Skip to main content

The CNS Physiology of Food Reward

Current Insights and Future Directions

  • Chapter

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 14))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agmo, A., Galvan, A., & Talamantes, B. (1995). Reward and reinforcement produced by drinking sucrose: two processes that may depend on different neurotransmitters. Pharmacology, Biochemistry, and Behavior, 52, 403–414.

    Article  CAS  PubMed  Google Scholar 

  • Ahima, R. S., & Osei, S. Y. (2001). Molecular regulation of eating behavior: New insights and prospects for therapeutic strategies. Trends in Molecular Medicine, 7, 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Arase, K., Fisler, J. S., Shargill, N. S., York, D. A., & Bray, G. A. (1988). Intracerebroventricular infusions of 3-OHB and insulin in a rat model of dietary obesity. American Journal of Physiology, 255, R974–R981.

    CAS  PubMed  Google Scholar 

  • Bardo, M. T., & Bevins, R. A. (2000). Conditioned place preference: What does it add to our preclinical understanding of drug reward? Psychopharmacology, 153, 31–43.

    Article  CAS  PubMed  Google Scholar 

  • Baskin, D. G., Figlewicz Lattemann, D., Seeley, R. J., Woods, S. C., Porte, D., Jr., & Schwartz, M. W. (1999). Insulin and leptin: Dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Research, 848, 114–123.

    Article  CAS  PubMed  Google Scholar 

  • Bassareo, V., & DiChiara, G. (1997). Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimulu in rats fed ad libitum. Journal of Neuroscience, 17, 851–861.

    CAS  PubMed  Google Scholar 

  • Bassareo, V., & DiChiara, G. (1999). Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 11, 4389–4397.

    Article  CAS  PubMed  Google Scholar 

  • Baunez, C., Amalric, M., & Robbins, T. W. (2002). Enhanced food-related motivation after bilateral lesions of the subthalamic nucleus. Journal of Neuroscience, 22, 562–568.

    CAS  PubMed  Google Scholar 

  • Baunez, C., Cador, M., Dias, C., Robbins, T. W., & Amalric, M. (2002). Bilateral lesions of the subthalamic nucleus increase motivation for food, but reduce the incentive motivation produced by drugs of abuse. FENS Forum Abstract, 42.3.

    Google Scholar 

  • Beck, B. (2000). Neuropeptides and obesity. Nutrition, 16, 916–923.

    Article  CAS  PubMed  Google Scholar 

  • Bell, S. M., Stewart, R. B., Thompson, S. C., & Meisch, R. A. (1997). Food deprivation increases cocaine-induced conditioned place preference and locomotor activity in rats. Psychopharmacology, 131, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 28, 309–369.

    Google Scholar 

  • Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.

    Article  CAS  PubMed  Google Scholar 

  • Berthoud, H. R. (2002). Multiple neural systems controlling food intake and body weight. Neuroscience and Biobehavioral Reviews, 26, 393–428.

    Article  PubMed  Google Scholar 

  • Bielajew, C., & Trzcinska, M. (1994). Characteristics of stimulation-induced feeding sites in the sulcal prefrontal cortex. Behavioral Brain Research, 61, 29–35.

    Article  CAS  Google Scholar 

  • Bodnar, R. J., Glass, M. J., Ragnauth, A., & Cooper, M. L. (1995). General, mu and kappa opioid antagonists in the nucleus accumbens alter food intake under deprivation, glucoprivic and palatable conditions. Brain Research, 700, 205–212.

    Article  CAS  PubMed  Google Scholar 

  • Broberger, C., DeLecea, L., Sutcliffe, J. G., & Hokfelt, T. (1998). Hypocretin/orexin-and melanin-concentrating hormone-expressing cells form distinct populations in the rodent lateral hypothalamus: Relationship to the neuropeptide Y and agouti gene-related protein systems. Journal of Comparative Neurology, 402, 460–474.

    Article  CAS  PubMed  Google Scholar 

  • Campbell, U. C., & Carroll, M. E. (2000). Reduction of drug self-administration by an alternative nondrug reinforcer in rhesus monkeys: Magnitude and temporal effects. Psychopharmacology, 147, 418–425.

    Article  CAS  PubMed  Google Scholar 

  • Carelli, R. M. (2002). Nucleus accumbens cell firing during goal-directed behaviors for cocaine vs. ‘natural’ reinforcement. Physiology and Behavior, 76, 379–388.

    Article  CAS  PubMed  Google Scholar 

  • Carr, K. D. (1996). Feeding, drug abuse, and the sensitization of reward by metabolic need. Neurochemical Research, 21, 1455–1467.

    CAS  PubMed  Google Scholar 

  • Carr, K. D. (2002). Augmentation of drug reward by chronic food restriction: Behavioral evidence and underlying mechanisms. Physiology and Behavior, 76, 353–364.

    Article  CAS  PubMed  Google Scholar 

  • Carr, K. D., Kim, G. Y., & Cabeza de Vaca, S. (2000). Hypoinsulinemia may mediate the lowering of selfstimulation thresholds by food restriction and streptozotocin-induced diabetes. Brain Research, 863, 160–168.

    Article  CAS  PubMed  Google Scholar 

  • Carr, K. D., & Wolinsky, T. D. (1993). Chronic food restriction and weight loss produce opioid facilitation of perifornical hypothalamic self-stimulation. Brain Research, 607, 141–148.

    Article  CAS  PubMed  Google Scholar 

  • Carroll, M. E., & Meisch, R. A. (1984). Increased drug-reinforced behavior due to food deprivation. Advances in Behavioral Pharmacology, 4, 47–88.

    CAS  Google Scholar 

  • Chavez, M., Riedy, C. A., Van Dijk, G. V., & Woods, S. C. (1996). Central insulin and macronutrient intake in the rat. American Journal of Physiology, 271, R727–R731.

    CAS  PubMed  Google Scholar 

  • Chou, T. C., Lee, C. E., Lu, J., Elmquist, J. K., Hara, J., Willie, J. T. et al. (2001). Orexin (hypocretin) neurons contain dynorphin. Journal of Neuroscience, 21, RC168.

    CAS  PubMed  Google Scholar 

  • Cooper, S., & Kirkham, T. (1993). Opioid mechanisms in the control of food consumption and taste preferences. In A. Herz (Ed.), Handbook of experimental pharmacology (pp. 239–262). Berlin, Germany: Springer.

    Google Scholar 

  • DeOlmos, J. S., & Heimer, L. (1999). The concepts of the ventral striatopallidal system and extended amygdala. Annals of the New York Academy of Sciences, 877, 1–32.

    Article  CAS  Google Scholar 

  • Drewnowski, A., Krahn, D. D., Demitrack, M. A., Nairn, K., & Gosnell, B. A. (1992). Taste responses and preferences for sweet high fat foods: Evidence of opioid involvement. Physiology and Behavior, 51, 371–379.

    Article  CAS  PubMed  Google Scholar 

  • Drewnowski, A., Krahn, D. D., Demitrack, M.A., Nairn, K., & Gosnell, B.A. (1905). Naloxone, an opiate blocker, reduces the consumption of sweethigh fat foods in obese and lean female binge eaters. American Journal of Clinical Nutrition, 61, 1206–1212.

    Google Scholar 

  • Elias, C. F., Saper, C. B., Maratos-Flier, E., Tritos, N. A., Lee, C., Kellye, J. et al. (1998). Chemically defined projections linking the mediobasal hypothalamus and the lateral hypothalamic area. Journal of Comparative Neurology, 402, 442–459.

    Article  CAS  PubMed  Google Scholar 

  • Everitt, B. J., Parkinson, J. A., Olmstead, M. C., Arroyo, M., Robledo, P., & Robbins, T. W. (1999). Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Annals of the New York Academy of Sciences, 877, 412–438.

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz, D. P. (2003). Adiposity signals and food reward: Expanding the CNS roles of insulin and leptin. American Journal of Physiology, 284, R882–R892.

    CAS  PubMed  Google Scholar 

  • Figlewicz, D. P., Evans, S. B., Murphy, J., Hoen, M., & Baskin, D. G. (2003). Expression of receptors for insulin and leptin in the ventral tegmental area/substantia nigra (VTA/SN) of the rat. Brain Research, 964, 107–115.

    Article  CAS  PubMed  Google Scholar 

  • Figlewicz, D. P., Higgins, M. S., Ng-Evans, S. B., & Havel, P. J. (2001). Leptin reverses sucrose-conditioned place preference in food-restricted rats. Physiology and Behavior, 73, 229–234.

    Article  CAS  PubMed  Google Scholar 

  • Foltin, R. W. (1999). Food and cocaine self-administration by baboons: Effects of alternatives. Journal of the Experimental Analysis of Behavior, 72, 215–234.

    Article  CAS  PubMed  Google Scholar 

  • Fulton, S., Woodside, B., & Shizgal, P. (2000). Modulation of brain reward circuitry by leptin. Science, 287, 125–128.

    Article  CAS  PubMed  Google Scholar 

  • Gallici, R., Pechnick, R. N., Poland, R. E., & France, C. P. (2000). Comparison of noncontingent vs. contingent cocaine administration on plasma corticosterone levels in rats. European Journal of Pharmacology, 387, 59–62.

    Article  Google Scholar 

  • Gautier, J. F., Chen, K., Salbe, A. D., Bandy, D., Pratley, R. E., Heiman, M. et al. (2000). Differential brain responses to satiation in obese and lean men. Diabetes, 49, 838–846.

    CAS  PubMed  Google Scholar 

  • Glass, M. J., Billington, C. J., & Levine, A. S. (1999). Opioids and food intake: Distributed functional neural pathways? Neuropeptides, 33, 360–368.

    Article  CAS  PubMed  Google Scholar 

  • Glass, M. J., Billington, C. J., & Levine, A. S. (2000). Naltrexone administered to central nucleus of amygdala or PVN: Neural dissociation of diet and energy. American Journal of Physiology, 279, R86–R92.

    CAS  PubMed  Google Scholar 

  • Glass, M. J., Briggs, J. E., Billington, C. J., Kotz, C. M., & Levine, A. S. (2002). Opioid receptor blockade in the rat nucleus solitarius alters amygdala dynorphin gene expression. American Journal of Physiology, 283, R161–R167.

    CAS  PubMed  Google Scholar 

  • Glass, M. J., Grace, M., Cleary, J. P., Billington, C. J., & Levine, A. S. (1996). Potency of naloxone’s anorectic effect in rats is dependent on diet preference. American Journal of Physiology, 271, R217–R221.

    CAS  PubMed  Google Scholar 

  • Gosnell, B. A., & Levine, A. S. (1996). The stimulation of ingestive behavior by preferential and selective opioid agonists. In S. J. Cooper & P. G. Clifton (Eds.), Drug receptor subtypes and ingestive behavior (pp. 147–166). London: Academic Press.

    Google Scholar 

  • Gosnell, B. A., Morley, J. E., & Levine, A. S. (1986). Opioid-induced feeding: Localization of brain sensitive sites. Brain Research, 369, 177–184.

    Article  CAS  PubMed  Google Scholar 

  • Havel, P. J. (2000). Role of adipose tissue in body-weight regulation: Mechanisms regulating leptin production and energy balance. Proceedings of the Nutrition Society, 59, 359–371.

    Article  CAS  PubMed  Google Scholar 

  • Hill, J. O., Wyatt, H. R., Reed, G. W., & Peters, J. C. (2003). Obesity and the environment: Where do we go from here? Science, 299, 853–855.

    Article  CAS  PubMed  Google Scholar 

  • Hoebel, B., Hernandez, L., Schwartz, D. H., Mark, G. P., & Hunter, G. A. (1989). Microdialysis studies of brain norepinephrine, serotonin, and dopamine release during ingestive behavior. Theoretical and clinical implications. Annals of the New York Academy of Sciences, 575, 171–191.

    CAS  PubMed  Google Scholar 

  • Ikemoto, S., & Panksepp, J. (1996). Dissociations between appetitive and consummatory responses by pharmacological manipulations of reward-relevant brain regions. Behavioral Neuroscience, 100, 331–345.

    Article  Google Scholar 

  • Kelley, A. E., Bakshi, V. P., Haber, S. N., Steininger, T. L., Will, M. J., & Zhang, M. (2002). Opioid modulation of taste hedonics within the ventral striatum. Physiology and Behavior, 76, 365–377.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E. M., Shi, Q., Olszewski, P. K., Grace, M. K., O’Hare, E., Billington, C. J. et al. (2001). Identification of central sites involved in butorphanol induced feeding in rats. Brain Research, 907, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Kiyatkin, A. E. (1995). Functional significance of mesolimbic dopamine. Neuroscience and Biobehavioral Reviews, 19, 573–598.

    Article  CAS  PubMed  Google Scholar 

  • Kotz, C. M., Billington, C. J., & Levine, A. S. (1997). Opioids in the nucleus of the solitary tract are involved in feeding in the rat. American Journal of Physiology, 41, R1028–R1032.

    Google Scholar 

  • Lepore, M., Vorel, S. R., Lowinson, J., & Gardner, E. L. (1995). Conditioned place preference induced by delta9-tetra-hydrocannabinol: Comparison with cocaine, morphine, and food reward. Life Sciences, 56, 2073–2080.

    Article  CAS  PubMed  Google Scholar 

  • Levine, A. S., & Billington, C. J. (1990). Opioids: Are they regulators of feeding? Annals of the New York Academy of Sciences, 575, 209–220.

    Google Scholar 

  • Levine, A. S., & Billington, C. J. (1997). Why do we eat? A neural systems approach. Annual Review of Nutrition, 17, 597–619.

    Article  CAS  PubMed  Google Scholar 

  • Levine, A. S., Grace, M. K., Cleary, J. P., & Billington, C. J. (2002). Naltrexone infusion inhibits the development of preference for a high sucrose diet. American Journal of Physiology, 283, R1149–R1154.

    PubMed  Google Scholar 

  • Levine, A. S., Kotz, C. M., & Gosnell, B. A. (2003). Sugars and fats: The neurobiology of preference. Journal of Nutrition, 133, 831S–834S.

    CAS  PubMed  Google Scholar 

  • Levine, A. S., Weldon, D. T., Grace, M., Cleary, J. P., & Billington, C. J. (1995). Naloxone blocks that portion of feeding driven by sweet tastes in food restricted rats. American Journal of Physiology, 268, R248–R252.

    CAS  PubMed  Google Scholar 

  • Marinelli, M., & Piazza, P. V. (2002). Interaction between glucocorticoid hormones, stress, and psychostimulant drugs. European Journal of Neuroscience, 16, 387–394.

    Article  PubMed  Google Scholar 

  • Markou, A., Arroyo, M., & Everitt, B. J. (1999). Effects of contingent and non-contingent cocaine on drug-seeking behavior measured using a second-order schedule of cocaine reinforcement in rats. Neuropsychopharmacology, 20, 542–555.

    Article  CAS  PubMed  Google Scholar 

  • Maurice, N., Deniau, J. M., Glowinski, J., & Thierry, A. M. (1999). Relationships between the prefrontal cortex and the basal ganglia in the rat: Physiology of the cortico-nigral circuits. Journal of Neurosciences, 19, 4674–4681.

    CAS  Google Scholar 

  • McBride, W. J., Murphy, J. M., & Ikemoto, S. (1999). Localization of brain reinforcement mechanisms: Intracranial self-administration and intracranial place-conditioning studies. Behavioral Brain Research, 101, 129–152.

    Article  CAS  Google Scholar 

  • McGregor, I. S., Menendez, J. A., & Atrens, D. M. (1990a). Metabolic effects obtained from excitatory amino acid stimulation of the sulcal prefrontal cortex. Brain Research, 529, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • McGregor, I. S., Menendez, J. A., & Atrens, D. M. (1990b). Metabolic effects of neuropeptide Y injected into the sulcal prefrontal cortex. Brain Research Bulletin, 24, 363–367.

    Article  CAS  PubMed  Google Scholar 

  • Mokdad, A., Bowman, B., Ford, E., Vinicor, R., Marks, J., & Koplan, J. (2001). The continuing epidemics of obesity and diabetes in the United States. Journal of American Medical Association, 286, 1195–1200.

    Article  CAS  Google Scholar 

  • Morley, J. E., Levine, A. S., Yim, G. K. W., & Lowy, M. T. (1983). Opioid modulation of appetite. Neuroscience and Biobehavioral Reviews, 7, 399–410.

    Article  Google Scholar 

  • Noel, M. B., & Wise, R. A. (1995). Ventral tegmental injections of a selective mu or delta opioid enhance feeding in food-deprived rats. Brain Research, 673, 304–312.

    Article  CAS  PubMed  Google Scholar 

  • Nonogaki, K., Abdallah, L., Goulding, E. H., Bonasera, S. J., & Tecott, L. H. (2003). Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT(2C) receptor mutant mice. Diabetes, 52, 315–320.

    CAS  PubMed  Google Scholar 

  • Olds, J. (1962). Hypothalamic substrate of reward. Physiological Reviews, 42, 554–604.

    CAS  PubMed  Google Scholar 

  • Ookuma, K., Barton, C., York, D. A., & Bray, G. A. (1998). Differential response to kappa-opioidergic agents in dietary fat selection between Osborne-Mendel and S5B/P1 rats. Peptides, 19, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Papp, M. (1988). Different effects of short-and long-term treatment with imipramine on the apomorphine-and food-induced place preference conditioning in rats. Pharmacology, Biochemistry Behavior, 30, 889–893.

    Article  CAS  PubMed  Google Scholar 

  • Pecina, S., & Berridge, K. C. (2000). Opioid eating site in nucleus accumbens shell mediates food intake and hedonic “liking”: Map based on micro-injection Fos plumes. Brain Research, 863, 71–86.

    Article  CAS  PubMed  Google Scholar 

  • Petrovic, G. D., Setlow, B., Holland, P. C., & Gallagher, M. (2002). Amygdalo-hypothalamic circuit allows learned cues to override satiety and promote eating. Journal of Neuroscience, 22, 8748–8753.

    Google Scholar 

  • Pi-Sunyer, X. (2003). A clinical view of the obesity problem. Science, 299, 859–860.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, N. R., & Gratton, A. (1996). Behavior-relevant changes in nucleus accumbens dopamine transmission elicited by food reinforcement: An electrochemical study in rat. Journal of Neuroscience, 24, 8160–8169.

    Google Scholar 

  • Robbins, T. W., & Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Current Opinion Neurobiology, 6, 228–236.

    Article  CAS  Google Scholar 

  • Robinson, T. E., & Berridge, K. C. (2003). Addiction. Annual Review of Psychology, 54, 25–53.

    Article  PubMed  Google Scholar 

  • Rolls, E. T., Critchley, H. D., Browning, A. S., Hernadi, I., & Lenard, L. (1999). Responses to the sensory properties of fat of neurons in the primate orbitofrontal cortex. Journal of Neuroscience, 19, 1532–1540.

    CAS  PubMed  Google Scholar 

  • Rudski, J. M., Billington, C. J., & Levine, A. S. (1994). Butorphanol increases food reinforcement operant responding in satiated rats. Pharmacology, Biochemistry, and Behavior, 49, 843–847.

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D., Correa, M., Mingote, S., & Weber, S. M. (2003). Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: Implications for studies of natural motivation. Psychiatry, and drug abuse. Journal of Pharmacology and Experimental Therapeutics, 305, 108.

    Article  CAS  Google Scholar 

  • Saper, C. B., Chou, T. C., & Elmquist, J. K. (2002). The need to feed: Homeostatic and hedonic control of eating. Neuron, 36, 199–211.

    Article  CAS  PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241–263.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz, M. W., & Seeley, R. J. (1997). Seminars in medicine of the Beth Israel Deaconess Medical Center. Neuroendocrine responses to starvation and weight loss. New England and Journal of Medicine, 336, 1802–1811.

    Article  CAS  Google Scholar 

  • Schwartz, M. W., Woods, S. C., Seeley, R. J., Barsh, G. S., Baskin, D. G., & Leibel, R. L. (2003). Is the energy homeostasis system inherently biased toward weight gain? Diabetes, 52, 232–238.

    CAS  PubMed  Google Scholar 

  • Self, D. W., & Nestler, E. J. (1995). Molecular mechanisms of drug reinforcement and addiction. Annual Review of Neuroscience, 18, 463–495.

    Article  CAS  PubMed  Google Scholar 

  • Shalev, U., Grimm, J. W., & Shaham, Y. (2002). Neurobiology of relapse to heroin and cocaine seeking: A review. Pharmacological Review, 54, 1–42.

    Article  CAS  Google Scholar 

  • Shalev, U., Yap, J., & Shaham, Y. (2001). Leptin attenuates food deprivation-induced relapse to heroin seeking. Journal of Neuroscience, 21, RC129.

    CAS  PubMed  Google Scholar 

  • Shide, D. J., & Blass, E. M. (1991). Opioid mediation of odor preferences induced by sugar and fat in 6-day-old rats. Physiology and Behavior, 50, 961–966.

    Article  CAS  PubMed  Google Scholar 

  • Shizgal, P., Fulton, S., & Woodside, B. (2001). Brain reward circuitry and the regulation of energy balance. International Journal of Obesity, 25(Suppl. 5), S17–S21.

    CAS  PubMed  Google Scholar 

  • Siegel, S., & Ramos, B. M. C. (2002). Applying laboratory research: Drug anticipation and the treatment of drug addiction. Experimental and Clinical Psychopharmacology, 10, 162–183.

    Article  PubMed  Google Scholar 

  • Swerdlow, N. R., Vander Kooy, D., Koob, G. F., & Wenger, J. R. (1983). Cholecystokinin produces conditioned place-aversions, not place preferences, in food-deprived rats: Evidence against involvement in satiety. Life Sciences, 32, 2087–2093.

    Article  CAS  PubMed  Google Scholar 

  • Westerhaus, M. J., & Loewy, A. D. (2001). Central representation of the sympathetic nervous system in the cerebral cortex. Brain Research, 903, 117–127.

    Article  CAS  PubMed  Google Scholar 

  • Will, M. J., Franzblau, E. B., & Kelley, A. E. (2003). Nucleus accumbens μ-opioids regulate intake of a high-fat diet via activation of a distributed brain network. Journal of Neuroscience, 23, 2882–2888.

    CAS  PubMed  Google Scholar 

  • Williams, G., Bing, C., Cai, X. J., Harrold, J. A., King, P. J., & Liu, X. H. (2001). The hypothalamus and the control of energy homeostasis: Different circuits, different purposes. Physiology and Behavior, 74, 683–701.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C., Nomikos, G. G., Collu, M., & Fibiger, H. C. (1995). Dopaminergic correlates of motivated behavior: Importance of drive. Journal of Neuroscience, 15, 5169–5178.

    CAS  PubMed  Google Scholar 

  • Wilson, J. M., Nobrega, J. N., Corrigal, W. A., Coen, K. M., & Kish, S. J. (1994). Amygdala dopamine levels are markedly elevated after self—but not passive—administration of cocaine. Brain Research, 668, 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A. (1988). Psychomotor stimulant properties of addictive drugs. Annals of the New York Academy of Sciences, 537, 228–234.

    CAS  PubMed  Google Scholar 

  • Wise, R. A. (1996). Addictive drugs and brain stimulation reward. Annual Review of Neuroscience, 19, 319–340.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A. (2002). Brain reward circuitry: Insights from unsensed incentives. Neuron, 36, 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A., & Hoffman, D. C. (1992). Localization of drug reward mechanisms by intracranial injections. Synapse, 10, 247–263.

    Article  CAS  PubMed  Google Scholar 

  • Woods, S. C., Lotter, E. C., McKay, L. D., & Porte, D., Jr. (1979). Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature, 282, 503–505.

    Article  CAS  PubMed  Google Scholar 

  • Woods, S. C., & Ramsay, D. S. (2000). Pavlovian influences over food and drug intake. Behavioral Brain Research, 110, 175–182.

    Article  CAS  Google Scholar 

  • Yeomans, M. R., Wright, P., Macleod, H. A., & Critchley, J. A. J. H. (1990). Effect of nalmefene on feeding in humans. Dissociation of hunger and palatability. Psychopharmacology, 100, 426–432.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, M., Gosnell, B. A., & Kelley, A. E. (1998). Intake of high fat food is selectively enhanced by mu opioid receptor stimulation within the nucleus accumbens. Journal Pharmacology and Experimental Therapeutics, 285, 908–914.

    CAS  Google Scholar 

  • Zheng, H., Corkern, M., Stoyanova, I., Patterson, L. M., Tian, R., & Berthoud, H.-R. (2003). Appetite-inducing accumbens manipulation activates hypothalamic orexin neurons and inhibits POMC neurons. American Journal of Physiology, 284, R1436–R1444.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Lattemann, D.P.F. (2004). The CNS Physiology of Food Reward. In: Stricker, E.M., Woods, S.C. (eds) Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-48643-1_3

Download citation

  • DOI: https://doi.org/10.1007/0-306-48643-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48484-1

  • Online ISBN: 978-0-306-48643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics