Skip to main content

Accumbens Dopamine is a Physiological Correlate of the Rewarding and Motivating Effects of Food

  • Chapter

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 14))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahn, S., & Phillips, A. G. (1999). Dopaminergic correlates of sensory-specific satiety in the medial prefrontal cortex and nucleus accumbens of the rat. Journal of Neuroscience, 19, RC29.

    CAS  PubMed  Google Scholar 

  • Ahn, S., & Phillips, A. G. (2003). Independent modulation of basal and feeding-evoked dopamine efflux in the nucleus accumbens and medial prefrontal cortex by the central and basolateral amygdalar nuclei in the rat. Neuroscience, 116, 295–305.

    Article  CAS  PubMed  Google Scholar 

  • Anand, B. K., & Brobeck, J. R. (1951). Hypothalamic control of food intake in rats and cats. Yale Journal of Biology and Medicine, 24, 123–140.

    CAS  PubMed  Google Scholar 

  • Avena, N. M., Rada, P. V., Moise, N., Geary, N., & Hoebel, B. G. (2003a). Sham-feeding sugar-dependent rats have increased dopamine but fail to release acetylcholine in the nucleus accumbens while eating. Society for Neuroscience Abstract, CD ROM.

    Google Scholar 

  • Avena, N. M., & Hoebel, B. G. (2003b). Amphetamine-sensitized rats show sugar-induced hyperactivity (cross-sensitization) and sugar hyperphagia. Pharmacology, Biochemistry, and Behavior, 74, 635–639.

    Article  CAS  PubMed  Google Scholar 

  • Avena, N. M., & Hoebel, B. G. (2003c). A diet promoting sugar dependency causes behavioral cross-sensitization to a low dose of amphetamine. Neuroscience, 122, 17–20.

    Article  CAS  PubMed  Google Scholar 

  • Azzara, A. V., Bodnar, R. J., Delamater, A. R., & Sclafani, A. (2001). D1 but not D2 dopamine receptor antagonism blocks the acquisition of a flavor preference conditioned by intragastric carbohydrate infusions. Pharmacology, Biochemistry, and Behavior, 68, 709–720.

    Article  CAS  PubMed  Google Scholar 

  • Baker, R. M., Shah, M. J., Sclafani, A., & Bodnar, R. J. (2003). Dopamine D1 and D2 antagonists reduce the acquisition and expression of flavor-preferences conditioned by fructose in rats. Pharmacology, Biochemistry, and Behavior, 75, 55–65.

    Article  CAS  PubMed  Google Scholar 

  • Barr, A. M., & Phillips, A. G. (1999). Withdrawal following repeated exposure to d-amphetamine decreases responding for a sucrose solution as measured by a progressive ratio schedule of reinforcement. Psychopharmacology (Berl), 141, 99–106.

    Article  CAS  Google Scholar 

  • Bartoshuk, L. M. (2000). Comparing sensory experiences across individuals: Recent psychophysical advances illuminate genetic variation in taste perception. Chemical Senses, 25, 447–460.

    Article  CAS  PubMed  Google Scholar 

  • Bassareo, V., De Luca, M. A., & Di Chiara, G. (2002). Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. Journal of Neuroscience, 22, 4709–4719.

    CAS  PubMed  Google Scholar 

  • Bassareo, V., & Di Chiara, G. (1997). Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. Journal of Neuroscience, 17, 851–861.

    CAS  PubMed  Google Scholar 

  • Bassareo, V., & Di Chiara, G. (1999a). Differential responsiveness of dopamine transmission to food-stimuli in nucleus accumbens shell/core compartments. Neuroscience, 89, 637–641.

    Article  CAS  PubMed  Google Scholar 

  • Bassareo, V., & Di Chiara, G. (1999b). Modulation of feeding-induced activation of mesolimbic dopamine transmission by appetitive stimuli and its relation to motivational state. European Journal of Neuroscience, 11, 4389–4397.

    Article  CAS  PubMed  Google Scholar 

  • Beach, F. A. (1955). The descent of instinct. Psychological Review, 62, 401–410.

    CAS  PubMed  Google Scholar 

  • Benoit, S. C., McQuade, J. A., Clegg, D. J., Xu, M., Rushing, P. A., Woods, S. C. et al. (2003). Altered feeding responses in mice with targeted disruption of the dopamine-3 receptor gene. Behavioral Neuroscience, 117, 46–54.

    Article  CAS  PubMed  Google Scholar 

  • Berns, G. S., McClure, S. M., Pagnoni, G., & Montague, P. R. (2001). Predictability modulates human brain response to reward. Journal of Neuroscience, 21, 2793–2798.

    CAS  PubMed  Google Scholar 

  • Berridge, K. C. (1996). Food reward: Brain substrates of wanting and liking. Neuroscience and Biobehavioral Reviews, 20, 1–25.

    Article  CAS  PubMed  Google Scholar 

  • Brennan, K., Roberts, D. C., Anisman, H., & Merali, Z. (2001). Individual differences in sucrose consumption in the rat: Motivational and neurochemical correlates of hedonia. Psychopharmacology (Berl), 157, 269–276.

    Article  CAS  Google Scholar 

  • Brobeck, J. R. (1960). Food and temperature. Recent Progress in Hormone Research, 16, 439–466.

    CAS  PubMed  Google Scholar 

  • Cannon, C. M., & Palmiter, R. D. (2003). Reward without dopamine. Journal of Neuroscience, 23, 10827–10831.

    CAS  PubMed  Google Scholar 

  • Cannon, W. B., & Washburn, A. L. (1912). An explanation of hunger. American Journal of Physiology, 29, 441–454.

    Google Scholar 

  • Carlson, A. J. (1916). The control of hunger in health and disease. Chicago: University of Chicago Press.

    Google Scholar 

  • Cenci, M. A., Kalen, P., Mandel, R. J., & Bjorklund, A. (1992). Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: A microdialysis study in the rat. Brain Research, 581, 217–228.

    Article  CAS  PubMed  Google Scholar 

  • Church, W. H., Justice, J. B., Jr., & Neill, D. B. (1987). Detecting behaviorally relevant changes in extra-cellular dopamine with microdialysis. Brain Research, 412, 397–399.

    Article  CAS  PubMed  Google Scholar 

  • Colantuoni, C., Rada, P., McCarthy, J., Patten, C., Avena, N. M., Chadeayne, A. et al. (2002). Evidence that intermittent, excessive sugar intake causes endogenous opioid dependence. Obesity Research, 10, 478–488.

    CAS  PubMed  Google Scholar 

  • Cousins, M. S., Trevitt, J., Atherton, A., & Salamone, J. D. (1999). Different behavioral functions of dopamine in the nucleus accumbens and ventrolateral striatum: A microdialysis and behavioral investigation. Neuroscience, 91, 925–934.

    Article  CAS  PubMed  Google Scholar 

  • Craig, W. (1918). Appetites and aversions as constituents of instincts. Biological Bulletin, 34, 91–107.

    Google Scholar 

  • Datla, K. P., Ahier, R. G., Young, A. M., Gray, J. A., & Joseph, M. H. (2002). Conditioned appetitive stimulus increases extracellular dopamine in the nucleus accumbens of the rat. European Journal of Neuroscience, 16, 1987–1993.

    Article  CAS  PubMed  Google Scholar 

  • Di Chiara, G., Acquas, E., Tanda, G., & Cadoni, C. (1993). Drugs of abuse: Biochemical surrogates of specific aspects of natural reward? Biochemical Society Symposium, 59, 65–81.

    PubMed  Google Scholar 

  • Di Chiara, G., & Tanda, G. (1997). Blunting of reactivity of dopamine transmission to palatable food: A biochemical marker of anhedonia in the CMS model? Psychopharmacology (Berl), 134, 351–353.

    Article  Google Scholar 

  • Drevets, W. C., Gautier, C., Price, J. C., Kupfer, D. J., Kinahan, P. E., Grace, A. A. et al. (2001). Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biological Psychiatry, 49, 81–96.

    Article  CAS  PubMed  Google Scholar 

  • Faurion, A., Cerf, B., Le Bihan, D., & Pillias, A. M. (1998). fMRI study of taste cortical areas in humans. Annals of the New York Academy of Sciences, 855, 535–545.

    Article  CAS  PubMed  Google Scholar 

  • Feenstra, M. G., & Botterblom, M. H. (1996). Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Research, 742, 17–24.

    Article  CAS  PubMed  Google Scholar 

  • Fibiger, H. C., & Phillips, A. G. (1986). Reward, motivation, cognition; psychobiology of mesotelencephalic dopamine systems. In V. B. Mountcastle & F. E. Bloom (Eds.), Handbook of physiology (Vol. IV, pp. 647–675). Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Figlewicz, D. P. (2003). Adiposity signals and food reward: Expanding the CNS roles of insulin and leptin. American Journal of Physiology, Regulatory, Integrative and Comparative Physiology, 284, R882–R892.

    CAS  Google Scholar 

  • Fink, J. S., & Smith, G. P. (1979). Decreased locomotor and investigatory exploration after denervation of catecholamine terminal fields in the forebrain of rats. Journal of Comparative and Physiological Psychology, 93, 34–65.

    CAS  PubMed  Google Scholar 

  • Fink, J. S., & Smith, G. P. (1980a). Mesolimbicocortical dopamine terminal fields are necessary for normal locomotor and investigatory exploration in rats. Brain Research, 199, 359–384.

    Article  CAS  PubMed  Google Scholar 

  • Fink, J. S., & Smith, G. P. (1980b). Relationships between selective denervation of dopamine terminal fields in the anterior forebrain and behavioral responses to amphetamine and apomorphine. Brain Research, 201, 107–127.

    Article  CAS  PubMed  Google Scholar 

  • Fiorillo, C. D., Tobler, P. N., & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299, 1898–1902.

    Article  CAS  PubMed  Google Scholar 

  • Gambarana, C., Masi, F., Leggio, B., Grappi, S., Nanni, G., Scheggi, S. et al. (2003). Acquisition of a palatable-food-sustained appetitive behavior in satiated rats is dependent on the dopaminergic response to this food in limbic areas. Neuroscience, 121, 179–187.

    Article  CAS  PubMed  Google Scholar 

  • Geary, N., & Smith, G. P. (1985). Pimozide decreases the positive reinforcing effect of sham fed sucrose in the rat. Pharmacology, Biochemistry, and Behavior, 22, 787–790.

    Article  CAS  PubMed  Google Scholar 

  • Gray, T., & Wise, R. A. (1980). Effects of pimozide on lever pressing behavior maintained on an intermittent reinforcement schedule. Pharmacology, Biochemistry, and Behavior, 12, 931–935.

    Article  CAS  PubMed  Google Scholar 

  • Hajnal, A., & Lenard, L. (1997). Feeding-related dopamine in the amygdala of freely moving rats. Neuroreport, 8, 2817–2820.

    Article  CAS  PubMed  Google Scholar 

  • Hajnal, A., & Norgren, R. (2001). Accumbens dopamine mechanisms in sucrose intake. Brain Research, 904, 76–84.

    Article  CAS  PubMed  Google Scholar 

  • Hajnal, A., & Norgren, R. (2002). Repeated access to sucrose augments dopamine turnover in the nucleus accumbens. Neuroreport, 13, 2213–2216.

    Article  CAS  PubMed  Google Scholar 

  • Hajnal, A., Smith, G. P., & Norgren, R. (2004). Oral sucrose stimulation increases accumbens dopamine in the rat. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 286, R31–R37.

    Article  CAS  PubMed  Google Scholar 

  • Heimer, L., Alheid, G. F., & Zahm, D. S. (1993). Basal forebrain organization: An anatomical framework for motor aspects of drive and motivation. In P. W. Kalivas & D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 1–44). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Henkin, R. I., Levy, L. M., & Lin, C. S. (2000). Taste and smell phantoms revealed by brain functional MRI (fMRI). Journal of Computer Assisted Tomography, 24, 106–123.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, L., & Hoebel, B. G. (1988a). Feeding and hypothalamic stimulation increase dopamine turnover in the accumbens. Physiology and Behavior, 44, 599–606.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, L., & Hoebel, B. G. (1988b). Food reward and cocaine increase extracellular dopamine in the nucleus accumbens as measured by microdialysis. Life Sciences, 42, 1705–1712.

    Article  CAS  PubMed  Google Scholar 

  • Hernandez, L., & Hoebel, B. G. (1990). Feeding can enhance dopamine turnover in the prefrontal cortex. Brain Research Bulletin, 25, 975–979.

    Article  CAS  PubMed  Google Scholar 

  • Hinde, R. A. (1960). Energy models of motivation. Symposia of the Society for Experimental Biology, 14, 199–213.

    CAS  PubMed  Google Scholar 

  • Hinde, R. A. (1970). Animal behaviour (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  • Hoebel, B. G., & Teitelbaum, P. (1962). Hypthalamic control of feeding and self-stimulation. Science, 135, 375–377.

    CAS  PubMed  Google Scholar 

  • Inoue, K., Kiriike, N., Okuno, M., Ito, H., Fujisaki, Y., Matsui, T. et al. (1993). Scheduled feeding caused activation of dopamine metabolism in the striatum of rats. Physiology and Behavior, 53, 177–181.

    Article  CAS  PubMed  Google Scholar 

  • James, A. H. (1957). The physiology of gastric digestion. London, UK: Edward Arnold.

    Google Scholar 

  • Jeste, D. V., & Smith, G. P. (1980). Unilateral mesolimbicocortical dopamine denervation decreases locomotion in the open field and after amphetamine. Pharmacology, Biochemistry, and Behavior, 12, 453–457.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy, G. C. (1953). The role of depot fat in the hypothalamic control of food intake in the rat. Proceedings of the Royal Society of London Series B Biological Sciences, 140, 578–596.

    CAS  Google Scholar 

  • Kittner, H., Krugel, U., El Ashmawy, I. M., & Illes, P. (2000). Suppression of feeding-evoked dopamine release in the rat nucleus accumbens by the blockade of P(2) purinoceptors. European Journal of Pharmacology, 406, R13–R14.

    Article  CAS  PubMed  Google Scholar 

  • Koob, G. F., Riley, S. J., Smith, S. C., & Robbins, T. W. (1978). Effects of 6-hydroxydopamine lesions of the nucleus accumbens septi and olfactory tubercle on feeding, locomotor activity, and amphetamine anorexia in the rat. Journal of Comparative and Physiological Psychology, 92, 917–927.

    CAS  PubMed  Google Scholar 

  • Levy, L. M., Henkin, R. I., Lin, C. S., Finley, A., & Schellinger, D. (1999). Taste memory induces brain activation as revealed by functional MRI. Journal of Computer Assisted Tomography, 23, 499–505.

    Article  CAS  PubMed  Google Scholar 

  • Mark, G. P., Blander, D. S., & Hoebel, B. G. (1991). A conditioned stimulus decreases extracellular dopamine in the nucleus accumbens after the development of a learned taste aversion. Brain Research, 551, 308–310.

    Article  CAS  PubMed  Google Scholar 

  • Mark, G. P., Smith, S. E., Rada, P. V., & Hoebel, B. G. (1994). An appetitively conditioned taste elicits a preferential increase in mesolimbic dopamine release. Pharmacology, Biochemistry, and Behavior, 48, 651–660.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, J. F., Berrios, N., & Sawyer, S. (1980). Neostriatal dopamine and sensory inattention. Journal of Comparative and Physiological Psychology, 94, 833–846.

    CAS  PubMed  Google Scholar 

  • Marshall, J. F., Richardson, J. S., & Teitelbaum, P. (1974). Nigrostriatal bundle damage and the lateral hypothalamic syndrome. Journal of Comparative Physiological Psychology, 87, 808–830.

    CAS  Google Scholar 

  • Martel, P., & Fantino, M. (1996a). Influence of the amount of food ingested on mesolimbic dopaminergic system activity: A microdialysis study. Pharmacology, Biochemistry, and Behavior, 55, 297–302.

    Article  CAS  PubMed  Google Scholar 

  • Martel, P., & Fantino, M. (1996b). Mesolimbic dopaminergic system activity as a function of food reward: A microdialysis study. Pharmacology, Biochemistry, and Behavior, 53, 221–226.

    Article  CAS  PubMed  Google Scholar 

  • Mayer, J. (1955). Regulation of energy intake and the body weight: The glucostatic theory and the lipostatic hypothesis. New York Academy of Sciences, 63, 15–43.

    CAS  Google Scholar 

  • McCullough, L. D., & Salamone, J. D. (1992). Involvement of nucleus accumbens dopamine in the motor activity induced by periodic food presentation: A microdialysis and behavioral study. Brain Research, 592, 29–36.

    Article  CAS  PubMed  Google Scholar 

  • Meguid, M. M., Yang, Z. J., & Koseki, M. (1995). Eating induced rise in LHA-dopamine correlates with meal size in normal and bulbectomized rats. Brain Research Bulletin, 36, 487–490.

    Article  CAS  PubMed  Google Scholar 

  • Mogenson, G. J., Brudzynski, S. M., Wu, M., Yang, C. R., & Yim, C. Y. (1993). From motivation to action: A review of dopaminergic regulation of limbic-τ;nucleus accumbens-τ;ventral pallidum-τ;pedunculpontine nucleus circuitries involved in limbic motor integration. In P. W. Kalivas & D. Barnes (Eds.), Limbic motor circuits and neuropsychiatry (pp. 193–236). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Mogenson, G. J., Jones, D. L., & Yim, C. Y. (1980). From motivation to action: Functional interface between limbic system and the motor system. Progress in Neurobiology, 14, 69–97.

    Article  CAS  PubMed  Google Scholar 

  • O’Doherty, J., Rolls, E. T., Francis, S., Bowtell, R., & McGlone, F. (2001). Representation of pleasant and aversive taste in the human brain. Journal of Neurophysiology 85, 1315–1321.

    CAS  PubMed  Google Scholar 

  • Orosco, M., & Nicolaidis, S. (1992). Spontaeous feeding-related monoaminergic changes in the rostromedial hypothalamus revealed by microdialysis. Physiology and Behavior, 52, 1015–1019.

    Article  CAS  PubMed  Google Scholar 

  • Orosco, M., Rouch, C., Gripois, D., Blouquit, M. F., Roffi, J., Jacquot, C. et al. (1992). Striatal dopamine metabolism is differentially affected by insulin according to the genotype in Zucker rats: A microydialysis study. Psychoneuroendocrinology, 17, 443–452.

    Article  CAS  PubMed  Google Scholar 

  • Pavlov, I. P. (1910). The work of the digestive glands. London, UK: Charles Griffin.

    Google Scholar 

  • Pecina, S., Cagniard, B., Berridge, K. C., Aldridge, J. W., & Zhuang, X. (2003). Hyperdopaminergic mutant mice have higher “wanting” but not “liking” for sweet rewards. Journal of Neuroscience, 23, 9395–9402.

    CAS  PubMed  Google Scholar 

  • Pellow, S., Chopin, P., File, S. E., & Briley, M. (1985). Validation of open: closed arm entries in an elevated plus-maze as a measure of anxiety in the rat. Journal of Neuroscience Methods, 14, 149–167.

    Article  CAS  PubMed  Google Scholar 

  • Penick, S. B., Smith, G. P., Wieneke, K., Jr., & Hinkle, L. E. J. (1963). An experimental evaluation of the relationship between hunger and gastric motility. American Journal of Physiology, 205, 421–426.

    CAS  PubMed  Google Scholar 

  • Pfaff, D. W. (1999). Drive. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pfaffmann, C. (1982). Taste: A model of incentive motivation. In D. W. Pfaff (Ed.), The physiological mechanisms of motivation (pp. 61–98). New York: Springer-Verlag.

    Google Scholar 

  • Pickstone, J. V. (2001). Ways of knowing. Chicago: The University of Chicago Press.

    Google Scholar 

  • Pijnenburg, A. J. J., Honig, W. M. M., & VanRossum, J. M. (1975). Inhibition of d-amphetamine locomotor activity by injection of haloperidol into the nucleus accumbens in the rat. Psychopharmacologia, 41, 87–95.

    Article  CAS  PubMed  Google Scholar 

  • Pijnenburg, A. J. J., & VanRossum, J. M. (1973). Stimulation of locomotor activity following dopamine injections into the nucleus accumbens. Journal of Pharmacy and Pharmacology, 25, 1003–1004.

    CAS  PubMed  Google Scholar 

  • Pothos, E. N., Creese, I., & Hoebel, B. G. (1995). Restricted eating with weight loss selectively decreases extracellular dopamine in the nucleus accumbens and alters dopamine response to amphetamine, morphine, and food intake. Journal of Neuroscience, 15, 6640–6650.

    CAS  PubMed  Google Scholar 

  • Quine, W. V. O. (1960). Word and object. Cambridge, MA: MIT Press.

    Google Scholar 

  • Radhakishun, F. S., van Ree, J. M., & Westerink, B. H. (1988). Scheduled eating increases dopamine release in the nucleus accumbens of food-deprived rats as assessed with on-line brain dialysis. Neuroscience Letters, 85, 351–356.

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D., Cousins, M. S., McCullough, L. D., Carriero, D. L., & Berkowitz, R. J. (1994). Nucleus accumbens dopamine release increases during instrumental lever pressing for food but not free food consumption. Pharmacology, Biochemistry, and Behavior, 49, 25–31.

    Article  CAS  PubMed  Google Scholar 

  • Salamone, J. D., Cousins, M. S., & Snyder, B. J. (1997). Behavioral functions of nucleus accumbens dopamine: Empirical and conceptual problems with the anhedonia hypothesis. Neuroscience and Biobehavioral Reviews, 21, 341–359.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, L. H. (1989). Orosensory self-stimulation by sucrose involves brain dopaminergic mechanisms. Annals of the New York Academy of Sciences, 575, 307–319.

    CAS  PubMed  Google Scholar 

  • Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36, 241–263.

    Article  CAS  PubMed  Google Scholar 

  • Sclafani, A. (2001). Post-ingestive positive controls of ingestive behavior. Appetite, 36, 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Sechzer, J. A., Ervin, G. N., & Smith, G. P. (1973). Loss of visual placing in rats after lateral hypothalamic microinjections of 6-hydroxydopamine. Experimental Neurology, 41, 723–737.

    Article  CAS  PubMed  Google Scholar 

  • Sherrington, C. (1947). The Integrative action of the nervous system (2nd ed.). New Haven, CT: Yale University Press.

    Google Scholar 

  • Sills, T. L., & Crawley, J. N. (1996). Individual differences in sugar consumption predict amphetamine-induced dopamine overflow in nucleus accumbens. European Journal of Pharmacology, 303, 177–181.

    Article  CAS  PubMed  Google Scholar 

  • Small, D. M., Jones-Gotman, M., & Dagher, A. (2003). Feeding-induced dopamine release in dorsal striatum correlates with meal pleasantness ratings in healthy human volunteers. Neuroimage, 19, 1709–1715.

    Article  PubMed  Google Scholar 

  • Smith, G. P. (1973). Neuropharmacology of thirst. In A. N. Epstein, H. R. Kissileff, & E. Stellar (Eds.), The neuropsychology of thirst: New findings and advances in concepts (pp. 231–241). Washington, DC: Winston.

    Google Scholar 

  • Smith, G. P. (1976). The arousal function of central catecholamine neurons. Annals of the New York Academy of Sciences, 270, 45–56.

    CAS  PubMed  Google Scholar 

  • Smith, G. P. (1995). Dopamine and food reward. In S. J. Fluharty, A. R. Morrison, J. M. Sprague, & E. Stellar (Eds.), Progress in psychobiology and physiological psychology (pp. 83–144). New York: Academic Press.

    Google Scholar 

  • Smith, G. P., Levin, B. E., & Ervin, G. N. (1975). Loss of active avoidance of responding after lateral hypothalamic injections of 6-hydroxydopamine. Brain Research, 88, 483–498.

    Article  CAS  PubMed  Google Scholar 

  • Smith, G. P., Strohmayer, A. J., & Reis, D. J. (1972). Effect of lateral hypothalamic injections of 6-hydroxydopamine on food and water intake in rats. Nature: New Biology, 235, 27–29.

    CAS  Google Scholar 

  • Smith, R. (1997). The Norton history of the human sciences. New York: W.W. Norton.

    Google Scholar 

  • Sokolowski, J. D., Conlan, A. N., & Salamone, J. D. (1998). A microdialysis study of nucleus accumbens core and shell dopamine during operant responding in the rat. Neuroscience, 86, 1001–1009.

    Article  CAS  PubMed  Google Scholar 

  • Stellar, J. R., & Stellar, E. (1985). The neurobiology of motivation and reward. New York: Springer-Verlag.

    Google Scholar 

  • Stricker, E. M., & Zigmond, M. J. (1986). Brain monoamines, homeostasis, and adaptive behavior. In V. B. Mountcastle & F. E. Bloom (Eds.), Handbook of physiology (Vol. IV, pp. 677–700). Bethesda, MD: American Physiological Society.

    Google Scholar 

  • Suri, R. E., & Schultz, W. (2001). Temporal difference model reproduces anticipatory neural activity. Neural Computation, 13, 841–862.

    Article  CAS  PubMed  Google Scholar 

  • Taber, M. T., & Fibiger, H. C. (1997). Feeding-evoked dopamine release in the nucleus accumbens: Regulation by glutamatergic mechanisms. Neuroscience, 76, 1105–1112.

    Article  CAS  PubMed  Google Scholar 

  • Taber, M. T., Zernig, G., & Fibiger, H. C. (1998). Opioid receptor modulation of feeding-evoked dopamine release in the rat nucleus accumbens. Brain Research, 785, 24–30.

    Article  CAS  PubMed  Google Scholar 

  • Tracy, A. L., Jarrard, L. E., & Davidson, T. L. (2001). The hippocampus and motivation revisited: Appetite and activity. Behavioral Brain Research, 127, 13–23.

    Article  CAS  Google Scholar 

  • Ungerstedt, U. (1971). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiologica Scandinavica 367, (Suppl.), 95–122.

    CAS  Google Scholar 

  • Valenstein, E. S., Cox, V. C., & Kakolewski, J. W. (1968). Modification of motivated behavior elicited by electrical stimulation of the hypothalamus. Science, 159, 1119–1121.

    CAS  PubMed  Google Scholar 

  • Volkow, N. D., Wang, G. J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D. et al. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44, 175–180.

    Article  CAS  PubMed  Google Scholar 

  • Waelti, P., Dickinson, A., & Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43–48.

    Article  CAS  PubMed  Google Scholar 

  • Westerink, B. H., Kwint, H. F., & de Vries, J. B. (1997). Eating-induced dopamine release from mesolimbic neurons is mediated by NMDA receptors in the ventral tegmental area: A dual-probe microdialysis study. Journal of Neurochemistry, 69, 662–668.

    Article  CAS  PubMed  Google Scholar 

  • Westerink, B. H., Teisman, A., & de Vries, J. B. (1994). Increase in dopamine release from the nucleus accumbens in response to feeding: A model to study interactions between drugs and naturally activated dopaminergic neurons in the rat brain. Naunyn-Schmiedebergs Archives of Pharmacology, 349, 230–235.

    CAS  Google Scholar 

  • Wightman, R. M., & Robinson, D. L. (2002). Transient changes in mesolimbic dopamine and their association with ‘reward’. Journal of Neurochemistry, 82, 721–735.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, C., Nomikos, G. G., Collu, M., & Fibiger, H. C. (1995). Dopaminergic correlates of motivated behavior: Importance of drive. Journal of Neuroscience, 15, 5169–5178.

    CAS  PubMed  Google Scholar 

  • Wise, R. A. (1971). Individual differences in effects of hypothalamic stimulation: The role of stimulation locus. Physiology and Behavior, 6, 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A. (1974). Lateral hypothalamic electrical stimulation: Does it make animals “hungry”? Brain Research, 67, 187–209.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A. (1982). Neuroleptics and operant behavior: The anhedonia hypothesis. Behavioral Brain Science, 5, 38–87.

    Google Scholar 

  • Wise, R. A. (1985). The anhedonia hypothesis: Mark III. Behavioral Brain Science, 8, 178–186.

    Article  Google Scholar 

  • Wise, R. A. (2002). Brain reward circuitry: Insights from unsensed incentives. Neuron, 36, 229–240.

    Article  CAS  PubMed  Google Scholar 

  • Wise, R. A., Devor, M. G., Milgram, N. W., & Hoebel, B. G. (1970). Physiological control of hypothalamically elicited feeding and drinking. Journal of Comparative and Physiological Psychology, 73, 226–232.

    CAS  PubMed  Google Scholar 

  • Wise, R. A., Spindler, J., deWit, H., & Gerberg, G. J. (1978). Neuroleptic-induced “anhedonia” in rats: Pimozide blocks reward quality of food. Science, 201, 262–264.

    CAS  PubMed  Google Scholar 

  • Wise, R. A., Spindler, J., & Legault, L. (1978). Major attenuation of food reward with performance-sparing doses of pimozide in the rat. Canadian Journal of Psychology, 32, 77–85.

    CAS  PubMed  Google Scholar 

  • Woods, S. C., & Seeley, R. J. (2000). Adiposity signals and the control of energy homeostasis. Nutrition, 16, 894–902.

    Article  CAS  PubMed  Google Scholar 

  • Woodworth, R. S. (1918). Dynamic psychology. New York: Columbia University Press.

    Google Scholar 

  • Wyvell, C. L., & Berridge, K. C. (2000). Intra-accumbens amphetamine increases the conditioned incentive salience of sucrose reward: Enhancement of reward “wanting” without enhanced “liking” or response reinforcement. Journal of Neuroscience, 20, 8122–8130.

    CAS  PubMed  Google Scholar 

  • Wyvell, C. L., & Berridge, K. C. (2001). Incentive sensitization by previous amphetamine exposure: Increased cue-triggered “wanting” for sucrose reward. Journal of Neuroscience, 21, 7831–7840.

    CAS  PubMed  Google Scholar 

  • Yang, Z. J., Koseki, M., Meguid, M. M., & Laviano, A. (1996). Eating-related increase of dopamine concentration in the LHA with oronasal stimulation. American Journal of Physiology, 270, R315–R318.

    CAS  PubMed  Google Scholar 

  • Yang, Z. J., & Meguid, M. M. (1995). LHA dopaminergic activity in obese and lean Zucker rats. Neuroreport, 6, 1191–1194.

    CAS  PubMed  Google Scholar 

  • Yang, Z. J., Meguid, M. M., & Oler, A. (1997). Eating-associated VMN-dopamine levels of rats: Comparison of oral and intragastric feeding. Neuroreport, 8, 1543–1547.

    Article  CAS  PubMed  Google Scholar 

  • Yoshida, M., Yokoo, H., Mizoguchi, K., Kawahara, H., Tsuda, A., Nishikawa, T. et al. (1992). Eating and drinking cause increased dopamine release in the nucleus accumbens and ventral tegmental area in the rat: Measurement by in vivo microdialysis. Neuroscience Letters, 139, 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W. Z., Silva, R. M., Sclafani, A., Delamater, A. R., & Bodnar, R. J. (2000a). Pharmacology of flavor preference conditioning in sham-feeding rats: Effects of dopamine receptor antagonists. Pharmacology, Biochemistry, and Behavior, 65, 635–647.

    Article  CAS  PubMed  Google Scholar 

  • Yu, W. Z., Silva, R. M., Sclafani, A., Delamater, A. R., & Bodnar, R. J. (2000b). Role of D(1) and D(2) dopamine receptors in the acquisition and expression of flavor-preference conditioning in sham-feeding rats. Pharmacology, Biochemistry, and Behavior, 67, 537–544.

    Article  CAS  PubMed  Google Scholar 

  • Zald, D. H., Hagen, M. C., & Pardo, J. V. (2002). Neural correlates of tasting concentrated quinine and sugar solutions. Journal of Neurophysiology, 87, 1068–1075.

    PubMed  Google Scholar 

  • Zigmond, M. J., & Stricker, E. M. (1972). Deficits in feeding behavior after intraventricular injection of 6-hydroxydopamine in rats. Science, 177, 1211–1214.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Smith, G.P. (2004). Accumbens Dopamine is a Physiological Correlate of the Rewarding and Motivating Effects of Food. In: Stricker, E.M., Woods, S.C. (eds) Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-48643-1_2

Download citation

  • DOI: https://doi.org/10.1007/0-306-48643-1_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48484-1

  • Online ISBN: 978-0-306-48643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics