article  PubMed  CAS  Google Scholar 

  • Boos, R., H. Schneider, and H. Wassle (1993). Voltage-and transmitter-gated currents of AII amacrine cells in a slice preparation of the rat retina. J. Neurosci. 13, 2874–2888.

    PubMed  CAS  Google Scholar 

  • Boulter, J., M. Hollmann, A. O’Shea-Greenfield, M. Hartley, E. Deneris, C. Maron et al. (1990). Molecular cloning and functional expression of glutamate receptor subunit genes. Science 249, 1033–1037.

    Article  PubMed  CAS  Google Scholar 

  • Bouvier, M., M. Szatkowski, A. Amato, and D. Attwell (1992) The glial cell glutamate uptake carrier countertransports pH-changing ions. Nature 360, 471–474.

    Article  PubMed  CAS  Google Scholar 

  • Brandstatter, J.H., E. Hartveit, M. Sassoe-Pognetto, and H. Wassle (1994). Expression of NMDA and high-affinity kainate receptor subunit mRNAs in the adult rat retina. Eur. J. Neurosci. 6, 1100–1112.

    Article  PubMed  CAS  Google Scholar 

  • Brandstatter, J.H., P. Koulen, R. Kuhn, H. van der Putten, and H. Wassle (1996). Compartmental localization of a metabotropic glutamate receptor (mGluR7): Two different active sites at a retinal synapse. J. Neurosci. 16, 4749–4756.

    PubMed  CAS  Google Scholar 

  • Brandstatter, J.H., P. Koulen, and H. Wassle (1997). Selective synaptic distribution of kainate receptor subunits in the two plexiform layers of the rat retina. J. Neurosci. 17, 9298–9307.

    PubMed  CAS  Google Scholar 

  • Brew, H. and D. Attwell (1987). Electrogenic glutamate uptake is a major current carrier in the membrane of axolotl retinal glial cells. Nature 327, 707–709.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, D.E., G.A. Garcia, E.D. Dreyer, D. Zurakowski, and R.E. Franco-Bourland (1997). Vitreous body glutamate concentration in dogs with glaucoma. Am. J. Vet. Res. 58, 864–867.

    PubMed  CAS  Google Scholar 

  • Chen, S. and J.S. Diamond (2002). Synaptically released glutamate activates extrasynaptic NMDA receptors on cells in the ganglion cell layer of rat retina. J. Neurosci. 22, 2165–2173.

    PubMed  CAS  Google Scholar 

  • Choi, D.W. (1988). Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Choi, D.W. (1994). Glutamate receptors and the induction of excitotoxic neuronal death. Progr. Brain. Res. 100, 47–51.

    CAS  Google Scholar 

  • Cohen, E.D. (2000). Light-evoked excitatory synaptic currents of Z-type retinal ganglion cells. J. Neurophysiol. 83, 3217–3229.

    PubMed  CAS  Google Scholar 

  • Cohen, E.D. and R.F. Miller (1994). The role of NMDA and non-NMDA excitatory amino acid receptors in the functional organization of primate retinal ganglion cells. Vis. Neurosci. 11, 317–332.

    PubMed  CAS  Google Scholar 

  • Connaughton, V.P., T.N. Behar, W.-L.S. Liu, and S. Massey (1999). Immunocytochemical localization of excitatory and inhibitory neurotransmitters in the zebrafish retina. Vis. Neurosci. 16, 483–490.

    Article  PubMed  CAS  Google Scholar 

  • Connaughton, V.P and R. Nelson (2000). Axonal stratification patterns and glutamate-gated conductance mechanisms in zebrafish retinal bipolar cells. J. Physiol. 524, 135–146.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, V.L., T.M. Dawson, E.D. London, D.S. Bredt, and S.N. Snyder (1991). Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc. Natl. Acad. Sci. 88, 6368–6371.

    Article  PubMed  CAS  Google Scholar 

  • Derouiche, A. and T. Rauen (1995). Coincidence of L-glutamate/L-aspartate transporter (GLAST) and glutamine synthetase (GS) immunoreactions in retinal glia: Evidence for coupling of GLAST and GS in transmitter clearance. J. Neurosci. Res. 42, 131–143.

    Article  PubMed  CAS  Google Scholar 

  • DeVries, S.H. and E.A. Schwartz (1999). Kainate receptors mediate synaptic transmission between cones and OFF bipolar cells in a mammalian retina. Nature 397, 157–160.

    Article  PubMed  CAS  Google Scholar 

  • Dhingra, A., A. Lyubarsky, M. Jiang, E.N. Pugh, Jr., L. Birnbaumer, P. Sterling et al. (2000). The light response of ON bipolar neurons requires G(o. J. Neurosci. 20, 9053–9058.

    PubMed  CAS  Google Scholar 

  • Diamond, J.A. and D.R. Copenhagen (1993). The contribution of NMDA and non-NMDA receptors to the lightevoked input-output characteristics of retinal ganglion cells. Neuron 11, 725–738.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, D.B. and D.R. Copenhagen (1992). Two types of glutamate receptors differentially excite amacrine cells in the tiger salamander retina. J. Physiol. 449, 589–606.

    PubMed  CAS  Google Scholar 

  • Dowling, J.E. (1987). The Retina, an Approachable Part of the Brain. The Belknap Press of Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Dowling, J.E. and B. Ehinger (1978). The interplexiform cell system I. synapses of the dopaminergic neurons of the goldfish retina. Proc. R. Soc. Lond. B. 201, 7–26.

    PubMed  CAS  Google Scholar 

  • Dreyer, E.B., Z.-H. Pan, S. Storm, and S.A. Lipton (1994). Greater sensitivity of larger retinal ganglion cells to NMDA-mediated cell death. Neuroreport. 5, 629–631.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, E.B., D. Zurakowski, R.A. Schumer, S.M. Podos, and S.A. Lipton (1996). Elevated glutamate levels in the vitreous body of humans and monkeys with glaucoma. Arch. Ophthalmol. 114, 299–305.

    PubMed  CAS  Google Scholar 

  • Duvoisin, R.M., C. Zhang, and K. Ramonell (1995). A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J. Neurosci. 15, 3075–3083.

    PubMed  CAS  Google Scholar 

  • Egebjerg, J., B. Bettler, I. Hermans-Borgmeyer, and S. Heinemann (1991). Cloning of a cDNA for a glutamate receptor subunit activated by kainate but not AMPA. Nature 351, 745–748.

    Article  PubMed  CAS  Google Scholar 

  • Ehinger, B., O.P. Ottersen, J. Storm-Mathisen, and J.E. Dowling (1988). Bipolar cells in the turtle retina are strongly immunoreactive for glutamate. Proc. Natl. Acad. Sci. 85, 8321–8325.

    Article  PubMed  CAS  Google Scholar 

  • Eliasof, S. and C.E. Jahr (1996). Retinal glial cell glutamate transporter is coupled to an anionic conductance. Proc. Natl. Acad. Sci. 93, 4153–4158.

    Article  PubMed  CAS  Google Scholar 

  • Eliasof, S. and C.E. Jahr (1997). Rapid AMPA receptor desensitization in catfish cone horizontal cells. Vis. Neurosci. 14, 13–18.

    PubMed  CAS  Google Scholar 

  • Eliasof, S. and F. Werblin (1993). Characterization of the glutamate transporter in retinal cones of the tiger salamander. J. Neurosci. 13, 402–411.

    PubMed  CAS  Google Scholar 

  • Fairman, W.A., R.J. Vandengerg, J.L. Arriza, M.P. Kavanaugh, and S.G. Amara (1995). An excitatory amino-acid transporter with properties of a ligand-gated chloride channel. Nature 375, 599–603.

    Article  PubMed  CAS  Google Scholar 

  • Famiglietti, Jr., E.V. and H. Kolb (1976). Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194, 193–195.

    Article  PubMed  Google Scholar 

  • Fykse, E.M. and F. Fonnum (1996). Amino acid neurotransmission: Dynamics of vesicular uptake. Neurochem. Res. 21, 1053–1060.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh, K.K., S. Haverkamp, and H. Wassle (2001). Glutamate receptors in the rod pathway of the mammalian retina. J. Neurosci. 21, 8636–8647.

    PubMed  CAS  Google Scholar 

  • Gilbertson, T.A., R. Scobey, and M. Wilson (1991). Permeation of calcium ions through non-NMDA glutamate channels in retinal bipolar cells. Science 251, 1613–1615.

    Article  PubMed  CAS  Google Scholar 

  • Glazner, G.W., S.L. Chan, C. Lu, and M.P. Mattson (2000). Caspase-mediated degradation of AMPA receptor subunits: A mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J. Neurosci. 20, 3641–3649.

    PubMed  CAS  Google Scholar 

  • Grant, G.B. and J.E. Dowling (1995). A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina. J. Neurosci. 15, 3852–3862.

    PubMed  CAS  Google Scholar 

  • Grant, G.B. and J.E. Dowling (1996). ON bipolar cell responses in the teleost retina are generated by two distinct mechanisms. J. Neurophysiol. 76, 3842–3849.

    PubMed  CAS  Google Scholar 

  • Grant, G.B. and F.S. Werblin (1996). A glutamate-elicited chloride current with transporter-like properties in rod photoreceptors of the tiger salamander. Vis. Neurosci. 13, 135–144.

    PubMed  CAS  Google Scholar 

  • Grunert, U., S. Haverkamp, E.L. Fletcher, and H. Wassle (2002). Synaptic distribution of ionotropic glutamate receptors in the inner plexiform layer of the primate retina. J. Comp. Neurol. 447, 138–151.

    Article  PubMed  CAS  Google Scholar 

  • Grunert, U., P.R. Martin, and H. Wassle (1994). Immunocytochemical analysis of bipolar cells in the Macaque monkey retina. J. Comp. Neurol. 348, 607–627.

    Article  PubMed  CAS  Google Scholar 

  • Hack, I., M. Frech, O. Dick, L. Peichl, and J.H. Brandstatter (2001). Heterogeneous distribution of AMPA glutamate receptor subunits at the photoreceptor synapses of rodent retina. Eur. J. Neurosci. 13, 15–24.

    Article  PubMed  CAS  Google Scholar 

  • Hack, I., L. Peichl, and J.H. Brandstatter (1999). An alternative pathway for rod signals in the rodent retina: Rod photoreceptors, cone bipolar cells, and the localization of glutamate receptors. Proc. Natl. Acad. Sci. 96, 14130–14135.

    Article  PubMed  CAS  Google Scholar 

  • Hamassaki-Britto, D.E., I. Hermans-Borgmeyer, S. Heinemann, and T.E. Hughes (1993). Expression of glutamate receptor genes in the mammalian retina: The localization of GluR1 through GluR7 mRNAs. J. Neurosci. 13, 1888–1898.

    PubMed  CAS  Google Scholar 

  • Hartveit, E., J.H. Brandstatter, R. Enz, and H. Wassle (1995). Expression of the mRNA of seven metabotropic glutamate receptors (mGluR1 to 7) in the rat retina. An in situ hybridization study on tissue section and isolated cells. Eur. J. Neurosci. 7, 1472–1483.

    Article  PubMed  CAS  Google Scholar 

  • Hartveit, E., J.H. Brandstatter, M. Sasso-Pognetto, D.J. Laurie, P.H. Seeburgh, and H. Wassle (1994). Localization and developmental expression of the NMDA receptor subunit NR2A in the mammalian retina. J. Comp. Neurol. 348, 570–582.

    Article  PubMed  CAS  Google Scholar 

  • Hartveit, E. and M.L. Veruki (1997). All amacrine cells express functional NMDA receptors. Neuroreport 8, 1219–1223.

    Article  PubMed  CAS  Google Scholar 

  • Haverkamp, S., U. Grunert, and H. Wassle (2001a). The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. J. Neurosci. 21, 2488–2500.

    PubMed  CAS  Google Scholar 

  • Haverkamp, S., U. Grunert, and H. Wassle (2001b). Localization of kainate receptors at the cone pedicles of the primate retina. J. Comp. Neurol. 436, 471–186.

    Article  PubMed  CAS  Google Scholar 

  • Hensley, S.H., X.-L. Yang, and S.M. Wu (1993). Identification of glutamate receptor subtypes mediating inputs to bipolar cells and ganglion cells in the tiger salamander retina. J. Neurophysiol. 69, 2099–2107.

    PubMed  CAS  Google Scholar 

  • Hertz, L. (1979). Functional interactions between neurons and astrocytes I. Turnover and metabolism of putative amino acid transmitters. Progr. Neurobiol. 13, 277–323.

    Article  CAS  Google Scholar 

  • Hirano, A.A. and P.R. MacLeish (1991). Glutamate and 2-amino-4-phosphobutyric acid evoke an increase in potassium conductance in retinal bipolar cells. Proc. Natl. Acad. Sci. 88, 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa, H., R. Shiells, and M. Yamada (2002). A metabotropic glutamate receptor regulates transmitter release from cone presynaptic terminals in carp retinal slices. J. Gen. Physiol. 119, 55–68.

    Article  PubMed  CAS  Google Scholar 

  • Hollmann, M., A. O’Shea-Greenfield, S.W. Rogers, and S. Heinemann (1989). Cloning by functional expression of a member of the glutamate receptor family. Nature 342, 643–648.

    Article  PubMed  CAS  Google Scholar 

  • Houamed, K.M., J.L. Kuijper, T.L. Gilbert, B.A. Haldeman, P.J. O’Hara, E.R. Mulvihill et al. (1991). Cloning, expression, and gene structure of a G protein-coupled glutamate receptor from rat brain. Science 252, 1318–1321.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, T.E. (1997). Are there ionotropic glutamate receptors on the rod bipolar cell of the mouse retina? Vis. Neurosci. 14, 103–109.

    PubMed  CAS  Google Scholar 

  • Hughes, T.E., I. Hermans-Borgmeyer, and S. Heinemann (1992). Differential expression of glutamate receptor genes (GluR1-5) in the rat retina. Vis. Neurosci. 8, 49–55.

    PubMed  CAS  Google Scholar 

  • Ikeda, K., M. Nagasawa, H. Mori, K. Araki, K. Sakimura, M. Watanabe et al. (1992). Cloning and expression of the ε4 subunit of the NMDA receptor channel. FEBS Lett. 313, 34–38.

    Article  PubMed  CAS  Google Scholar 

  • Ishida, A.T., W.K. Stell, and D.O. Lightfoot (1980). Rod and cone inputs to bipolar cells in goldfish retina. J. Comp. Neurol. 191, 315–335

    Article  PubMed  CAS  Google Scholar 

  • Ishii, T., K. Moriyoshi, H. Sugihara, K. Sakurada, H. Kadotani, M. Yokoi et al. (1993). Molecular characterization of the family of N-methyl-D-aspartate receptor subunits. J. Biol. Chem. 268, 2836–2843.

    PubMed  CAS  Google Scholar 

  • Jin, X.T. and W.J. Brunken (1996). A differential effect of APB on ON-and OFF-center ganglion cells in the dark adapted rabbit retina. Brain Res. 708, 191–196.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, J.W. and P. Ascher (1987). Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531.

    Article  PubMed  CAS  Google Scholar 

  • Jojich, L. and R.G. Pourcho (1996). Glutamate immunoreactivity in the cat retina: A Quantitative study. Vis. Neurosci. 13, 117–133.

    PubMed  CAS  Google Scholar 

  • Kalloniatis, M. and E.L. Fletcher (1993). Immunocytochemical localization of the amino acid neurotransmitters in the chicken retina. J. Comp. Neurol. 336, 174–193.

    Article  PubMed  CAS  Google Scholar 

  • Kalloniatis, M. and R.E. Marc (1990). Interplexiform cells of the goldfish retina. J. Comp. Neurol. 297, 340–358.

    Article  PubMed  CAS  Google Scholar 

  • Kamermans, M. I. Fahrenfort, K. Schultz, U. Janssen-Bienhold, T. Sjoerdsma, and R. Weiler (2001). Hemichannel-meidated inhibition in the outer retina. Science 292, 1178–1180.

    Article  PubMed  CAS  Google Scholar 

  • Kamermans, M. and H. Spekreijse (1999). The feedback pathway from horizontal cells to cones. A mini review with a look ahead. Vision Res. 39, 2449–2468.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y. and M.A. Hediger (1992). Primary structure and functional characterization of a high-affinity glutamate transporter. Nature 360, 467–471.

    Article  PubMed  CAS  Google Scholar 

  • Kanai, Y., C.P. Smith, and M.A. Hediger (1994). A new family of neurotransmitter transporters: The high-affinity glutamate transporters. FASEB J. 8, 1450–1459.

    Google Scholar 

  • Kashii, S., M. Mandai, M. Kikuchi, Y. Honda, Y. Tamura, K. Kaneda et al. (1996). Dual actions of nitric oxide in N-methyl-D-aspartate receptor-mediated neurotoxicity in cultured retinal neurons. Brain Res. 711, 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Katsuwada, T., N. Kashiwabuchi, H. Mori, K. Sakimura, E. Kushiya, K. Araki et al. (1992). Molecular diversity of the NMDA receptor channel. Nature 358, 36–41.

    Article  Google Scholar 

  • Kawasaki, A., Y. Otori, and C.J. Barnstable (2000). Muller cell protection of rat retinal ganglion cells from glutamate and nitric oxide neurotoxicity. Invest. Ophthal. Vis. Sci. 41, 3444–3450.

