Skip to main content

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 14))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, S. F., Baker, R. M., Blaine, E. H., Denton, D. A., & McKinley, M. J. (1975). Water drinking induced in sheep by angiotensin—a physiological or pharmacological effect? Journal of Comparative and Physiological Psychology, 88, 503–518.

    CAS  PubMed  Google Scholar 

  • Abraham, S. F., Blair-West, J. R., Coghlan, J. P., Denton, D. A., Mouw, D. R., & Scoggins, B. A. (1976). Aldosterone secretion in sodium-deficient sheep during perfusion of the brain ventricles with high sodium CSF. Acta Endocrinologica (Copenhagen), 81, 120–132.

    CAS  Google Scholar 

  • Aguilera, G., Kiss, A., & Luo, X. (1995). Increased expression of type 1 angiotensin II receptors in the hypothalamic paraventricular nucleus following stress and glucocorticoid administration. Journal of Neuroendocrinology, 7, 775–783.

    CAS  PubMed  Google Scholar 

  • Amico, J. A., Morris, M., & Vollmer, R. R. (2001). Mice deficient in oxytocin manifest increased saline consumption following overnight fluid deprivation. American Journal of Physiology, 281, R1368–R1373.

    CAS  PubMed  Google Scholar 

  • Andersson, B., & Olsson, K. (1973). Importance of sodium in central control of fluid homeostasis. In R. O. Scow (Ed.), Endocrinology (pp. 724–728). Amsterdam: Excerpta Medica.

    Google Scholar 

  • Araujo Almeida, N. A., Antunes, V. R., Abrao Saad, W., & de Arruda Camargo, L. A. (1999). Effects of the alpha antagonists and agonists injected into the lateral hypothalamus on the water and sodium intake induced by angiotensin II injection into the subfornical organ. Brain Research Bulletin, 48, 521–525.

    CAS  PubMed  Google Scholar 

  • Asan, E. (1997). Interrelationships between tyrosine hydroxylase-immunoreactive dopaminergic afferents and somatostatinergic neurons in the rat central amygdaloid nucleus. Histochemistry and Cell Biology, 107, 65–79.

    CAS  PubMed  Google Scholar 

  • Aumann, G. D., & Emlen, J. T. (1965). Relation of population density to sodium availability and sodium selection by microtine rodents. Nature, 208, 198–199.

    CAS  PubMed  Google Scholar 

  • Avrith, D. B., & Fitzsimons, J. T. (1980). Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. Journal of Physiology, 301, 349–364.

    CAS  PubMed  Google Scholar 

  • Axelrod, J., & Reisine, T. D. (1984). Stress hormones: Their interaction and regulation. Science, 224, 452–459.

    CAS  PubMed  Google Scholar 

  • Badaue-Passos, D., Jr., Ventura, R., Silva, L. F., Olivares, E. L., & Reis, L. C. (2003). Effect of brain serotoninergic stimulation on sodium appetite of euthyroid and hypothyroid rats. Experimental Physiology, 88, 251–260.

    CAS  PubMed  Google Scholar 

  • Barberis, C., Mouillac, B., & Durroux, T. (1998). Structural bases of vasopressin/oxytocin receptor function. The Journal of Endocrinology, 156, 223–229.

    CAS  PubMed  Google Scholar 

  • Bare, J. K. (1949). The specific hunger for sodium chloride in normal and adrenalectomised white rats. Journal of Comparative and Physiological Psychology, 42, 242.

    CAS  Google Scholar 

  • Barnes, K. L., Diz, D. I., & Ferrario, C. M. (1991). Functional interactions between angiotensin II and substance P in the dorsal medulla. Hypertension, 17, 1121–1126.

    CAS  PubMed  Google Scholar 

  • Bealer, S. L., & Johnson, A. K. (1979). Sodium consumption following lesions surrounding the anteroventral third ventricle. Brain Research Bulletin, 4, 287–290.

    CAS  PubMed  Google Scholar 

  • Beauchamp, G. K., Bertino, M., Burke, D., & Engelman, K. (1990). Experimental sodium depletion and salt taste in normal human volunteers. American Journal of Clinical Nutrition, 51, 881–889.

    CAS  PubMed  Google Scholar 

  • Black, R. M., Weingarten, H. P., Epstein, A. N., Maki, R., & Schulkin, J. (1992). Transection of the stria terminalis without damage to the medial amygdala does not alter behavioural sodium regulation in rats. Acta Neurobiologiae Experimentalis, 52, 9–15.

    CAS  PubMed  Google Scholar 

  • Blackburn, R. E., Demko, A. D., Hoffman, G. E., Stricker, E. M., & Verbalis, J. G. (1992a). Central oxytocin inhibition of angiotensin-induced salt appetite in rats. American Journal of Physiology, 263, R1347–R1353.

    CAS  PubMed  Google Scholar 

  • Blackburn, R. E., Stricker, E. M., & Verbalis, J. G. (1992b). Central oxytocin mediates inhibition of sodium appetite by naloxone in hypovolemic rats. Neuroendocrinology, 56, 255–263.

    CAS  PubMed  Google Scholar 

  • Blackburn, R. E., Samson, W. K., Fulton, R. J., Stricker, E. M., & Verbalis, J. G. (1995). Central oxytocin and ANP receptors mediate osmotic inhibition of salt appetite in rats. American Journal of Physiology, 269, R245–R251.

    CAS  PubMed  Google Scholar 

  • Blaine, E. H., Covelli, M. D., Denton, D. A., Nelson, J. F., & Shulkes, A. A. (1975). The role of ACTH and adrenal glucocorticoids in the salt appetite of wild rabbits (Oryctolagus cuniculus (L)). Endocrinology, 97, 793–801.

    CAS  PubMed  Google Scholar 

  • Blair-West, J. R., Burns, P., Denton, D. A., Ferraro, T., McBurnie, M. I., Tarjan, E., & Weisinger, R. S. (1994). Thirst induced by increasing brain sodium concentration is mediated by brain angiotensin. Brain Research, 637, 335–338.

    CAS  PubMed  Google Scholar 

  • Blair-West, J. R., Carey, K. D., Denton, D. A., Weisinger, R. S., & Shade, R. E. (1998). Evidence that brain angiotensin II is involved in both thirst and sodium appetite in baboons. American Journal of Physiology, 275, R1639–R1646.

    CAS  PubMed  Google Scholar 

  • Blair-West, J. R., Coghlan, J. P., Denton, D. A., Nelson, J. F., Orchard, E., Scoggins, B. A. et al. (1968). Physiological, morphological and behavioural adaptation to a sodium deficient environment by wild native Australian and introduced species of animals. Nature, 217, 922–928.

    CAS  PubMed  Google Scholar 

  • Blair-West, J. R., Denton, D. A., Gellatly, D. R., McKinley, M. J., Nelson, J. F., & Weisinger, R. S. (1987). Changes in sodium appetite in cattle induced by changes in CSF sodium concentration and osmolality. Physiology and Behavior, 39, 465–469.

    CAS  PubMed  Google Scholar 

  • Blair-West, J. R., Denton, D. A., McBurnie, M., Tarjan, E., & Weisinger, R. S. (1995). Influence of adrenal steroid hormones on sodium appetite of Balb/c mice. Appetite, 24, 11–24.

    CAS  PubMed  Google Scholar 

  • Blair-West, J. R., Denton, D. A., McKinley, M. J., & Weisinger, R. S. (1988). Angiotensin-related sodium appetite and thirst in cattle. American Journal of Physiology, 255, R205–R211.

    CAS  PubMed  Google Scholar 

  • Bourjeili, N., Turner, M., Stinner, J., & Ely, D. (1995). Sympathetic nervous system influences salt appetite in four strains of rats. Physiology and Behavior, 58, 437–443.

    CAS  PubMed  Google Scholar 

  • Brazeau, P., Vale, W., Burgus, R., Ling, N., Butcher, M., Rivier, J. et al. (1973). Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science, 179, 77–79.

    CAS  PubMed  Google Scholar 

  • Bruhn, T. O., Sutton, S. W., Plotsky, P. M., & Vale, W. W. (1986). Central administration of corticotropinreleasing factor modulates oxytocin secretion in the rat. Endocrinology, 119, 1558–1563.

    CAS  PubMed  Google Scholar 

  • Buggy, J., & Fisher, A. E. (1976). Anteroventral third ventricle site of action for angiotensin induced thirst. Pharmacology, Biochememistry, and Behavior, 4, 651–660.

    CAS  Google Scholar 

  • Buggy, J., & Jonklaas, J. (1984). Sodium appetite decreased by central angiotensin blockade. Physiology and Behavior, 32, 737–742.

    CAS  PubMed  Google Scholar 

  • Butler, D. G., Pak, S. H., Midgely, A., & Nemati, B. (2002). AT(1) receptor blockade with losartan during gestation in Wistar rats leads to an increase in thirst and sodium appetite in their adult female offspring. Regulatory Peptides, 105, 47–57.

    CAS  PubMed  Google Scholar 

  • Camargo, L. A., Saad, W. A., de Luca, L. A., Jr., Renzi, A., Silveira, J. E., & Menani, J. V. (1994). Synergist interaction between angiotensin II and DOCA on sodium and water balance in rats. Physiology and Behavior, 55, 423–427.

    CAS  PubMed  Google Scholar 

  • Castren, E., & Saavedra, J. M. (1988). Repeated stress increases the density of angiotensin II binding sites in rat paraventricular nucleus and subfornical organ. Endocrinology, 122, 370–372.

    CAS  PubMed  Google Scholar 

  • Chai, S. Y., McKinley, M. J., & Mendelsohn, F. A. (1987). Distribution of angiotensin converting enzyme in sheep hypothalamus and medulla oblongata visualized by in vitro autoradiography. Clinical and Experimental Hypertension A, 9, 449–460.

    CAS  Google Scholar 

  • Charron, G., Laforest, S., Gagnon, C., Drolet, G., & Mouginot, D. (2002). Acute sodium deficit triggers plasticity of the brain angiotensin type 1 receptors. The FASEB Journal, 16, 610–612.

    CAS  PubMed  Google Scholar 

  • Chiaraviglio, E. (1969). Effect of lesions in the septal area and olfactory bulbs on sodium chloride intake. Physiology and Behavior, 4, 693–697.

    CAS  Google Scholar 

  • Chiaraviglio, E. (1984a). Anterior third ventricle (A3V) lesions and homeostasis regulation. Journal of Physiology, Paris, 79, 446–452.

    CAS  Google Scholar 

  • Chiaraviglio, E. (1984b). Sodium chloride intake following electrochemical stimulation of the frontal lobe cortex in the rat. Physiology and Behavior, 33, 547–551.

    CAS  PubMed  Google Scholar 

  • Chiaraviglio, E., & Perez Guaita, M. F. (1986). The effect of intracerebroventricular hypertonic infusion on sodium appetite in rats after peritoneal dialysis. Physiology and Behavior, 37, 695–699.

    CAS  PubMed  Google Scholar 

  • Chinkers, M., Garbers, D. L., Chang, M. S., Lowe, D. G., Chin, H. M., Goeddel, D. V. et al. (1989). A membrane form of guanylate cyclase is an atrial natriuretic peptide receptor. Nature, 338, 78–83.

    CAS  PubMed  Google Scholar 

  • Churchill, S. E., Bengele, H. H., & Alexander, E. A. (1980). Sodium balance during pregnancy in the rat. American Journal of Physiology, 239, R143–R148.

    CAS  Google Scholar 

  • Ciriello, J., Hochstenbach, S. L., & Roder, S. (1994). Central projections of baroreceptor and chemoreceptor afferent fibers in the rat. In I. R. A. Barraco (Ed.), Nucleus of the solitary tract (pp. 35–50). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Coghlan, J. P., Blair-West, J. R., Butkus, A., Denton, D. A., Hardy, K. J., Leksell, L. et al. (1980). Factors regulating aldosterone secretion. In I. A. Cumming, J.W. Funder, & F.A.O. Mendelsohn (Eds.), Endocrinology (pp. 385–388). Canberra, Australia: Australian Academy of Science.

    Google Scholar 

  • Coghlan, J. P., Considine, P. J., Denton, D. A., Fei, D. T., Leksell, L. G., McKinley, M. J. et al. (1981). Sodium appetite in sheep induced by cerebral ventricular infusion of angiotensin: Comparison with sodium deficiency. Science, 214, 195–197.

    CAS  PubMed  Google Scholar 

  • Contreras, R. J., & Stetson, P. W. (1981). Changes in salt intake after lesions of the area postrema and the nucleus of the solitary tract in rats. Brain Research, 211, 355–366.

    CAS  PubMed  Google Scholar 

  • Cooney, A. S., & Fitzsimons, J. T. (1996). Increased sodium appetite and thirst in rat induced by the ingredients of liquorice, glycyrrhizic acid and glycyrrhetinic acid. Regulatory Peptides, 66, 127–133.

    CAS  PubMed  Google Scholar 

  • Covian, M. R., & Antunes-Rodrigues, J. (1963). Specific alterations in sodium chloride intake after hypothalamic lesions in the rat. American Journal of Physiology, 205, 922–926.

    CAS  PubMed  Google Scholar 

  • Crowley, W. R., & Terry, L. C. (1980). Biochemical mapping of somatostatinergic systems in rat brain: Effects of periventricular hypothalamic and medial basal amygdaloid lesions on somatostatin-like immunoreactivity in discrete brain nuclei. Brain Research, 200, 283–291.

    CAS  PubMed  Google Scholar 

  • Curtis, K. S., Huang, W., Sved, A. F., Verbalis, J. G., & Stricker, E. M. (1999). Impaired osmoregulatory responses in rats with area postrema lesions. American Journal of Physiology, 277, R209–R219.

    CAS  PubMed  Google Scholar 

  • Dalhouse, A. D., Langford, H. G., Walsh, D., & Barnes, T. (1986). Angiotensin and salt appetite: Physiological amounts of angiotensin given peripherally increase salt appetite in the rat. Behavioral Neuroscience, 100, 597–602.

    CAS  PubMed  Google Scholar 

  • Dam, T. V., Martinelli, B., & Quirion, R. (1990). Autoradiographic distribution of brain neurokinin-1/substance P receptors using a highly selective ligand [3H]-[Sar9,Met(O2)11]-substance P. Brain Research, 531, 333–337.

    CAS  PubMed  Google Scholar 

  • da Silva, R. K., Saad, W. A., Renzi, A., Menani, J. V., & Camargo, L. A. (1995). Effect of lateral hypothalamus lesions on the water and salt intake, and sodium and urine excretion induced by activation of the median preoptic nucleus in conscious rats. Journal of the Autonomic Nervous System, 53, 195–204.

    PubMed  Google Scholar 

  • de Kloet, E. R., Oitzl, M. S., & Joels, M. (1993). Functional implications of brain corticosteroid receptor diversity. Cellular and Molecular Neurobiology, 13, 433–455.

    PubMed  Google Scholar 

  • de Kloet, E. R., Voorhuis, D. A., Boschma, Y., & Elands, J. (1986). Estradiol modulates density of putative ‘oxytocin receptors’ in discrete rat brain regions. Neuroendocrinology, 44, 415–421.

    PubMed  Google Scholar 

  • De Luca, L. A., Jr., Galaverna, O., Schulkin, J., Yao, S. Z., & Epstein, A. N. (1992). The anteroventral wall of the third ventricle and the angiotensinergic component of need-induced sodium intake in the rat. Brain Research Bulletin, 28, 73–87.

    PubMed  Google Scholar 

  • De Luca, L. A., Jr., Xu, Z., Schoorlemmer, G. H., Thunhorst, R. L., Beltz, T. G., Menani, J. V. et al. (2002). Water deprivation-induced sodium appetite: Humoral and cardiovascular mediators and immediate early genes. American Journal of Physiology, 282, R552–R559.

    PubMed  Google Scholar 

  • De Nicola, A. F., Seltzer, A., Tsutsumi, K., & Saavedra, J. M. (1993). Effects of deoxycorticosterone acetate (DOCA) and aldosterone on Sar1-angiotensin II binding and angiotensin-converting enzyme binding sites in brain. Cellular and Molecular Neurobiology, 13, 529–539.

    PubMed  Google Scholar 

  • Dejima, Y., Fukuda, S., Ichijoh, Y., Takasaka, K., & Ohtsuka, R. (1996). Cold-induced salt intake in mice and catecholamine, renin and thermogenesis mechanisms. Appetite, 26, 203–219.

    CAS  PubMed  Google Scholar 

  • Denton, D. A. (1966). Some theoretical considerations in relation to innate appetite. Conditional Reflex, 1, 144–170.

    Google Scholar 

  • Denton, D. A., Blair-West, J. R., McBurnie, M., Osborne, P. G., Tarjan, E., Williams, R. M. et al. (1990). Angiotensin and salt appetite of BALB/c mice. American Journal of Physiology, 259, R729–R735.

    CAS  PubMed  Google Scholar 

  • Denton, D. A., Blair-West, J. R., McBurnie, M. I., Miller, J. A., Weisinger, R. S., & Williams, R. M. (1999). Effect of adrenocorticotrophic hormone on sodium appetite in mice. American Journal of Physiology, 277, R1033–R1040.

    CAS  PubMed  Google Scholar 

  • Denton, D. A., Coghlan, J. P., Fei, D. T., McKinley, M. J., Nelson, J., Scoggins, B. et al. (1984a). Stress, ACTH, salt intake and high blood pressure. Clinical and Experimental Hypertension-Theory and Practice, A6, 403–415.

    CAS  Google Scholar 

  • Denton, D. A., Kraintz, F., & Kraintz, L. (1969a). The inhibition of salt appetite of sodium-deficient sheep by intracarotid infusion of ouabain. Communications in Behavioral Biology, 4, 183–194.

    Google Scholar 

  • Denton, D. A., McKinley, M. J., Nelson, J. F., Osborne, P., Simpson, J., Tarjan, E. et al. (1984b). Species differences in the effect of decreased CSF sodium concentration on salt appetite. Journal de Physiologie, 79, 499–504.

    CAS  PubMed  Google Scholar 

  • Denton, D. A., McKinley, M. J., & Weisinger, R. S. (1996). Hypothalamic integration of body fluid regulation. Proceedings of the National Academy of Sciences USA, 93, 7397–7404.

    CAS  Google Scholar 

  • Denton, D. A., & Nelson, J. F. (1970). Effect of deoxycorticosterone acetate and aldosterone on the salt appetite of wild rabbits (Oryctolagus cuniculus (L.)). Endocrinology, 87, 970–977.

    CAS  PubMed  Google Scholar 

  • Denton, D. A., & Nelson, J. F. (1971). The effects of pregnancy and lactation on the mineral appetites of wild rabbits (Oryctolagus cuniculus (L.)). Endocrinology, 88, 31–40.

    CAS  PubMed  Google Scholar 

  • Denton, D. A., & Nelson, J. F. (1980). The influence of reproductive processes on salt appetite. In M. R. Kare, M.J., Fregly, & R.A. Bernard, (Eds.), Biological and behavioral aspects of salt intake (pp. 229–246). New York: Academic Press.

    Google Scholar 

  • Denton, D. A., Orchard, E., & Weller, S. (1969b). The relation between voluntary sodium intake and body sodium balance in normal and adrenalectomized sheep. Communication in Behavioral Biology, 3, 213–221.

    Google Scholar 

  • Denton, D. A., & Sabine, J. (1961). The selective appetite for Na+ shown by Na+ deficient sheep. Journal of Physiology, London, 157, 97–116.

