Skip to main content

Anticancer Effects of Glutamate Antagonists

  • Chapter
  • 536 Accesses

6. Conclusions

The discovery of anticancer activity of glutamate antagonists provides new challenges for cancer biologists and the pharmaceutical industry. One crucial issue to resolve is determining whether glutamate antagonists exert similar anticancer activity in vivo. It will be important to decipher the molecular pathways that glutamate antagonists utilize to limit tumor growth, invasiveness, and migration. The electrophysiological and binding properties of glutamate receptor/ion channels present on tumor cells will need to be investigated as well as their subunits better characterized and sequenced. Having achieved this, hopefully it will be possible to support existing chemotherapy armamentarium with a new class of drugs that have primarily been developed for neurological disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bardoul, M., C. Levallois, and N. Konig (1998). Functional AMPA/kainate receptors in human embryonic and foetal central nervous system. J. Chem. Neuroanat. 14, 79–85.

    Article  PubMed  CAS  Google Scholar 

  • Behar, T.N., C.A. Scott, C.J. Greene, X. Wen, S.V. Smith, D. Maric et al. (1999). Glutamate acting at NMDA receptors stimulates embryonic cortical neuronal migration. J. Neurosci. 19, 4449–4461.

    PubMed  CAS  Google Scholar 

  • Burnashev, N., Z. Zhou, E. Neher, and B. Sakmann (1995). Fractional calcium currents through recombinant GluR channels of the NMDA, AMPA and kainate receptor subtypes. J. Physiol. 485, 403–418.

    PubMed  CAS  Google Scholar 

  • Cavalheiro, E.A., J. Lehmann, and L. Turski (1988). Frontiers in Excitatory Amino Acid Research. Alan R Liss, New York.

    Google Scholar 

  • Celli, A., C. Treves, P. Nassi, and M. Stio (1999). Role of 1,25-dihydroxyvitamin D3 and extracellular calcium in the regulation of proliferation in cultured SH-SY5Y human neuroblastoma cells. Neurochem. Res. 24, 691–698.

    Article  PubMed  CAS  Google Scholar 

  • Clapham, D.E. (1995). Calcium signalling. Cell 80, 259–268.

    Article  PubMed  CAS  Google Scholar 

  • Gallo, V., M. Pende, S. Cherer, M. Molne, and P. Wright (1995). Expression and regulation of kainate and AMPA receptors in uncommitted and committed neural progenitors. Neurochem. Res. 20, 549–560.

    Article  PubMed  CAS  Google Scholar 

  • Gleason, E.L. and N.C. Spitzer (1998). AMPA and NMDA receptors expressed by differentiating Xenopus spinal neurons. J. Neurophysiol. 79, 2986–2998.

    PubMed  CAS  Google Scholar 

  • Gomez, T.M. and N.C. Spitzer (1999). In vivo regulation of axon extension and pathfinding by growth-cone calcium transients. Nature 397, 350–355.

    Article  PubMed  CAS  Google Scholar 

  • Horner, P.J. and F.H. Gage (2000). Regenerating the damaged central nervous system. Nature 407, 963–970.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomidou, C., F. Bosch, M. Miksa, P. Bittigau, J. Vöckler, and K. Dirkanian et al. (1999). Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283, 70–74.

    Article  PubMed  CAS  Google Scholar 

  • Iwata, M., S. Komori, T. Unno, N. Minamoto, and H. Ohashi (1999). Modification of membrane currents in mouse neuroblastoma cells following infection with rabies virus. Br. J. Pharmacol. 126, 1691–1698.

    Article  PubMed  CAS  Google Scholar 

  • Jonas, P. and N. Burnashev (1995). Molecular mechanisms controlling calcium entry through AMPA-type glutamate receptor channels. Neuron 5, 987–990.

    Article  Google Scholar 

  • Kleinschmidt, A., M.F. Bear, and W. Singer (1987). Blockade of “NMDA” receptors disrupts experience-dependent plasticity of kitten striate cortex. Science 238, 355–358.

    Article  PubMed  CAS  Google Scholar 

  • Komarov, P.G., E.A. Komarova, R.V. Kondratov, K. Christov-Tselkov, J.S. Coon, M.V. Chernov et al. (1999). A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737.

    Article  PubMed  CAS  Google Scholar 

  • Komuro, H. and P. Rakic (1993). Modulation of neuronal migration by NMDA receptors. Science 260, 95–97.

    Article  PubMed  CAS  Google Scholar 

  • Laketic-Ljubojevic, I., L.J. Suva, F.J.M. Maathuis, D. Sanders, and T.M. Skerry (1999). Functional characterization of N-methyl-D-aspartic acid-gated channels in bone cells. Bone 25, 631–637.

    Article  PubMed  CAS  Google Scholar 

  • Lawson, M.A. and F.R. Maxfield (1995). Ca2+-and calcineurin-dependent recycling of an integrin to the front of migrating neutrophils. Nature 377, 75–79.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.-M., G.J. Zipfel, and D.W. Choi (1999). The changing landscape of ischaemic brain injury mechanisms. Nature 399, A7–A14.

    PubMed  CAS  Google Scholar 

  • Marks, P.W. and F.R. Maxfield (1990). Transient increases in cytosolic free calcium appear to be required for the migration of adherent human neutrophils. J. Cell. Biol. 110, 43–52.

    Article  PubMed  CAS  Google Scholar 

  • McCormic, F. (2001). Cancer gene therapy: Fringe or cutting edge? Nature Rev. Cancer 1, 130–141.

    Article  Google Scholar 

  • McNamara, J.O. (1999). Emerging insights into the genesis of epilepsy. Nature 399, A15–A22.

    Article  PubMed  CAS  Google Scholar 

  • Meloni, F., A. Brochieri, P.C. Ballabio, A. Tua, G. Grignani, and G.G. Grassi (1998). Bombesin, calcium homeostasis and tumour growth. Monaldi Arch. Chest Dis. 53, 405–409.

    PubMed  CAS  Google Scholar 

  • Nakato, K., T. Furuno, K. Inagaki, R. Teshima, R. Terao, and M. Nakanishi (1992). Cytosolic and intranuclear calcium signals in rat basophilic leukemia cells as revealed by a confocal fluorescence microscope. Eur. J. Biochem. 209, 745–749.

    Article  PubMed  CAS  Google Scholar 

  • Peet, N.M., P.S. Grabowski, I. Laketic-Ljubojevic, and T.M. Skerry (1999). The glutamate receptor antagonist MK801 modulates bone resorption in vitro by a mechanism predominantly involving osteoclast differentiation. FASEB J. 13, 2179–2185.

    PubMed  CAS  Google Scholar 

  • Price, D.L. (1999). New order from neurological disorders. Nature 399(Suppl.), A3–A5.

    PubMed  CAS  Google Scholar 

  • Rzeski, W., L. Turski, and C. Ikonomidou (2001). Glutamate antagonists limit tumor growth. Proc. Natl. Acad. Sci USA 98, 6372–6377.

    Article  PubMed  CAS  Google Scholar 

  • Scherer, S.E. and V. Gallo (1998). Expression and regulation of kainate and AMPA receptors in the rat neural tube. J. Neurosci. Res. 52, 356–368.

    Article  PubMed  CAS  Google Scholar 

  • Scott, A.M. and J. Cebon (1997). Clinical promise of tumour immunology. Lancet 349, S19–S22.

    Article  Google Scholar 

  • Skeery, T.M. and P.G. Genever (2001). Glutamate signalling in non-neuronal tissues. Trends in Pharmacol. Sci. 22, 174–181.

    Article  Google Scholar 

  • Sonnier, H., O.V. Kolomytkin, and A. Marino (2000). Resting potential of excitable neuroblastoma cells in weak magnetic fields. Cell. Mol. Life Sci. 57, 514–520.

    Article  PubMed  CAS  Google Scholar 

  • Sporn, M.B. (1996). The war on cancer. Lancet 347, 1377–1381.

    Article  PubMed  CAS  Google Scholar 

  • Stehno-Bittel, L. and C. Perez-Terzic (1995). Diffusion across the nuclear envelope inhibited by depletion of the nuclear Ca2+ store. Science 270, 1835–1838.

    Article  PubMed  CAS  Google Scholar 

  • Takano, T., J.H.-C. Lin, G. Arcuino, Q. Gao, J. Yang, and M. Nedergaard (2001). Glutamate release promotes growth of malignant gliomas. Nat. Med. 7, 1010–1015.

    Article  PubMed  CAS  Google Scholar 

  • Turski, L., E.A. Cavalheiro, and D.D. Schoepp (2001). Excitatory Amino Acids: Ten Years Later. IOS Press, Amsterdam.

    Google Scholar 

  • Vijayakumar, S. and S. Hellman (1997). Advances in radiation oncology. Lancet 349, S1–S3.

    Article  Google Scholar 

  • Vokes, E.V. (1997). Combined modality therapy of solid tumours. Lancet 349, S4–S6.

    Article  Google Scholar 

  • Watkins, J.C. and R.H. Evans (1981). Excitatory amino acid transmitters. Ann. Rev. Pharmacol. Toxicol. 21, 165–204.

    Article  CAS  Google Scholar 

  • Welch, D.-R., A. Fabra, and M. Nakajima (1990). Transforming growth factor beta stimulates mammary adenocarcinoma cell invasion and metastatic potential. Proc. Natl. Acad. Sci. USA 93, 7688–7692.

    Google Scholar 

  • Workman, P. and S. Kaye (2002). Translating basic cancer research into new cancer therapeutics. Trends Mol. Med. 8, 1–9.

    Article  Google Scholar 

  • Zipfel, G.L., J.M. Lee, and D.W. Choi (1999). Reducing calcium overload in the ischemic brain. N. Engl. J. Med. 341, 543–544.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic / Plenum Publishers, New York

About this chapter

Cite this chapter

Rzeski, W., Turski, L., Ikonomidou, C. (2005). Anticancer Effects of Glutamate Antagonists. In: Gill, S., Pulido, O. (eds) Glutamate Receptors in Peripheral Tissue: Excitatory Transmission Outside the CNS. Springer, Boston, MA. https://doi.org/10.1007/0-306-48644-X_4

Download citation

Publish with us

Policies and ethics