    PubMed  CAS  Google Scholar 

  • Keinanen, K., W. Wisden, B. Sommer, P. Werner, A. Herb, T.A. Versoorn et al. (1990). A family of AMPA-selective glutamate receptors. Science 249, 556–560.

    Google Scholar 

  • Kessler, M., A. Arai, A. Quan, and G. Lynch (1996). Effect of cyclothiazide on binding properties of AMPA-type glutamate receptors: Lack of competition between cyclothiazide and GYKI 52466. Molec. Pharmacol. 49, 123–131.

    CAS  Google Scholar 

  • Kittila, C.A. and S.C. Massey (1995). Effect of ON pathway blockade on directional selectively in the rabbit retina. J. Neurophysiol. 73, 703–712.

    PubMed  CAS  Google Scholar 

  • Kleckner, N.W. and R. Dingledine (1988). Requirement for glycine activation of NMDA-receptors expressed in Xenopus oocytes. Science 241, 835–837.

    Article  PubMed  CAS  Google Scholar 

  • Klooster, J., K.M. Studholme, and S. Yazulla (2001). Localization of the AMPA subunit GluR2 in the outer plexiform layer of goldfish retina. J. Comp. Neurol. 441, 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Knopfel, T., R. Kuhn, and H. Allgeier (1995). Metabotropic glutamate receptors: Novel targets for drug development. J. Med Chem 38, 1417–1426.

    Article  PubMed  CAS  Google Scholar 

  • Kolb, H., R. Nelson, and A. Mariani (1981). Amacrine cells, bipolar cells, and ganglion cells of the cat retina: A Golgi study. Vision Res. 21, 1081–1114.

    Article  PubMed  CAS  Google Scholar 

  • Koulen, P., R. Kuhn, H. Wassle, and J.H. Brandstatter (1997). Group I metabotropic glutamate receptors mGluR1alpha and mGluR5a: Localization in both synaptic layers of the rat retina. J. Neurosci. 17, 2200–2211.

    PubMed  CAS  Google Scholar 

  • Kriemborg, K.M., M.L. Lester, K.F. Medler, and E.L. Gleason (2001). Group I metabotropic glutamate receptors are expressed in the chicken retina and by cultured retinal amacrine cells. J. Neurochem. 77, 452–465.

    Article  Google Scholar 

  • Lehre, K.P., S. Davanger, and N.C. Danbolt (1997). Localization of the glutamate transporter protein GLAST in rat retina. Brain Res. 744, 129–137.

    Article  PubMed  CAS  Google Scholar 

  • Lodge, D. (1997). Subtypes of glutamate receptors. Historical perspectives on their pharmacological differentiation. In D.T. Monaghan and R.J. Weinhold (eds), The Ionotropic Glutamate Receptors. Humana Press, NJ. pp. 1–38.

    Google Scholar 

  • Luo, X., V. Heidinger, S. Picaud, G. Lambrou, H. Dreyfus, J. Sahel et al. (2001). Selective excitotoxic degeneration of adult pig retinal ganglion cells in vitro. Invest. Ophthal. Vis. Sci. 42, 1096–1106.

    PubMed  CAS  Google Scholar 

  • Marc, R.E. and D.M.K. Lam (1981). Uptake of aspartic and glutamic acid by photoreceptors in goldfish retina. Proc. Natl. Acad. Sci. 78, 7185–7189.

    Article  PubMed  CAS  Google Scholar 

  • Marc, R.E, W.-L.S. Liu, M. Kalloniatis, S.F. Raiguel, and E. Van Haesendonck (1990). Patterns of glutamate immunoreactivity in the goldfish retina. J. Neurosci. 10, 4006–4034.

    PubMed  CAS  Google Scholar 

  • Massey, S.C., J.M. Koomen, S. Liu, K.P. Lehre, and N.C. Danbolt (1997). Distribution of the glutamate transporter GLT-1 in the rabbit retina. Invest. Ophthal. Vis. Sci. 38, S689.

    Google Scholar 

  • Massey, S.C. and R.F. Miller (1990). N-Methyl-D-Aspartate receptors of ganglion cells in rabbit retina. J. Neurophysiol. 63, 16–30.

    PubMed  CAS  Google Scholar 

  • Massey, S.C. and R.F. Miller (1988). Glutamate receptors of ganglion cells in the rabbit retina: Evidence for glutamate as a bipolar cell transmitter. J. Physiol. 405, 635–655.

    PubMed  CAS  Google Scholar 

  • Massey, S.C., D.A. Redburn, and M.L.J. Crawford (1983). The effects of 2-amino-4-phosphobutyric acid (APB) on the ERG and ganglion cell discharge of rabbit retina. Vision Res. 23, 1607–1613.

    Article  PubMed  CAS  Google Scholar 

  • Masu, M., H. Iwakabe, Y. Tagawa, T. Miyoshi, M. Yamashita, Y. Fukuda et al. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757–765.

    Article  PubMed  CAS  Google Scholar 

  • Masu, M., Y. Tanabe, K. Tsuchida, R. Shigemoto, and S. Nakanishi (1991). Sequence and expression of a metabotropic glutamate receptor. Nature 349, 760–765.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., J. Hasegawa, and M. Tachibana (2001). Modulation of excitatory synaptic transmission by GABAC receptor-mediated feedback in the mouse inner retina. J. Neurophysiol. 86, 2285–2298.

    PubMed  CAS  Google Scholar 

  • Mayer, M.L. and G.L. Westbrook (1987). Permeation and block of N-Methyl-D-Aspartic acid receptor channels by divalent cations in mouse cultured central neurones. J. Physiol. 394, 501–527.

    PubMed  CAS  Google Scholar 

  • Meguro, H., H. Mori, K. Araki, E. Kushiya, T. Kutsuwada, M. Yamazaki et al. (1992). Functional characterization of a heteromeric NMDA receptor channel expressed from cloned cDNAs. Nature 357, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Mittman, S., W.R. Taylor, and D.R. Copenhagen (1990). Concomitant activation of two types of glutamate receptor mediates excitation of salamander retinal ganglion cells. J. Physiol. 428, 175–197.

    PubMed  CAS  Google Scholar 

  • Morigiwa, K. and N. Vardi (1999). Differential expression of ionotropic glutamate receptor subunits in the outer retina. J. Comp. Neurol. 405, 173–184.

    Article  PubMed  CAS  Google Scholar 

  • Moriyoshi, K., M. Masu, T. Ishii, R. Shigemoto, N. Mizuno, and S. Nakanishi (1991). Molecular cloning and characterization of the rat NMDA receptor. Nature 354, 31–37.

    Article  PubMed  CAS  Google Scholar 

  • Mosinger, J.L., M.T. Price, H.Y. Bai, H. Xiao, D.F. Wozniak, and J.W. Olney (1991). Blockade of both NMDA and non-NMDA receptors is required for optimal protection against ischemic neuronal degeneration in the in vivo adult mammalian retina. Exp. Neurol. 113, 10–17.

    Article  PubMed  CAS  Google Scholar 

  • Moyner, H., R. Sprengel, R. Schoepfer, A. Herb, M. Higuchi, H. Lorneli et al. (1992). Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256, 1217–1221.

    Article  Google Scholar 

  • Naito, S. and T. Ueda (1983). Adenosine triphosphate-dependent uptake of glutamate into Protein I-associated synaptic vesicles. J. Biol. Chem. 258, 696–699.

    PubMed  CAS  Google Scholar 

  • Nakajima, Y., H. Iwakabe, C. Akazawa, H. Nawa, R. Shigemoto, N. Mizuno et al. (1993). Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectively for L-2-amino-4-phosphobutyrate. J. Biol. Chem. 268, 11868–11873.

    PubMed  CAS  Google Scholar 

  • Nakanishi, S. (1994). Metabotropic glutamate receptors: Synaptic transmission, modulation, and plasticity. Neuron 13, 1031–1037.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, S. (1992). Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597–603.

    Article  PubMed  CAS  Google Scholar 

  • Nakanishi, N., N.A. Schneider, and R. Axel (1990). A family of glutamate receptors and implications for brain function. Science 258, 597–603.

    Article  Google Scholar 

  • Nakanishi, N., N.A. Schneider, and R. Axel (1990). A family of glutamate receptor genes: evidence for the formation of heteromultimeric receptors with distinct channel properties. Neuron 5, 569–581.

    Article  PubMed  CAS  Google Scholar 

  • Naskar, R., C.K. Vorwerk, and E.B. Dreyer (2000). Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest. Ophthal. Vis. Sci. 41, 1940-1944.

    Google Scholar 

  • Nawy, S. (2000). Regulation of the ON bipolar cell mGluR6 pathway by Ca+2. J. Neurosci. 20, 4471–4479.

    PubMed  CAS  Google Scholar 

  • Nawy, S. (1999). The metabotropic receptor mGluR6 may signal through Go, but not phosphodiesterase, in retinal bipolar cells. J. Neurosci. 19, 2938–2944.

    PubMed  CAS  Google Scholar 

  • Nawy, S. and D.R. Copenhagen (1990). Intracellular cesium separates two glutamate conductances in retinal bipolar cells of goldfish. Vision Res. 30, 967–972.

    Article  PubMed  CAS  Google Scholar 

  • Nawy, S. and D.R. Copenhagen (1987). Multiple classes of glutamate receptor on depolarizing bipolar cells in retina. Nature 325, 56–58.

    Article  PubMed  CAS  Google Scholar 

  • Nawy, S. and C.E. Jahr (1990). Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269–271.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, R., E.V. Famiglietti Jr., and H. Kolb (1978). Intracellular staining reveals different levels of stratification for ON-and OFF-center ganglion cells in cat retina. J. Neurophysiol. 41, 472–483.

    PubMed  CAS  Google Scholar 

  • Nestler, E.J. and E.S. Duman (1994). G proteins and cyclic nucleotides in the nervous system. In G.J. Siegel, B.W. Agranoff, R.W. Albers, and P.B. Molinoff, (eds). Basic Neurochemistry, 5th edn. Raven Press, New York, pp. 429–448.

    Google Scholar 

  • Nomura, A., R. Shigemoto, Y. Nakamura, N. Okamoto, N. Mizuno, and S. Nakanishi (1994). Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat bipolar cells. Cell 77, 361–369.

    Article  PubMed  CAS  Google Scholar 

  • Nowak, L., P. Bregestovski, P. Ascher, A. Herbet, and A. Prochiantz (1984). Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307, 462–465.

    Article  PubMed  CAS  Google Scholar 

  • O’Dell, T.J. and B.N. Christensen (1989). Horizontal cells isolated from catfish retina contain two types of excitatory amino acid receptors. J. Neurophysiol. 61, 1097–1109.

    PubMed  CAS  Google Scholar 

  • Olney, J.W. (1969). Glutamate-induced retinal degeneration in neonatal mice. Electron microscopy of the acutely evolving lesion. J. Neuropathol. Exp. Neurol. 28, 455–474.

    PubMed  CAS  Google Scholar 

  • Otori, Y., J.-Y. Wei, and C.J. Barnstable (1998). Neurotoxic effects of low doses of glutamate on purified rat retinal ganglion cells. Invest. Ophthal. Vis. Sci. 39, 972–981.

    PubMed  CAS  Google Scholar 

  • Paternain, A.V., M. Morales, and J. Lerma (1995). Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 14, 185–189.

    Article  PubMed  CAS  Google Scholar 

  • Peng, Y.W., C.D. Blackstone, R.L. Huganir, and K.W. Yau (1995). Distribution of glutamate receptor subtypes in the vertebrate retina. Neuroscience. 66, 483–497.

    Article  PubMed  CAS  Google Scholar 

  • Picaud, S., H.P. Larsson, D.P. Wellis, H. Lecar, and F. Werblin (1995a). Cone photoreceptors respond to their own glutamate release in the tiger salamander. Proc. Natl. Acad. Sci. 92, 9417–9421.

    Article  PubMed  CAS  Google Scholar 

  • Picaud, S.A., H.P. Larsson, G.B. Grant, H. Lecar, and F.S. Werblin (1995b). Glutamate-gated chloride channel with glutamate-transporter-like properties in cone photoreceptors of the tiger salamander. J. Neurophysiol. 74, 1760–1771.

    PubMed  CAS  Google Scholar 

  • Pin, J.P. and J. Bockaert (1995). Get receptive to metabotropic glutamate receptors. Curr. Opin. Neurobiol. 5, 342–349.

    Article  PubMed  CAS  Google Scholar 

  • Pin, J.P. and R. Duvoisin (1995). Review: Neurotransmitter receptors I: The metabotropic glutamate receptors: Structure and functions. Neuropharmacology 34, 1–26.

    Article  PubMed  CAS  Google Scholar 

  • Pines, G., N.C. Danbolt, M. Bjoras, Y. Zhang, A. Bendahan, L. Eide et al. (1992). Cloning and expression of a rat brain L-glutamate transporter. Nature 360, 464–467.

    Article  PubMed  CAS  Google Scholar 

  • Poitry, S., C. Poitry-Yamate, J. Ueberfeld, P.R. MacLeish, and M. Tsacopoulos (2000). Mechanisms of glutamate metabolic signalling in retinal glial (Muller) cells. J. Neurosci. 20, 1809–1821.

    PubMed  CAS  Google Scholar 

  • Pourcho, R.G., W. Cai, and P. Qin (1997). Glutamate receptor subunits in cat retina: light and electron microscopic observations. Invest. Ophthal. Vis. Sci. 38, S46.

    Google Scholar 

  • Pourcho, R.G., P. Qin, and D.J. Goebel (2001). Cellular and subcellular distribution of NMDA receptor subunit NR2B in the retina. J. Comp. Neurol. 433, 75–85.

    Article  PubMed  CAS  Google Scholar 

  • Pow, D.V. and N.L. Barnett (1999). Changing patterns of spatial buffering of glutamate in developing rat retinae are mediated by the Muller cell glutamate transporter GLAST. Cell Tissue Res. 297, 57–66.

    Article  PubMed  CAS  Google Scholar 

  • Pow, D.V. and D.R. Crook (1996). Direct immunocytochemical evidence for the transfer of glutamine from glial cells to neurons: Use of specific antibodies directed against the D-stereoisomers of glutamate and glutamine. Neuroscience. 70, 295–302.

    Article  PubMed  CAS  Google Scholar 

  • Qin, P. and R.G. Pourcho (2001). Immunocytochemical localization of kainate-selective glutamate receptor subunits GluR5, GluR6, GluR7 in the cat retina. Brain Res. 890, 211–221.

    Article  PubMed  CAS  Google Scholar 

  • Qin P. and R.G. Pourcho (1999). AMPA-selective glutamate receptors subunits GluR2 and GluR4 in the cat retina: an immunocytochemical study. Vis. Neurosci. 16, 1105–1114.

    Article  PubMed  CAS  Google Scholar 

  • Ransom, R.W. and N.L. Stec (1988). Cooperative modulation of [3H]MK-801 binding to the N-Methyl-D-Aspartate receptor-ion channel complex by L-glutamate, glycine, and polyamines. J. Neurochem. 51, 830–836.

    Article  PubMed  CAS  Google Scholar 

  • Rauen, T. (2000). Diversity of glutamate transporter expression and function in the mammalian retina. Amino Acids. 19, 53–62.

    Article  PubMed  CAS  Google Scholar 

  • Rauen, T., J.F. Rothstein, and H. Wassle (1996). Differential expression of three glutamate transporter subtypes in the rat retina. Cell Tissue Res. 286, 325–336.

    Article  PubMed  CAS  Google Scholar 

  • Redburn, D.A. and Rowe-Rendelman, C. (1996). Development neurotransmitters Signals for shaping neuronal circuitry. Invest. Ophthal. Vis. Sci. 37, 1479–1482.

    PubMed  CAS  Google Scholar 

  • Santos, A.E., A.L. Carvalho, M.C. Lopes, and A.P. Carvalho (2001). Differential postreceptor signaling events triggered by excitotoxic stimulation of different ionotropic glutamate receptors in retinal neurons. J. Neurosci. Res. 66, 643–655.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, T. and A. Kaneko (1996). L-glutamate-induced responses in OFF-type bipolar cells of the cat retina. Vision Res. 36, 787–795.

    Article  PubMed  CAS  Google Scholar 

  • Saugstad, J.A., J.M. Kinzie, E.R. Mulvihill, T.P. Segerson, and G.L. Westbrook (1994). Cloning and expression of a new member of the L-2-amino-4-phosphobutyric acid-sensitive class of metabotropic glutamate receptors. Mol. Pharmacol. 45, 367–372.

    PubMed  CAS  Google Scholar 

  • Schuettaf, F., R. Naskar, C.K. Vorwerk, D. Zurakowski, and E.B. Dreyer (2000). Ganglion cell loss after optic nerve crush mediated through AMPA-kainate and NMDA receptors. Invest. Ophthal. Vis. Sci. 41, 4313–4316.

    Google Scholar 

  • Schultz, K., D.J. Goldman, T. Ohtsuka, J. Hirano, L. Barton, and W.K. Stell (1997). Identification and localization of an immunoreactive AMPA-type glutamate receptor subunit (GluR4) with respect to identified photoreceptor synapses in the outer plexiform layer of goldfish retina. J. Neurocytol. 26, 651–666.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, K., U. Janssen-Bienhold, and R. Weiler (2001). Selective synaptic distribution of AMPA and kainate receptor subunits in the outer plexiform layer of the carp retina. J. Comp. Neurol. 435, 433–449.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, K. and W.K. Stell (1996). Immunocytochemical localization of the high-affinity glutamate transporter, EAAC1, in the retina of representative vertebrate species. Neurosci. Lett. 211, 191–194.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, E.A. and M. Tachibana (1990). Electrophysiology of glutamate and sodium co-transport in a glial cell of the salamander retina. J. Physiol. 426, 43–80.

    PubMed  CAS  Google Scholar 

  • Shen, Y., Y. Zhou, and Yang, Z.-L. (1999). Characterization of AMPA receptors on isolated amacrine-like cells in carp retina. Eur. J. Neurosci. 11, 4233–4240.

    Article  PubMed  CAS  Google Scholar 

  • Shiells, R.A. and G. Falk (2001). Rectification of cGMP-activated channels induced by phosphorylation in dogfish retinal “on” bipolar cells. J. Physiol. 535, 697–702.

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto, K., B. Lebrun, Y. Yasuda-Kamatani, M. Sakaitani, Y. Shigeri, N. Yumoto et al. (1998). DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol. Pharmacol. 53, 195–201.

    PubMed  CAS  Google Scholar 

  • Siliprandi, R., R. Canella, G. Carmignoto, N. Schiavo, A. Zanellato, R. Zanoni et al. (1992). N-methyl-D-aspartate induced neurotoxicity in the adult rat retina. Vis. Neurosci. 8, 567–573

    PubMed  CAS  Google Scholar 

  • Sisk, D.R. and T. Kuwabara (1985). Histologic changes in the inner retina of albino rats following intravitreal injection of monosodium L-glutamate. Graefe’s Arch. Clin. Exp. Ophthalmol. 223, 250–258.

    Article  CAS  Google Scholar 

  • Slaughter, M.M. and R.F. Miller (1981). 2-amino-4-phosphobutyric acid: A new pharmacological tool for retina research. Science 211, 182–184.

    Article  PubMed  CAS  Google Scholar 

  • Stell, W.K., A.T. Ishida, and D.O. Lightfoot (1977). Structural basis for ON-and OFF-center responses in retinal bipolar cells. Science 198, 1269–1271.

    Article  PubMed  CAS  Google Scholar 

  • Stockton, R.A. and M.M. Slaughter (1989). B-wave of the electroretinogram a reflection of ON bipolar cell activity. J. Gen. Physiol. 93, 101–122

    Article  PubMed  CAS  Google Scholar 

  • Stryer, L. (1988). Biochemistry, 3rd edn. W.H. Freeman & Co., New York.

    Google Scholar 

  • Sucher, N.J., S.Z. Lei, and S.A. Lipton (1991). Calcium channel antagonists attenuate NMDA-receptor mediated neurotoxicity of retinal ganglion cells in culture. Brain Res. 297, 297–302.

    Article  Google Scholar 

  • Tabb, J.S. and T. Ueda (1991). Phylogenetic studies on the synaptic vesicle glutamate transporter. J. Neurosci. 11, 1822–1828.

    PubMed  CAS  Google Scholar 

  • Tachibana, M. and A. Kaneko (1988). L-glutamate-induced depolarization in solitary photoreceptors: A process that may contribute to the interaction between photoreceptors in situ. Proc. Natl. Acad. Sci. 85, 5315–5319.

    Article  PubMed  CAS  Google Scholar 

  • Tagawa, Y., H. Sawai, Y. Ueda, M. Tauchi, and S. Nakanishi (1999). Immunohistological studies of metabotropic glutamate receptor subtype 6-deficient mice show no abnormality of retinal cell organization and ganglion cell maturation. J. Neurosci. 19, 2568–2579.

    PubMed  CAS  Google Scholar 

  • Takahashi, K.-I. and D.R. Copenhagen (1992). APB suppresses synaptic input to retinal horizontal cells modulated by intracellular pH. J. Neurophysiol. 67, 1633–1642.

    PubMed  CAS  Google Scholar 

  • Tanabe, Y., M. Masu, T. Ishii, R. Shigemoto, and S. Nakanishi (1992). A family of metabotropic glutamate receptors. Neuron. 8, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, W.R. and H. Wassle (1995). Receptive field properties of starburst cholinergic amacrine cells in the rabbit retina. Eur. J. Neurosci. 7, 2308–2321.

    Article  PubMed  CAS  Google Scholar 

  • Tian, N. and M.M. Slaughter (1995). Correlation of dynamic responses in the ON bipolar neuron and the b-wave of the electroretinogram. Vision Res. 35, 1359–1364.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbranden, C.A.V., W. Kamphuis, B. Nunes Cardozo, and M. Kamermans (2000a). Expression and localization of ionotropic glutamate receptor subunits in the goldfish retina—an in situ hybridization and immunocytochemical study. J. Neurocytol. 29, 729–742.

    Article  PubMed  CAS  Google Scholar 

  • Vandenbranden, C.A.V., S. Yazulla, K.M. Studholme, W. Kamphuis, and M. Kamermans (2000b). Immunocytochemical localization of the glutamate transporter GLT-1 in the goldfish (Carassius auratus) retina. J. Comp Neurol. 423, 440–451.

    Article  PubMed  CAS  Google Scholar 

  • Van Haesendonck, E. and L. Missotten (1990). Glutamate-like immunoreactivity in the retina of a marine teleost, the dragonet. Neurosci. Lett. 111, 281–286.

    Article  PubMed  Google Scholar 

  • Vardi, N. (1998). Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J. Comp. Neurol. 395, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, N., R. Duvoisin, G. Wu, and P. Sterling (2000). Localization of mGluR6 to dendrites of ON bipolar cells in primate retina. J. Comp Neurol. 423, 402–412.

    Article  PubMed  CAS  Google Scholar 

  • Vardi, N., D.F. Matesic, D.R. Manning, P.A. Liebman, and P. Sterling (1993). Identification of a G-protein in depolarizing rod bipolar cells. Vis. NeuroSci. 10, 473–478.

    PubMed  CAS  Google Scholar 

  • Villani, L., T. Guarnieri, and G. Dell’Erba (1997). Apoptosis is induced by excitotoxicity in goldfish retina. J. Brain Res. 38, 481–486.

    CAS  Google Scholar 

  • Vorwerk, C.K., M.R. Kreutz, T.M. Bockers, M. Brosz, E.B. Dreyer, and B.A. Sabel (1999). Susceptibility of retinal ganglion cells to excitotoxicity depends on soma size and retinal eccentricity. Curr. Eye Res. 19, 59–65.

    Article  PubMed  CAS  Google Scholar 

  • Vorwerk, C.K., S.A. Lipton, D. Zurakowski, B.T. Hyman, B.A. Sabel, and E.B. Dreyer (1996). Chronic low-dose glutamate is toxic to retinal ganglion cells Toxicity blocked by memantine. Invest. Ophthal. Vis. Sci. 37, 1618–1624.

    PubMed  CAS  Google Scholar 

  • Vorwerk, C.K., R. Naskar, F. Schuettauf, K. Quinto, D. Zurakowski, G. Gochenauer et al. (2000). Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest. Ophthal. Vis. Sci. 41, 3615–3621.

    PubMed  CAS  Google Scholar 

  • Walters, R.J., R.H. Kramer, and S. Nawy (1998). Regulation of cGMP-dependent current in ON bipolar cells by calcium/calmodulin-dependent kinase. Vis. Neurosci. 15, 257–261.

    Article  PubMed  CAS  Google Scholar 

  • Wenzel, A., D. Benke, H. Mohler, and Fritschy, J.-M. (1997). N-methyl-D-aspartate receptors containing the NR2D subunit in the retina are selectively expressed in rod bipolar cells. Neuroscience 78, 1105–1112.

    Article  PubMed  CAS  Google Scholar 

  • Werblin, F.S and J.E. Dowling (1969). Organization of the retina of the mudpuppy, Necturus Maculosus. II. Intracellular recording. J. Neurophysiol. 32, 339–355.

    PubMed  CAS  Google Scholar 

  • Westbrook, G.L. and M.L. Mayer (1987). Micromolar concentrations of Zn+2 antagonize NMDA and GABA responses of hippocampal neurons. Nature 328, 640–643.

    Article  PubMed  CAS  Google Scholar 

  • Williams, K., A.M. Zappia, D.B. Pritchett, Y.M. Shen, and P.B. Molinoff (1994). Sensitivity of the N-Methyl-D-Aspartate receptor to polyamines is controlled by NR2 subunits. Mol. Pharmacol. 45, 803–809.

    PubMed  CAS  Google Scholar 

  • Wong, W.T., K.L Myhr, E.D. Miller, and R.O.L. Wong (2000). Developmental changes in the neurotransmitter regulation of correlated spontaneous retinal activity. J. Neurosci. 20, 351–360.

    PubMed  CAS  Google Scholar 

  • Wygnanski, T., H. Desatnik, H.A. Quigley, and Y. Glovinsky (1995). Comparison of ganglion cell loss and cone loss in experimental glaucoma. Am. J. Ophthal. 120, 184–189.

    PubMed  CAS  Google Scholar 

  • Yamada, K.A. and C.-M. Tang (1993). Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J. Neurosci. 13, 3904–3915.

    PubMed  CAS  Google Scholar 

  • Yamashita, M. and H. Wassle (1991). Responses of rod bipolar cells isolated from the rat retina to the glutamate agonist 2-amino-4-phosphonobutyric acid (APB). J. NeuroSci. 11, 2372–2382.

    PubMed  CAS  Google Scholar 

  • Yang, C.-Y. (1996). Glutamate immunoreactivity in the tiger salamander retina differentiates between GABA-immunoreactive and glycine-immunoreactive amacrine cells. J. Neurocytol. 25, 391–403.

    PubMed  CAS  Google Scholar 

  • Yang, C.-Y. and S. Yazulla (1994). Glutamate-, GABA-, and GAD-immunoreactivities co-localize in bipolar cells of tiger salamander retina. Vis. Neurosci. 11, 1193–1203.

    PubMed  CAS  Google Scholar 

  • Yang, J.H. and S.M. Wu (1997). Characterization of glutamate transporter function in the tiger salamander retina. Vision Res. 37, 827–838.

    Article  PubMed  CAS  Google Scholar 

  • Yazulla, S. (1986). GABAergic neurons in the retina. Progr. Retinal Res. 5, 1–52.

    Article  CAS  Google Scholar 

  • Yazulla, S. and K.M. Studholme (1999). Co-localization of Shaker A-type K+ channel (Kv1.4) and AMPA-glutamate receptor (GluR4) immunoreactivities to dendrites of OFF-bipolar cells of goldfish retina. J. Neurocytol. 28, 63–73.

    Article  PubMed  CAS  Google Scholar 

  • Yoles, E. and M. Schwartz (1998). Elevation of intraocular glutamate levels in rats with partial lesion of the optic nerve. Arch. Ophthal. 116, 906–910.

    PubMed  CAS  Google Scholar 

  • Yu, W. and R.F. Miller (1995). NBQX, an improved non-NMDA antagonist studied in retinal ganglion cells. Brain Res. 692, 190–194.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, J.-W. and Yang, X.-L. (2001). Glutamate transporter EAAC1 is expressed on Muller cells of lower vertebrate retinas. J. Neurosci. Res. 66, 89–95.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, Z.J., G.L. Fain, and J.E. Dowling (1993). The excitatory and inhibitory amino acid receptors on horizontal cells isolated from the white perch retina. J. Neurophysiol. 70, 8–19.

    PubMed  CAS  Google Scholar 

  • Zhou, Z.J. and D. Zhao (2000). Coordinated transitions in neurotransmitter systems for the initiation and propagation of spontaneous retinal waves. J. Neurosci. 20, 6570–6577.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Connaughton, V.P. (2005). The Vertebrate Retina. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_6

Download citation

Publish with us

Policies and ethics