    CAS  Google Scholar 

  • Deschepper, C. F., & Flaxman, M. (1990). Glucocorticoid regulation of rat diencephalon angiotensinogen production. Endocrinology, 126, 963–970.

    CAS  PubMed  Google Scholar 

  • Diz, D. I., Westwood, B., Bosch, S. M., Ganten, D., & Ferrario, C. (1998). NK1 receptor antagonist blocks angiotensin II responses in renin transgenic rat medulla oblongata. Hypertension, 31, 473–479.

    CAS  PubMed  Google Scholar 

  • do Vale, C. F., Camargo, G. M., Renzi, A., Luiz, A. C., Saad, W. A., Hetem, S. et al. (1997). Ibotenate lesion of the medial hypothalamus alters the salt intake and pressor responses to activation of the median preoptic nucleus in rats. Journal of Physiology, Paris, 91, 31–37.

    PubMed  Google Scholar 

  • Dragunow, M., & Faull, R. (1989). The use of c-Fos as a metabolic marker in neuronal pathway tracing. Journal of Neuroscience Methods, 29, 261–265.

    CAS  PubMed  Google Scholar 

  • Durr, J. A., Stamoutsos, B., & Lindheimer, M. D. (1981). Osmoregulation during pregnancy in the rat. Evidence for resetting of the threshold for vasopressin secretion during gestation. Journal of Clinical Investigation, 68, 337–346.

    CAS  PubMed  Google Scholar 

  • Edwards, G. L., Beltz, T. G., Power, J. D., & Johnson, A. K. (1993). Rapid-onset “need-free” sodium appetite after lesions of the dorsomedial medulla. American Journal of Physiology, 264, R1242–R1247.

    CAS  PubMed  Google Scholar 

  • Ehrlich, K. J., & Fitts, D. A. (1990). Atrial natriuretic peptide in the subfornical organ reduces drinking induced by angiotensin or in response to water deprivation. Behavioral Neuroscience, 104, 365–372.

    CAS  PubMed  Google Scholar 

  • Elfont, R. M., & Fitzsimons, J. T. (1985). The effect of captopril on sodium appetite in adrenalectomized and deoxycorticosterone-treated rats. Journal of Physiology, 365, 1–12.

    CAS  PubMed  Google Scholar 

  • Ely, D. E., Thoren, P., Wiegand, J., & Folkow, B. (1987). Sodium appetite as well as 24-h variations of fluid balance, mean arterial pressure and heart rate in spontaneously hypertensive (SHR) and normotensive (WKY) rats, when on various sodium diets. Acta Physiologica Scandinavica, 129, 81–92.

    CAS  PubMed  Google Scholar 

  • Epstein, A. N. (1981). Angiotensin-induced thirst and sodium appetite. In J. B. Martin, S. Reichlin, & K. L. Bick (Eds.), Neurosecretion and brain peptides (pp. 373–387). New York: Raven Press.

    Google Scholar 

  • Epstein, A. N. (1982). Mineralocorticoids and cerebral angiotensin may act together to produce sodium appetite. Peptides, 3, 493–494.

    CAS  PubMed  Google Scholar 

  • Epstein, A. N. (1984). The dependence of the salt appetite of the rat on the hormonal consequences of sodium deficiency. Journal of Physiology (Paris), 79, 496–498.

    CAS  Google Scholar 

  • Epstein, A. N. (1991). Neurohormonal control of salt intake in the rat. Brain Research Bulletin, 27, 315–320.

    CAS  PubMed  Google Scholar 

  • Epstein, A. N., Zhang, D. M., Schultz, J., Rosenberg, M., Kupsha, P., & Stellar, E. (1984). The failure of ventricular sodium to control sodium appetite in the rat. Physiology and Behavior, 32, 683–686.

    CAS  PubMed  Google Scholar 

  • Evered, M. D., Robinson, M. M., & Rose, P. A. (1988). Effect of arterial pressure on drinking and urinary responses to angiotensin II. American Journal of Physiology, 254, R69–R74.

    CAS  PubMed  Google Scholar 

  • Falk, J. L. (1966). Serial sodium depletion and NaCl solution intake. Physiology and Behavior, 1, 75–77.

    CAS  Google Scholar 

  • Ferguson, A. V., & Lowes, V. L. (1994). Functional neural connections of the area postrema. In I. R. A. Barraco (Ed.), Nucleus of the solitary tract (pp. 147–157). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ferguson, A. V., & Wall, K. M. (1992). Central actions of angiotensin in cardiovascular control: Multiple roles for a single peptide. Canadian Journal of Physiology and Pharmacology, 70, 779–785.

    CAS  PubMed  Google Scholar 

  • Ferguson, A. V., & Washburn, D. L. (1998). Angiotensin II: A peptidergic neurotransmitter in central autonomic pathways. Progress in Neurobiology, 54, 169–192.

    CAS  PubMed  Google Scholar 

  • Findlay, A. L. R., & Epstein, A. N. (1980). Increased sodium intake is somehow induced in rats by IV angiotensin II. Hormones and Behavior, 14, 86–92.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A. (1991). Effects of lesions of the ventral median preoptic nucleus or subfornical organ on drinking and salt appetite after deoxycorticosterone acetate or yohimbine. Behavioral Neuroscience, 105, 721–726.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A., & Masson, D. B. (1989). Forebrain sites of action for drinking and salt appetite to angiotensin or captopril. Behavioral Neuroscience, 103, 865–872.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A., & Masson, D. B. (1990). Preoptic angiotensin and salt appetite. Behavioral Neuroscience, 104, 643–650.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A., & Thunhorst, R. L. (1996). Rapid elicitation of salt appetite by an intravenous infusion of angiotensin II in rats. American Journal of Physiology, 270, R1092–R1098.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A., Thunhorst, R. L., & Simpson, J. B. (1985). Modulation of salt appetite by lateral ventricular infusions of angiotensin II and carbachol during sodium depletion. Brain Research, 346, 273–280.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A., Tjepkes, D. S., & Bright, R. O. (1990). Salt appetite and lesions of the ventral part of the ventral median preoptic nucleus. Behavioral Neuroscience, 104, 818–827.

    CAS  PubMed  Google Scholar 

  • Fitts, D. A., Yang, O. O., Corp, E. S., & Simpson, J. B. (1983). Sodium retention and salt appetite following deoxycorticosterone in hamsters. American Journal of Physiology, 244, R78–R83.

    CAS  PubMed  Google Scholar 

  • Fitzsimons, J. T. (1998). Angiotensin, thirst, and sodium appetite. Physiological Reviews, 78, 583–686.

    CAS  PubMed  Google Scholar 

  • Fluharty, S. J., & Epstein, A. N. (1983). Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behavioral Neuroscience, 97, 746–758.

    CAS  PubMed  Google Scholar 

  • Fluharty, S. J., & Manaker, S. (1983). Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: I. Relation to urinary sodium excretion. Behavioral Neuroscience, 97, 738–745.

    CAS  PubMed  Google Scholar 

  • Flynn, F. W., Smith, M. E., & Bieber, S. L. (1999). Differential effects of intraventricular injections of tachykinin NK1 and NK3 receptor agonists on normal and sham drinking of NaCl by sodiumde-deficient rats. Behavioral Neuroscience, 113, 776–786.

    CAS  PubMed  Google Scholar 

  • Franchini, L. F., Johnson, A. K., de Olmos, J., & Vivas, L. (2002). Sodium appetite and Fos activation in serotonergic neurons. American Journal of Physiology, 282, R235–R243.

    CAS  PubMed  Google Scholar 

  • Franchini, L. F., & Vivas, L. (1999). Distribution of Fos immunoreactivity in rat brain after sodium consumption induced by peritoneal dialysis. American Journal of Physiology, 276, R1180–R1187.

    CAS  PubMed  Google Scholar 

  • Fregly, M. J., & Waters, I. W. (1966). Effect of mineralocorticoids on spontaneous sodium chloride appetite of adrenalectomised rats. Physiology and Behavior, 1, 65–74.

    CAS  Google Scholar 

  • Gaillard, R. C., & Al-Damluji, S. (1987). Stress and the pituitary-adrenal axis. Baillieres Clinical Endocrinology and Metabolism, 1, 319–354.

    CAS  Google Scholar 

  • Galaverna, O., De Luca, L. A., Jr., Schulkin, J., Yao, S. Z., & Epstein, A. N. (1992). Deficits in NaCl ingestion after damage to the central nucleus of the amygdala in the rat. Brain Research Bulletin, 28, 89–98.

    PubMed  Google Scholar 

  • Galaverna, O., Polidori, C., Sakai, R. R., Lienard, F., Chow, S. Y., & Fluharty, S. J. (1996). Blockade of central angiotensin II type 1 and type 2 receptors suppresses adrenalectomy-induced NaCl intake in rats. Regulatory Peptides, 66, 47–50.

    CAS  PubMed  Google Scholar 

  • Galaverna, O. G., Seeley, R. J., Berridge, K. C., Grill, H. J., Epstein, A. N., & Schulkin, J. (1993). Lesions of the central nucleus of the amygdala. I: Effects on taste reactivity, taste aversion learning and sodium appetite. Behavioural Brain Research, 59, 11–17.

    CAS  PubMed  Google Scholar 

  • Gardiner, T. W., Jolley, J. R., Vagnucci, A. H., & Stricker, E. M. (1986). Enhanced sodium appetite in rats with lesions centered on nucleus medianus. Behavioral Neuroscience, 100, 531–535.

    CAS  PubMed  Google Scholar 

  • Gehlert, D. R., Gackenheimer, S. L., & Schober, D. A. (1991). Autoradiographic localization of subtypes of angiotensin II antagonist binding in the rat brain. Neuroscience, 44, 501–514.

    CAS  PubMed  Google Scholar 

  • Giovannelli, L., Shiromani, P. J., Jirikowski, G. F., & Bloom, F. E. (1990). Oxytocin neurons in the rat hypothalamus exhibit c-Fos immunoreactivity upon osmotic stress. Brain Research, 531, 299–303.

    CAS  PubMed  Google Scholar 

  • Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behaviour. Cambridge, UK.

    Google Scholar 

  • Grigson, P. S., Shimura, T., & Norgren, R. (1997). Brainstem lesions and gustatory function: II. The role of the nucleus of the solitary tract in Na+ appetite, conditioned taste aversion, and conditioned odor aversion in rats. Behavioral Neuroscience, 111, 169–179.

    CAS  PubMed  Google Scholar 

  • Grillo, C., Coirini, H., McEwen, B. S., & De Nicola, A. F. (1989). Changes of salt intake and of (Na+K)-ATPase activity in brain after high dose treatment with deoxycorticosterone. Brain Research, 499, 225–233.

    CAS  PubMed  Google Scholar 

  • Hamlin, M. N., Webb, R. C., Ling, W. D., & Bohr, D. F. (1988). Parallel effects of DOCA on salt appetite, thirst, and blood pressure in sheep. Proceedings of the Society for Experimental Biology and Medicine, 188, 46–51.

    CAS  PubMed  Google Scholar 

  • Han, L., & Rowland, N. E. (1995). Sodium depletion and Fos-immunoreactivity in lamina terminalis. Neuroscience Letters, 193, 173–176.

    CAS  PubMed  Google Scholar 

  • Hill, D. L., & Almi, C. R. (1983). Parabrachial nuclei damage in infant rats produces residual deficits in gustatory preferences/aversions and sodium appetite. Developmental Psychobiology, 16, 519–533.

    CAS  PubMed  Google Scholar 

  • Hiyama, T. Y., Watanabe, E., Ono, K., Inenaga, K., Tamkun, M. M., Yoshida, S. et al. (2002). Na(x) channel involved in CNS sodium-level sensing. Nature Neuroscience, 5, 511–512.

    CAS  PubMed  Google Scholar 

  • Houpt, T. A., Smith, G. P., Joh, T. H., & Frankmann, S. P. (1998). c-Fos-like immunoreactivity in the subfornical organ and nucleus of the solitary tract following salt intake by sodium-depleted rats. Physiology and Behavior, 63, 505–510.

    CAS  PubMed  Google Scholar 

  • Huang, W., Lee, S. L., Arnason, S. S., & Sjoquist, M. (1996). Dehydration natriuresis in male rats is mediated by oxytocin. American Journal of Physiology, 270, R427–R433.

    CAS  PubMed  Google Scholar 

  • Hyde, T. M., & Miselis, R. R. (1984). Area postrema and adjacent nucleus of the solitary tract in water and sodium balance. American Journal of Physiology, 247, R173–R182.

    CAS  PubMed  Google Scholar 

  • Imaki, T., Shibasaki, T., Hotta, M., & Demura, H. (1993). Intracerbroventricular administration of corticotropin-releasing factor induces c-Fos mRNA expression in brain regions related to stress responses: Comparison with pattern of c-Fos mRNA induction after stress. Brain Research, 616, 114–125.

    CAS  PubMed  Google Scholar 

  • Ingram, M. C., Wallace, A. M., Collier, A., Fraser, R., & Connell, J. M. (1996). Sodium status, corticosteroid metabolism and blood pressure in normal human subjects and in a patient with abnormal salt appetite. Clinical and Experimental Pharmacology and Physiology, 23, 375–378.

    CAS  PubMed  Google Scholar 

  • Insel, T. R. (1992). Oxytocin—a neuropeptide for affiliation: Evidence from behavioral, receptor autoradiographic, and comparative studies. Psychoneuroendocrinology, 17, 3–35.

    CAS  PubMed  Google Scholar 

  • Jalowiec, J. E. (1974). Sodium appetite elicited by furosemide: Effects of differential dietary maintenance. Behavioral Biology, 10, 313–327.

    CAS  PubMed  Google Scholar 

  • Johren, O., Sanvitto, G. L., Egidy, G., & Saavedra, J. M. (1997). Angiotensin II AT1A receptor mRNA expression is induced by estrogen-progesterone in dopaminergic neurons of the female rat arcuate nucleus. Journal of Neuroscience, 17, 8283–8292.

    CAS  PubMed  Google Scholar 

  • Kawata, M., Nakao, K., Morii, N., Kiso, Y., Yamashita, H., Imura, H. et al. (1985). Atrial natriuretic polypeptide: Topographical distribution in the rat brain by radioimmunoassay and immunohistochemistry. Neuroscience, 16, 521–546.

    CAS  PubMed  Google Scholar 

  • Keil, L. C., Rosella-Dampman, L. M., Emmert, S., Chee, O., & Summy-Long, J. Y. (1984). Enkephalin inhibition of angiotensin-stimulated release of oxytocin and vasopressin. Brain Research, 297, 329–336.

    CAS  PubMed  Google Scholar 

  • Krisch, B., & Leonhardt, H. (1980). Luliberin and somatostatin fiber-terminals in the subfornical organ of the rat. Cell and Tissue Research, 210, 33–45.

    CAS  PubMed  Google Scholar 

  • Krisch, B., Leonhardt, H., & Buchheim, W. (1978). The functional and structural border between the CSF-and blood-milieu in the circumventricular organs (organum vasculosum laminae terminalis, subfornical organ, area postrema) of the rat. Cell and Tissue Research, 195, 485–497.

    CAS  PubMed  Google Scholar 

  • Kuta, C. C., Bryant, H. U., Zabik, J. E., & Yim, G. K. (1984). Stress, endogenous opioids and salt intake. Appetite, 5, 53–60.

    CAS  PubMed  Google Scholar 

  • Lane, J. M., Herbert, J., & Fitzsimons, J. T. (1997). Increased sodium appetite stimulates c-Fos expression in the organum vasculosum of the lamina terminalis. Neuroscience, 78, 1167–1176.

    CAS  PubMed  Google Scholar 

  • Larsen, P. J., Jessop, D. S., Chowdrey, H. S., Mikkelsen, J. D., & Lightman, S. L. (1992). Osmotic regulation of substance P and neurokinin A peptide content and substance P binding sites in distinct hypothalamic nuclei of the rat. Peptides, 13, 705–712.

    CAS  PubMed  Google Scholar 

  • Larsen, P. J., Jessop, D. S., Lightman, S. L., & Chowdrey, H. S. (1993). Preprotachykinin A gene expression in distinct hypothalamic and brain stem regions of the rat is affected by a chronic osmotic stimulus: A combined immunohistochemical and in situ hybridization histochemistry study. Brain Research Bulletin, 30, 535–545.

    CAS  PubMed  Google Scholar 

  • Leroux, P., & Pelletier, G. (1984). Radioautographic localization of somatostatin-14 and somatostatin-28 binding sites in the rat brain. Peptides, 5, 503–506.

    CAS  PubMed  Google Scholar 

  • Leshem, M., Abutbul, A., & Eilon, R. (1999). Exercise increases the preference for salt in humans. Appetite, 32, 251–260.

    CAS  PubMed  Google Scholar 

  • Li, Z., & Ferguson, A. V. (1993). Subfornical organ efferents to paraventricular nucleus utilize angiotensin as a neurotransmitter. American Journal of Physiology, 265, R302–R309.

    CAS  PubMed  Google Scholar 

  • Lind, R. W., Swanson, L. W., & Ganten, D. (1985). Organization of angiotensin II immunoreactive cells and fibers in the rat central nervous system. An immunohistochemical study. Neuroendocrinology, 40, 2–24.

    CAS  PubMed  Google Scholar 

  • Lippoldt, A., Paul, M., Fuxe, K., & Ganten, D. (1995). The brain renin-angiotensin system: Molecular mechanisms of cell to cell interactions. Clinical and Experimental Hypertension, 17, 251–266.

    CAS  PubMed  Google Scholar 

  • Lucas, L. R., Pompei, P., & McEwen, B. S. (2000). Salt appetite in salt-replete rats: Involvement of mesolimbic structures in deoxycorticosterone-induced salt craving behavior. Neuroendocrinology, 71, 386–395.

    CAS  PubMed  Google Scholar 

  • Ma, L. Y., Itharat, P., Fluharty, S. J., & Sakai, R. R. (1997). Intracerebroventricular administration of mineralocorticoid receptor antisense oligonucleotides attenuates salt appetite in the rat. Stress, 2, 37–50.

    CAS  PubMed  Google Scholar 

  • Ma, L. Y., McEwen, B. S., Sakai, R. R., & Schulkin, J. (1993). Glucocorticoids facilitate mineralocorticoid-induced sodium intake in the rat. Hormones and Behavior, 27, 240–250.

    CAS  PubMed  Google Scholar 

  • Magarinos, A. M., Coirini, H., De Nicola, A. F., & McEwen, B. S. (1986). Mineralocorticoid regulation of salt intake is preserved in hippocampectomized rats. Neuroendocrinology, 44, 494–497.

    CAS  PubMed  Google Scholar 

  • Martinez, M., Phillips, P. J., & Herbert, J. (1998). Adaptation in patterns of c-Fos expression in the brain associated with exposure to either single or repeated social stress in male rats. European Journal of Neurosicence, 10, 20–33.

    CAS  Google Scholar 

  • Massi, M., & Epstein, A. N. (1987). The apparent dependence of salt appetite in the pigeon on endogenous angiotensin II. Physiology and Behavior, 41, 155–162.

    CAS  PubMed  Google Scholar 

  • Massi, M., & Epstein, A. N. (1989). Suppression of salt intake in the rat by neurokinin A: Comparison with the effect of kassinin. Regulatory Peptides, 24, 233–244.

    CAS  PubMed  Google Scholar 

  • Massi, M., & Epstein, A. N. (1990). Angiotensin/aldosterone synergy governs the salt appetite of the pigeon. Appetite, 14, 181–192.

    CAS  PubMed  Google Scholar 

  • Massi, M., Gentili, L., Perfumi, M., de Caro, G., & Schulkin, J. (1990). Inhibition of salt appetite in the rat following injection of tachykinins into the medial amygdala. Brain Research, 513, 1–7.

    CAS  PubMed  Google Scholar 

  • Massi, M., Perfumi M., de Caro, G., & Epstein, A. N. (1988). Inhibitory effect of kassinin on salt intake induced by different natriorexigenic treatments in the rat. Brain Research, 440, 232–242.

    CAS  PubMed  Google Scholar 

  • Massi, M., Polidori, C., Perfumi, M., Gentili, L., & de Caro, G. (1991). Tachykinin receptor subtypes involved in the central effects of tachykinins on water and salt intake. Brain Research Bulletin, 26, 155–160.

    CAS  PubMed  Google Scholar 

  • McBurnie, M., Denton, D., & Tarjan, E. (1988). Influence of pregnancy and lactation on Na appetite of BALB/c mice. American Journal of Physiology, 255, R1020–R1024.

    CAS  PubMed  Google Scholar 

  • McBurnie, M. I., Blair-West, J. R., Denton, D. A., & Weisinger, R. S. (1999). Sodium intake and reproduction in BALB/C mice. Physiology and Behavior, 66, 873–879.

    CAS  PubMed  Google Scholar 

  • McCann, S. M., Gutkowska, J., Franci, C. R., Favaretto, A. L., & Antunes-Rodrigues, J. (1994). Hypothalamic control of water and salt intake and excretion. Brazilian Journal of Medical and Biological Research, 27, 865–884.

    CAS  PubMed  Google Scholar 

  • McEwen, B. S., Lambdin, L. T., Rainbow, T. C., & De Nicola, A. F. (1986). Aldosterone effects on salt appetite in adrenalectomized rats. Neuroendocrinology, 43, 38–43.

    CAS  PubMed  Google Scholar 

  • McKenzie, J. S., & Denton, D. A. (1974). Salt ingestion responses to diencephalic electrical stimulation in the unrestrained conscious sheep. Brain Research, 70, 449–466.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., Allen, A., Clevers, J., Denton, D. A., & Mendelsohn, F. A. (1986). Autoradiographic localization of angiotensin receptors in the sheep brain. Brain Research, 375, 373–376.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., Allen, A. M., Chai, S. Y., Hards, D. K., Mendelsohn, F. A., & Oldfield, B. J. (1989). The lamina terminalis and its neural connections: Neural circuitry involved in angiotensin action and fluid and electrolyte homeostasis. Acta Physiologica Scandinavica Supplement, 583, 113–118.

    CAS  Google Scholar 

  • McKinley, M. J., Badoer, E., & Oldfield, B. J. (1992). Intravenous angiotensin II induces Fos-immunoreactivity in circumventricular organs of the lamina terminalis. Brain Research, 594, 295–300.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., Badoer, E., Vivas, L., & Oldfield, B. J. (1995). Comparison of c-Fos expression in the lamina terminalis of conscious rats after intravenous or intracerebroventricular angiotensin. Brain Research Bulletin, 37, 131–137.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., Denton, D. A., Nelson, J. F., & Weisinger, R. S. (1983). Dehydration induces sodium depletion in rats, rabbits, and sheep. American Journal of Physiology, 245, R287–R292.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., Denton, D. A., & Weisinger, R. S. (1978). Sensors for antidiuresis and thirst—osmoreceptors or CSF sodium detectors? Brain Research, 141, 89–103.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., Hards, D. K., & Oldfield, B. J. (1994). Identification of neural pathways activated in dehydrated rats by means of Fos-immunohistochemistry and neural tracing. Brain Research, 653, 305–314.

    CAS  PubMed  Google Scholar 

  • McKinley, M. J., McAllen, R. M., Pennington, G. L., Smardencas, A., Weisinger, R. S., & Oldfield, B. J. (1996). Physiological actions of angiotensin II mediated by AT1 and AT2 receptors in the brain. Clinical and Experimental Pharmacology and Physiology Supplement, 3, S99–S104.

    CAS  PubMed  Google Scholar 

  • Menani, J. V., Colombari, D. S., Beltz, T. G., Thunhorst, R. L., & Johnson, A. K. (1998a). Salt appetite: Interaction of forebrain angiotensinergic and hindbrain serotonergic mechanisms. Brain Research, 801, 29–35.

    CAS  PubMed  Google Scholar 

  • Menani, J. V., De Luca, L. A., Jr., & Johnson, A. K. (1998b). Lateral parabrachial nucleus serotonergic mechanisms and salt appetite induced by sodium depletion. American Journal of Physiology, 274, R555–R560.

    CAS  PubMed  Google Scholar 

  • Menani, J. V., Thunhorst, R. L., & Johnson, A. K. (1996). Lateral parabrachial nucleus and serotonergic mechanisms in the control of salt appetite in rats. American Journal of Physiology, 270, R162–R168.

    CAS  PubMed  Google Scholar 

  • Mendelsohn, F. A., Allen, A. M., Chai, S. Y., Sexton, P. M., & Figdor, R. (1987). Overlapping distributions of receptors for atrial natriuretic peptide and angiotensin II visualized by in vitro autoradiography: Morphological basis of physiological antagonism. Canadian Journal of Physiology and Pharmacology, 65, 1517–1521.

    CAS  PubMed  Google Scholar 

  • Mendelsohn, F. A., Jenkins, T. A., & Berkovic, S. F. (1993). Effects of angiotensin II on dopamine and serotonin turnover in the striatum of conscious rats. Brain Research, 613, 221–229.

    CAS  PubMed  Google Scholar 

  • Mercer, P. F., Mogenson, G. J., & Paquette, S. Y. (1978). Sodium intake following destruction of the anterior hypothalamus in the rat. Canadian Journal of Physiology and Pharmacology, 56, 252–259.

    CAS  PubMed  Google Scholar 

  • Moe, K. E., Weiss, M. L., & Epstein, A. N. (1984). Sodium appetite during captopril blockade of endogenous angiotensin II formation. American Journal of Physiology, 247, R356–R365.

    CAS  PubMed  Google Scholar 

  • Moga, M. M., & Gray, T. S. (1985). Peptidergic efferents from the intercalated nuclei of the amygdala to the parabrachial nucleus in the rat. Neuroscience Letters, 61, 13–18.

    CAS  PubMed  Google Scholar 

  • Moga, M. M., Saper, C. B., & Gray, T. S. (1989). Bed nucleus of the stria terminalis: Cytoarchitecture, immunohistochemistry, and projection to the parabrachial nucleus in the rat. Journal of Comparative Neurology, 283, 315–332.

    CAS  PubMed  Google Scholar 

  • Muller, A. F., Denton, D. A., McKinley, M. J., Tarjan, E., & Weisinger, R. S. (1983). Lowered cerebrospinal fluid sodium antagonizes effect of raised blood sodium on salt appetite. American Journal of Physiology, 244, R810–R814.

    CAS  PubMed  Google Scholar 

  • Nitabach, M. N., Schulkin, J., & Epstein, A. N. (1989). The medial amygdala is part of a mineralocorticoid-sensitive circuit controlling NaCl intake in the rat. Behavioral Brain Research, 35, 127–134.

    CAS  Google Scholar 

  • Oldfield, B. J., Ganten, D., & McKinley, M. J. (1989). An ultrastructural analysis of the distribution of angiotensin II in the rat brain. Journal of Neuroendocrinology, 1, 121–128.

    CAS  Google Scholar 

  • Olson, B. R., Drutarosky, M. D., Stricker, E. M., & Verbalis, J. G. (1991). Brain oxytocin receptors mediate corticotropin-releasing hormone-induced anorexia. American Journal of Physiology, 260, R448–R452.

    CAS  PubMed  Google Scholar 

  • Ondetti, M. A., Rubin, B., & Cushman, D. W. (1977). Design of specific inhibitors of angiotensin converting enzyme: A new class of orally active antihypertensive agents. Science, 196, 441–446.

    CAS  PubMed  Google Scholar 

  • Osborne, P. G., Blair-West, J. R., Denton, D. A., McBurnie, M., Tarjan, E., Williams, R. M. et al. (1990). Decreased cerebral sodium concentration and sodium appetite in BALB/c mice. American Journal of Physiology, 259, R741–R744.

    CAS  PubMed  Google Scholar 

  • Osborne, P. G., Denton, D. A., & Weisinger, R. S. (1987a). Effect of variation of the composition of CSF in the rat upon drinking of water and hypertonic NaCl solutions. Behavioral Neuroscience, 101, 371–377.

    CAS  PubMed  Google Scholar 

  • Osborne, P. G., Denton, D. A., & Weisinger, R. S. (1987b). The role of taste in rapid sodium satiation by sodium-deficient sheep. Appetite, 8, 91–99.

    CAS  PubMed  Google Scholar 

  • Park, R., Denton, D. A., McKinley, M. J., Pennington, G., & Weisinger, R. S. (1989). Intracerebroventricular saccharide infusions inhibit thirst induced by systemic hypertonicity. Brain Research, 493, 123–128.

    CAS  PubMed  Google Scholar 

  • Parkes, D. G., Coghlan, J. P., Weisinger, R. S., & Scoggins, B. A. (1988). The effects of intracerebroventricular infusion of atrial natriuretic factor in conscious sheep. Peptides, 9, 509–513.

    CAS  PubMed  Google Scholar 

  • Pastuskovas, C., & Vivas, L. (1997). Effect of intravenous captopril on c-Fos expression induced by sodium depletion in neurons of the lamina terminalis. Brain Research Bulletin, 44, 233–236.

    CAS  PubMed  Google Scholar 

  • Patacchini, R., & Maggi, C. A. (1995). Tachykinin receptors and receptor subtypes. Archives Internationales de Pharmacodynamie et de Therapie, 329, 161–184.

    CAS  PubMed  Google Scholar 

  • Patel, Y. C., Baquiran, G., Srikant, C. B., & Posner, B. I. (1986). Quantitative in vivo autoradiographic localization of [125I-Tyr11]somatostatin-14-and [Leu8,D-Trp22-125I-Tyr25]somatostatin-28-binding sites in rat brain. Endocrinology, 119, 2262–2269.

    CAS  PubMed  Google Scholar 

  • Pietranera, L., Saravia, F. E., McEwen, B. S., Lucas, L. L., Johnson, A. K., & De Nicola, A. F. (2001). Changes in Fos expression in various brain regions during deoxycorticosterone acetate treatment: Relation to salt appetite, vasopressin mRNA and the mineralocorticoid receptor. Neuroendocrinology, 74, 396–406.

    CAS  PubMed  Google Scholar 

  • Pompei, P., Lucas, L. R., Angeletti, S., Massi, M., & McEwen, B. S. (1997). In situ hybridization analysis of preprotachykinin-A and-B mRNA levels in short-term sodium depletion. Brain Research. Molecular Brain Research, 49, 149–156.

    CAS  PubMed  Google Scholar 

  • Pompei, P., Tayebaty, S. J., De Caro, G., Schulkin, J., & Massi, M. (1991). Bed nucleus of the stria terminalis: Site for the antinatriorexic action of tachykinins in the rat. Pharmacology, Biochemistry, and Behavior, 40, 977–981.

    CAS  PubMed  Google Scholar 

  • Price, J. L., Russchen, F. T., & Amaral, D. G. (1987). The limbic region. II: The amygdaloid complex. In A. Bjorklund, T. Hokfelt, & L. W. Swanson (Eds.), Integrated systems of the CNS, handbook of chemical neuroanatomy (Vol. 5, pp. 279–388). Amsterdam: Elsevier.

    Google Scholar 

  • Raulf, F., Perez, J., Hoyer, D., & Bruns, C. (1994). Differential expression of five somatostatin receptor subtypes, SSTR1-5, in the CNS and peripheral tissue. Digestion, 55, 46–53.

    CAS  PubMed  Google Scholar 

  • Reid, I. A. (1984). Actions of angiotensin II on the brain: Mechanisms and physiologic role. American Journal of Physiology, 246, F533–F543.

    CAS  PubMed  Google Scholar 

  • Reilly, J. J., Maki, R., Nardozzi, J., & Schulkin, J. (1994). The effects of lesions of the bed nucleus of the stria terminalis on sodium appetite. Acta Neurobiologiae Experimentalis, 54, 253–257.

    CAS  PubMed  Google Scholar 

  • Rice, K. K., & Richter, C. P. (1943). Increased sodium chloride and water intake of normal rats treated with desoxycorticosterone acetate. Endocrinology, 33, 106–115.

    CAS  Google Scholar 

  • Richter, C. P. (1936). Increased salt appetite in adrenalectomized rats. American Journal of Physiology, 115, 115–161.

    Google Scholar 

  • Richter, C. P. (1956). Salt appetite in mammals: Its dependence on instinct and metabolism. In M. Autuori (Ed.), L’Instinct dans le comportement des animaux et de l’homme (pp. 577–628). Paris: Masson.

    Google Scholar 

  • Richter, C. P., & Barelare, B., Jr. (1938). Nutritional requirements of pregnant and lactating rats studied by the self-selection method. American Journal of Physiology, 121, 185–188.

    Google Scholar 

  • Riftina, F., Angulo, J., Pompei, P., & McEwen, B. (1995). Regulation of angiotensinogen gene expression in the rat forebrain by adrenal steroids and relation to salt appetite. Brain Research. Molecular Brain Research, 33, 201–208.

    CAS  PubMed  Google Scholar 

  • Rivier, C., & Vale, W. (1983a). Effect of angiotensin II on ACTH release in vivo: Role of corticotropin-releasing factor. Regulatory Peptides, 7, 253–258.

    CAS  PubMed  Google Scholar 

  • Rivier, C., & Vale, W. (1983b). Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin. Nature, 305, 325–327.

    CAS  PubMed  Google Scholar 

  • Rouah-Rosilio, M., Orosco, M., & Nicolaidis, S. (1994). Serotoninergic modulation of sodium appetite in the rat. Physiology and Behavior, 55, 811–816.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E., Li, B. H., Rozelle, A. K., & Smith, G. C. (1994). Comparison of Fos-like immunoreactivity induced in rat brain by central injection of angiotensin II and carbachol. American Journal of Physiology, 267, R792–R798.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E., & Morian, K. R. (1999). Roles of aldosterone and angiotensin in maturation of sodium appetite in furosemide-treated rats. American Journal of Physiology, 276, R1453–R1460.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E., Rozelle, A., Riley, P. J., & Fregly, M. J. (1992). Effect of nonpeptide angiotensin receptor antagonists on water intake and salt appetite in rats. Brain Research Bulletin, 29, 389–393.

    CAS  PubMed  Google Scholar 

  • Saad, W. A., de Arruda Camargo, L. A., Antunes-Rodrigues, J., & Simoes, S. (1998). Effect of electrolytic and chemical lesion by ibotenic acid of the septal area on water and salt intake. Brain Research Bulletin, 47, 163–169.

    CAS  PubMed  Google Scholar 

  • Sagar, S. M., Sharp, F. R., & Curran, T. (1988). Expression of c-Fos protein in brain: Metabolic mapping at the cellular level. Science, 240, 1328–1331.

    CAS  PubMed  Google Scholar 

  • Sakai, R. R., Chow, S. Y., & Epstein, A. N. (1990). Peripheral angiotensin II is not the cause of sodium appetite in the rat. Appetite, 15, 161–170.

    CAS  PubMed  Google Scholar 

  • Sakai, R. R., & Epstein, A. N. (1990). Dependence of adrenalectomy-induced sodium appetite on the action of angiotensin II in the brain of the rat. Behavioral Neuroscience, 104, 167–176.

    CAS  PubMed  Google Scholar 

  • Sakai, R. R., Ma, L. Y., Zhang, D. M., McEwen, B. S., & Fluharty, S. J. (1996). Intracerebral administration of mineralocorticoid receptor antisense oligonucleotides attenute steroid-induced salt appetite in rats. Neuroendocrinology, 64, 425–429.

    CAS  PubMed  Google Scholar 

  • Sakai, R. R., McEwen, B. S., Fluharty, S. J., & Ma, L. Y. (2000). The amygdala: Site of genomic and nongenomic arousal of aldosterone-induced sodium intake. Kidney International, 57, 1337–1345.

    CAS  PubMed  Google Scholar 

  • Sakai, R. R., Nicolaidis, S., & Epstein, A. N. (1986). Salt appetite is suppressed by interference with angiotensin II and aldosterone. American Journal of Physiology, 251, R762–R768.

    CAS  PubMed  Google Scholar 

  • Saper, C. B., Standaert, D. G., Currie, M. G., Schwartz, D., Geller, D. M., & Needleman, P. (1985). Atriopeptin-immunoreactive neurons in the brain: Presence in cardiovascular regulatory areas. Science, 227, 1047–1049.

    CAS  PubMed  Google Scholar 

  • Saria, A. (1999). The tachykinin NK1 receptor in the brain: Pharmacology and putative functions. European Journal of Pharmacology, 375, 51–60.

    CAS  PubMed  Google Scholar 

  • Sato, M. A., Yada, M. M., & De Luca, L. A., Jr. (1996). Antagonism of the renin-angiotensin system and water deprivation-induced NaCl intake in rats. Physiology and Behavior, 60, 1099–1104.

    CAS  PubMed  Google Scholar 

  • Scalera, G., Spector, A. C., & Norgren, R. (1995). Excitotoxic lesions of the parabrachial nuclei prevent conditioned taste aversions and sodium appetite in rats. Behavioral Neuroscience, 109, 997–1008.

    CAS  PubMed  Google Scholar 

  • Schaller, G. B. (1963). The mountain gorilla. In Ecology and Behaviour (p. 149). Chicago: University of Chicago Press.

    Google Scholar 

  • Schelling, P., Hutchinson, J. S., Ganten, U., Sponer, G., & Ganten, D. (1976). Impermeability of the blood-cerebrospinal fluid barrier for angiotensin II in rats. Clinical Science and Molecular Medicine, 51, 399s–402s.

    CAS  Google Scholar 

  • Schoorlemmer, G. H., Johnson, A. K., & Thunhorst, R. L. (2001). Circulating angiotensin II mediates sodium appetite in adrenalectomized rats. American Journal of Physiology, 281, R723–R729.

    CAS  PubMed  Google Scholar 

  • Schreihofer, A. M., Anderson, B. K., Schiltz, J. C., Xu, L., Sved, A. F., & Stricker, E. M. (1999). Thirst and salt appetite elicited by hypovolemia in rats with chronic lesions of the nucleus of the solitary tract. American Journal of Physiology, 276, R251–R258.

    CAS  PubMed  Google Scholar 

  • Schulkin, J. (1991). Sodium hunger: The search for a salty taste. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Schulkin, J., Marini, J., & Epstein, A. N. (1989). A role for the medial region of the amygdala in mineralocorticoid-induced salt hunger. Behavioral Neuroscience, 103, 179–185.

    CAS  PubMed  Google Scholar 

  • Seeley, R. J., Galaverna, O., Schulkin, J., Epstein, A. N., & Grill, H. J. (1993). Lesions of the central nucleus of the amygdala II: Effects on intraoral NaCl intake. Behavioural Brain Research, 59, 19–25.

    CAS  PubMed  Google Scholar 

  • Shade, R. E., Blair-West, J. R., Carey, K. D., Madden, L. J., Weisinger, R. S., & Denton, D. A. (2002a). Synergy between angiotensin and aldosterone in evoking sodium appetite in baboons. American Journal of Physiology, 283, R1070–R1078.

    CAS  PubMed  Google Scholar 

  • Shade, R. E., Blair-West, J. R., Carey, K. D., Madden, L. J., Weisinger, R. S., Rivier, J. E. et al. (2002b). Ingestive responses to administration of stress hormones in baboons. American Journal of Physiology, 282, R10–R18.

    CAS  PubMed  Google Scholar 

  • Shapiro, R. E., & Miselis, R. R. (1985). The central neural connections of the area postrema of the rat. The Journal of Comparative Neurology, 234, 344–364.

    CAS  PubMed  Google Scholar 

  • Shelat, S. G., King, J. L., Flanagan-Cato, L. M., & Fluharty, S. J. (1999). Mineralocorticoids and glucocorticoids cooperatively increase salt intake and angiotensin II receptor binding in rat brain. Neuroendocrinology, 69, 339–351.

    CAS  PubMed  Google Scholar 

  • Sinnayah, P., Blair-West, J. R., McBurnie, M. I., McKinley, M. J., Oldfield, B. J., Rivier, J. et al. (2003). The effect of urocortin on ingestive behaviours and brain Fos immunoreactivity in mice. European Journal of Neuroscience, 18, 373–382.

    CAS  PubMed  Google Scholar 

  • Song, J. C., & White, C. M. (2002). Clinical pharmacokinetics and selective pharmacodynamics of new angiotensin converting enzyme inhibitors: An update. Clinical Pharmacokinetics, 41, 207–224.

    CAS  PubMed  Google Scholar 

  • Song, K. F., Zhuo, J. L., & Mendelsohn, F. A. (1991). Access of peripherally administered DuP 753 to rat brain angiotensin II receptors. British Journal of Pharmacology, 104, 771–772.

    CAS  PubMed  Google Scholar 

  • Spector, A. C., Scalera, G., Grill, H. J., & Norgren, R. (1995). Gustatory detection thresholds after parabrachial nuclei lesions in rats. Behavioral Neuroscience, 109, 939–954.

    CAS  PubMed  Google Scholar 

  • Spina, M., Merlo-Pich, E., Chan, R. K., Basso, A. M., Rivier, J., Vale, W. et al. (1996). Appetite-suppressing effects of urocortin, a CRF-related neuropeptide. Science, 273, 1561–1564.

    CAS  PubMed  Google Scholar 

  • Stellar, E., & Epstein, A. N. (1991). Neuroendocrine factors in salt appetite. Journal of Physiology and Pharmacology, 42, 345–355.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., Hosutt, J. A., & Verbalis, J. G. (1987). Neurohypophyseal secretion in hypovolemic rats: Inverse relation to sodium appetite. American Journal of Physiology, 252, R889–R896.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., Thiels, E., & Verbalis, J. G. (1991). Sodium appetite in rats after prolonged dietary sodium deprivation: A sexually dimorphic phenomenon. American Journal of Physiology, 260, R1082–R1088.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Verbalis, J. G. (1986). Interaction of osmotic and volume stimuli in regulation of neurohypophyseal secretion in rats. American Journal of Physiology, 250, R267–R275.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Verbalis, J. G. (1987). Central inhibitory control of sodium appetite in rats: Correlation with pituitary oxytocin secretion. Behavioral Neuroscience, 101, 560–567.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Verbalis, J. G. (1996). Central inhibition of salt appetite by oxytocin in rats. Regulatory Peptides, 66, 83–85.

    CAS  PubMed  Google Scholar 

  • Stumpf, W. E., & Sar, M. (1979). Glucocorticoid and mineralocorticoid hormone target sites in the brain: Autoradiographic studies with corticosterone, aldosterone and dexamethasone. In M. T. Jones, M.F., Dallman, & S. Chattopadhyay, (Eds.), Interaction within the brain pituitary-adrenocortical system (pp. 137–147). New York: Academic Press.

    Google Scholar 

  • Swanson, L. W., & Sawchenko, P. E. (1980). Paraventricular nucleus: A site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology, 31, 410–417.

    CAS  PubMed  Google Scholar 

  • Tarjan, E., Blair-West, J. R., de Caro, G., Denton, D. A., McBurnie, M. I., Massi, M. et al. (1990). Sodium and water intake of sheep, rabbits and cattle during ICV infusion of eledoisin. Pharmacology, Biochemsitry, and Behavior, 35, 823–828.

    CAS  Google Scholar 

  • Tarjan, E., Cox, P., Denton, D. A., McKinley, M. J., & Weisinger, R. S. (1986). The effect of local change in CSF [Na] in the anterior third ventricle on salt appetite. In G. De Caro, A.N. Epstein, & N. Massi (Eds.), The physiology of thirst and sodium appetite (pp. 473–478). New York: Plenum Press.

    Google Scholar 

  • Tarjan, E., & Denton, D. A. (1991). Sodium/water intake of rabbits following administration of hormones of stress. Brain Research Bulletin, 26, 133–136.

    CAS  PubMed  Google Scholar 

  • Tarjan, E., Denton, D. A., Ferraro, T., & Weisinger, R. S. (1992). Effect of CRF, ACTH and adrenal steroids on sodium intake and excretion of rabbits. Kidney International Supplement, 37, S97–S101.

    CAS  PubMed  Google Scholar 

  • Tarjan, E., Denton, D. A., & Weisinger, R. S. (1989). Cerebral sodium sensors in the sodium-deplete sheep. Brain Research, 500, 352–358.

    CAS  PubMed  Google Scholar 

  • Tarjan, E., Denton, D. A., & Weisinger, R. S. (1991). Corticotropin-releasing factor enhances sodium and water intake/excretion in rabbits. Brain Research, 542, 219–224.

    CAS  PubMed  Google Scholar 

  • Tarjan, E., Ferraro, T., May, C., & Weisinger, R. S. (1993). Converting enzyme inhibition in rabbits: Effects on sodium and water intake/excretion and blood pressure. Physiology and Behavior, 53, 291–299.

    CAS  PubMed  Google Scholar 

  • Thiels, E., Verbalis, J. G., & Stricker, E. M. (1990). Sodium appetite in lactating rats. Behavioral Neuroscience, 104, 742–750.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., Beltz, T. G., & Johnson, A. K. (1999). Effects of subfornical organ lesions on acutely induced thirst and salt appetite. American Journal of Physiology, 277, R56–R65.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., Ehrlich, K. J., & Simpson, J. B. (1990). Subfornical organ participates in salt appetite. Behavioral Neuroscience, 104, 637–642.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., & Fitts, D. A. (1994). Peripheral angiotensin causes salt appetite in rats. American Journal of Physiology, 267, R171–R177.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., Fitts, D. A., & Simpson, J. B. (1987). Separation of captopril effects on salt and water intake by subfornical organ lesions. American Journal of Physiology, 252, R409–R418.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., & Johnson, A. K. (1993). Effects of arterial pressure on drinking and urinary responses to intracerebroventricular angiotensin II. American Journal of Physiology, 264, R211–R217.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., Kirby, R. F., & Johnson, A. K. (1996). Role of renal nerves in sodium depletion-induced salt appetite. American Journal of Physiology, 271, R806–R812.

    CAS  PubMed  Google Scholar 

  • Thunhorst, R. L., Lewis, S. J., & Johnson, A. K. (1993). Role of arteria baroreceptor input on thirst and urinary responses to intracerebroventricular angiotensin II. American Journal of Physiology, 265, R591–R595.

    CAS  PubMed  Google Scholar 

  • Tordoff, M. G., Hughes, R. L., & Pilchak, D. M. (1993a). Different effects of three aldosterone treatments on plasma aldosterone and salt intake. Physiology and Behavior, 54, 129–134.

    CAS  PubMed  Google Scholar 

  • Tordoff, M. G., Pilchak, D. M., & Hughes, R. L. (1993b). Independence of salt intake induced by calcium deprivation from the renin-angiotensin-aldosterone system. American Journal of Physiology, 264, R492–R499.

    CAS  PubMed  Google Scholar 

  • Underwood K. A., McCutcheon, N. B., & Dudek, B. C. (1993). The effects of fludrocortisone acetate and deoxycorticosterone acetate on salt appetite in mice. Physiology and Behavior, 54, 671–675.

    CAS  PubMed  Google Scholar 

  • Vallee, S. M., Grillo, C. A., Gonzalez, S., Cosen-Binker, L., de Kloet, E. R., McEwen, B. S. et al. (1995). Further studies in deoxycorticosterone acetate treated rats: Brain content of mineralocorticoid and glucocorticoid receptors and effect of steroid antagonists on salt intake. Neuroendocrinology, 61, 117–124.

    CAS  PubMed  Google Scholar 

  • van der Kooy, D., & Koda, L. Y. (1983). Organization of the projections of a circumventricular organ: The area postrema in the rat. Journal of Comparative Neurology, 219, 328–338.

    PubMed  Google Scholar 

  • Vaughan, J., Donaldson, C., Bittencourt, J., Perrin, M. H., Lewis, K., Sutton, S. et al. (1995). Urocortin, a mammalian neuropeptide related to fish urotensin I and to corticotropin-releasing factor. Nature, 378, 287–292.

    CAS  PubMed  Google Scholar 

  • Verbalis, J. G., Blackburn, R. E., Hoffman, G. E., & Stricker, E. M. (1995). Establishing behavioral and physiological functions of central oxytocin: Insights from studies of oxytocin and ingestive behaviors. Advances in Experimental Medicine and Biology, 395, 209–225.

    CAS  PubMed  Google Scholar 

  • Vivas, L., & Chiaraviglio, E. (1987). Effect of agents which alter the Na transport on the sodium appetite in rats. Brain Research Bulletin, 19, 679–685.

    CAS  PubMed  Google Scholar 

  • Vivas, L., & Chiaraviglio, E. (1992). The effects of reversible lidocaine-induced lesion of the tissue surrounding the anterior ventral wall of the third ventricle on drinking in rats. Behavioral and Neural Biology, 57, 124–130.

    CAS  PubMed  Google Scholar 

  • Vivas, L., Chiaraviglio, E., & Carrer, H. F. (1990). Rat organum vasculosum laminae terminalis in vitro: Responses to changes in sodium concentration. Brain Research, 519, 294–300.

    CAS  PubMed  Google Scholar 

  • Vivas, L., Pastuskovas, C. V., & Tonelli, L. (1995). Sodium depletion induces Fos immunoreactivity in circumventricular organs of the lamina terminalis. Brain Research, 679, 34–41.

    CAS  PubMed  Google Scholar 

  • Watson, W. E. (1986). Actions of angiotensin on area postrema of the rat. Brain Research, 380, 216–228.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Burns, P., Denton, D. A., McKinley, M. J., Purcell, B. et al. (2000a). The inhibitory effect of hormones associated with stress on Na appetite of sheep. Proceedings of the National Academy of Sciences USA, 97, 2922–2927.

    CAS  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Burns, P., Denton, D. A., McKinley, M. J., & Tarjan, E. (1996). The role of angiotensin II in ingestive behaviour: A brief review of angiotensin II, thirst and Na appetite. Regulatory Peptides, 66, 73–81.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Burns, P., Denton, D. A., & Purcell, B. (2001). Cerebral Na concentration, Na appetite and thirst of sheep: Influence of somatostatin and losartan. American Journal of Physiology, 280, R686–R694.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Denton, D. A., Di Nicolantonio, R., McKinley, M. J., Osborne, P. G. et al. (1989). The role of brain ECF sodium and angiotensin II in sodium appetite. Acta Physiologica Polonica, 40, 293–300.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Denton, D. A., McBurnie, M., Ong, F., Tarjan, E. et al. (1990a). Effect of angiotensin-converting enzyme inhibitor on salt appetite and thirst of BALB/c mice. American Journal of Physiology, 259, R736–R740.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Denton, D. A., & Tarjan, E. (1991). Central administration of somatostatin suppresses the stimulated sodium intake of sheep. Brain Research, 543, 213–218.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Denton, D. A., & Tarjan, E. (1992). Central administration of atrial natriuretic peptide suppresses sodium and water intake of sheep. Brain Research, 579, 113–118.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Denton, D. A., & Tarjan, E. (1997a). Na depletion-induced Na appetite of sheep is independent of brain angiotensin II. Physiology and Behavior, 62, 43–51.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Blair-West, J. R., Denton, D. A., & Tarjan, E. (1997b). Role of brain angiotensin II in thirst and sodium appetite of sheep. American Journal of Physiology, 273, R187–R196.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., & Burns, P. (1999). Influence of centrally-administered peptides on thirst and sodium appetite. Protein and Peptide Letters, 6, 281–294.

    CAS  Google Scholar 

  • Weisinger, R. S., Burns, P., Colvill, L. M., Davern, P., Giles, M. E., Oldfield, B. J. et al. (2000b). Fos immunoreactivity in the lamina terminalis of adrenalectomized rats and effects of angiotension II type 1 receptor blockade or deoxycorticosterone. Neuroscience, 98, 167–180.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Burns, P., Eddie, L. W., & Wintour, E. M. (1993a). Relaxin alters the plasma osmolality-arginine vasopressin relationship in the rat. The Journal of Endocrinology, 137, 505–510.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Coghlan, J. P., Denton, D. A., Fan, J. S., Hatzikostas, S., McKinley, M. J. et al. (1980). ACTH-elicited sodium appetite in sheep. American Journal of Physiology, 239, E45–E50.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Considine, P., Denton, D. A., Leksell, L., McKinley, M. J., Mouw, D. R. et al. (1982). Role of sodium concentration of the cerebrospinal fluid in the salt appetite of sheep. American Journal of Physiology, 242, R51–R63.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Considine, P., Denton, D. A., & McKinley, M. J. (1979). Rapid effect of change in cerebrospinal fluid sodium concentration on salt appetite. Nature, 280, 490–491.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., & Denton, D. A. (2000). Salt appetite. In G. Fink (Ed.), Encyclopedia of stress (Vol. 3, pp. 384–392). New York: Academic Press.

    Google Scholar 

  • Weisinger, R. S., Denton, D. A., Di Nicolantonio, R., Hards, D. K., McKinley, M. J., Oldfield, B. et al. (1990b). Subfornical organ lesion decreases sodium appetite in the sodium-depleted rat. Brain Research, 526, 23–30.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., Di Nicolantonio, R., & McKinley, M. J. (1988). The effect of captopril or enalaprilic acid on the Na appetite of Na-deplete rats. Clinical and Experimental Pharmacology and Physiology, 15, 55–65.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., Di Nicolantonio, R., McKinley, M. J., Muller, A. F., & Tarjan, E. (1987a). Role of angiotensin in sodium appetite of sodium-deplete sheep. American Journal of Physiology, 253, R482–R488.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., Miselis, R. R., Park, R. G., & Simpson, J. B. (1993b). Forebrain lesions that disrupt water homeostasis do not eliminate the sodium appetite of sodium deficiency in sheep. Brain Research, 628, 166–178.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., Muller, A. F., & Tarjan, E. (1985a). Cerebrospinal fluid sodium concentration and salt appetite. Brain Research, 326, 95–105.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., Muller, A. F., & Tarjan, E. (1986a). Angiotensin and Na appetite of sheep. American Journal of Physiology, 251, R690–R699.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., & Nelson, J. F. (1978). ACTH induced sodium appetite in the rat. Pharmacology, Biochemistry, and Behavior, 8, 339–342.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., & Nelson, J. F. (1985b). Dehydration-induced sodium appetite in rats. Physiology and Behavior, 34, 45–50.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., Osborne, P. G., & Tarjan, E. (1987b). Decrease of brain extracellular fluid [Na] and its interaction with other factors influencing sodium appetite in sheep. Brain Research, 420, 135–143.

    CAS  PubMed  Google Scholar 

  • Weisinger, R. S., Denton, D. A., McKinley, M. J., Simpson, J. B., & Tarjan, E. (1986b). Cerebral Na sensors and Na appetite of sheep. In G. De Caro, A. N. Epstein, & N. Massi (Eds.), The physiology of thirst and sodium appetite (Vol. 105, pp. 485–490). New York: Plenum Press.

    Google Scholar 

  • Weisinger, R. S., & Woods, S. C. (1971). Aldosterone-elicited sodium appetite. Endocrinology, 89, 538–544.

    CAS  PubMed  Google Scholar 

  • Weiss, M. L., Moe, K. E., & Epstein, A. N. (1986). Interference with central actions of angiotensin II suppresses sodium appetite. American Journal of Physiology, 250, R250–R259.

    CAS  PubMed  Google Scholar 

  • Wilkins, L., & Richter, C. P. (1940). A great craving for salt by a child with cortico adrenal insufflciency. Journal of the American Medical Association, 114, 866.

    Google Scholar 

  • Wolf, G. (1967). Hypothalamic regulation of sodium intake: Relations to preoptic and tegmental function. American Journal of Physiology, 213, 1433–1438.

    CAS  PubMed  Google Scholar 

  • Wolf, G., & DiCara, L. V. (1974). Impairments in sodium appetite after lesions of gustatory thalamus: Replication and extension. Behavioral Biology, 10, 105–112.

    CAS  PubMed  Google Scholar 

  • Wolf, G., & Quartermain, D. (1967). Sodium chloride intake of adrenalectomized rats with lateral hypothalamic lesions. American Journal of Physiology, 212, 113–118.

    CAS  PubMed  Google Scholar 

  • Xu, Z., & Herbert, J. (1994). Regional suppression by water intake of c-Fos expression induced by intraventricular infusions of angiotensin II. Brain Research, 659, 157–168.

    CAS  PubMed  Google Scholar 

  • Xu, Z., Lane, J. M., Zhu, B., & Herbert, J. (1997). Dizocilpine maleate, an N-methyl-D-aspartate antagonist, inhibits dipsogenic responses and c-Fos expression induced by intracerebral infusion of angiotensin II. Neuroscience, 78, 203–214.

    CAS  PubMed  Google Scholar 

  • Yang, Z. F., & Epstein, A. N. (1991). Blood-borne and cerebral angiotensin and the genesis of salt intake. Hormones and Behavior, 25, 461–476.

    CAS  PubMed  Google Scholar 

  • Zardetto-Smith, A. M., Beltz, T. G., & Johnson, A. K. (1994). Role of the central nucleus of the amygdala and bed nucleus of the stria terminalis in experimentally-induced salt appetite. Brain Research, 645, 123–134.

    CAS  PubMed  Google Scholar 

  • Zhang, D. M., Epstein, A. N., & Schulkin, J. (1993). Medial region of the amygdala: Involvement in adrenal-steroid-induced salt appetite. Brain Research, 600, 20–26.

    CAS  PubMed  Google Scholar 

  • Zhang, D. M., Stellar, E., & Epstein, A. N. (1984). Together intracranial angiotensin and systemic mineralocorticoid produce avidity for salt in the rat. Physiology and Behavior, 32, 677–681.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Weisinger, R.S., Blair-West, J.R., Burns, P., Chen, N., Weisinger, H.S. (2004). Neurobiology of Sodium Appetite. In: Stricker, E.M., Woods, S.C. (eds) Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-48643-1_18

Download citation

  • DOI: https://doi.org/10.1007/0-306-48643-1_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48484-1

  • Online ISBN: 978-0-306-48643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics