Skip to main content

Studies of Food Intake: Lessons from Nontraditionally Studied Species

  • Chapter
Neurobiology of Food and Fluid Intake

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 14))

Conclusions

The examples given above across a wide range of species indicate that “experiments of nature” afford scientists of ingestive behavior opportunities to obtain a different, and frequently telling insight into the diversity of this behavior. We selected examples of species that naturally exhibit features of ingestive behavior that are often studied in the laboratory through significant and often highly invasive physiological manipulations performed on more traditional species (rats and mice) or via genetic engineering or selective breeding of these species. We hope that the reader of this trek through the control of food intake across diverse regions of the animal kingdom might more fully appreciate the wide range of feeding strategies and physiological responses of these nontraditionally studied species. Although it is often the view that the ingestive behavior responses of laboratory rats and mice are the “gold standard” by which all others should be compared, it could be just as easily argued that these domesticated and inbred animals are the oddities because of the lack of evolutionary pressures shaping their ingestive and other behaviors/physiology during the last ∼100 years of captive breeding. As always, perspective is in the eye of the beholder.

In summary, several points can be drawn from the food intake responses of the species reviewed here in terms of the use of these various species for research on ingestive behaviors: (1) there are naturally occurring fasts of prolonged duration or more modest reductions in food intake that could offer insight into satiety mechanisms, (2) glucoprivation and lipoprivation are not uniformly stimulators of food intake, (3) there are naturally occurring instances of resistance and susceptibility to HFD-induced obesity that seem to make sense given the animals’behavioral ecology, and (4) perhaps a reason for the ever-expanding list of peptides that stimulate or inhibit food intake is that some may function to draw animals to or away from food (appetitive) (i.e., by affecting foraging and other food-seeking behaviors), rather than affecting ingestive (consummatory) behavior directly. Thus, by studying the differences in physiological responses to the same experimental treatment across a wide range of species, we are able to gain valuable perspective on the organization of energy balance systems, the relative importance of specific sensory input signals, as well as other environmental factors that may modify food ingestion in real-world situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahima, R. S., Prabakaran, D., Mantzoros, C. S., Qu, D., Lowell, B. B., Maratos-Flier, E. et al. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382, 250–252.

    CAS  PubMed  Google Scholar 

  • Alonso-Alvarez, C., & Ferrer, M. (2001). A biochemical study of fasting, subfeeding, and recovery processes in yellow-legged gulls. Physiological and Biochemical Zoology, 74, 703–713.

    CAS  PubMed  Google Scholar 

  • Ambid, L., Castan, I., Atgie, C., & Nibbelink, M. (1990). Food intake and peripheral adrenergic activity in a hibernating rodent, the garden dormouse. Comparative Biochemistry and Physiology A, 97, 361–366.

    Google Scholar 

  • Angel, I., & Taranger, M. A. (1991). Impairment of glucostatic, adrenergic and serotoninergic feeding parallels the lack of glucoprivic signals in the golden hamster. Brain Research Bulletin, 27, 353–358.

    CAS  PubMed  Google Scholar 

  • Atcha, Z., Cagampang, F. R., Stirland, J. A., Morris, I. D., Brooks, A. N., Ebling, F. J. et al. (2000). Leptin acts on metabolism in a photoperiod-dependent manner, but has no effect on reproductive function in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology, 141, 4128–4135.

    CAS  PubMed  Google Scholar 

  • Baker, R. A. (1955). The effects of repeated deprivation experiences on feeding behavior. Journal of Comparative and Physiological Psychology, 48, 37–42.

    CAS  PubMed  Google Scholar 

  • Baldwin, B. A., Cooper, T. R., & Parrott, R. F. (1983). Intravenous cholecystokiin octapeptide in pigs reduces operant responding for food, water, sucrose solution or radiant heat. Physiology and Behavior, 30, 399–403.

    CAS  PubMed  Google Scholar 

  • Barnes, D. S., & Mrosovsky, N. (1974). Body weight regulation in ground squirrels and hypothalamically lesioned rats: Slow and sudden set point changes. Physiology and Behavior, 12, 251–258.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J. (1990). Species-specific changes in the metabolic control of food intake: Integrating the animal with its environment. International Journal of Obesity, 14, l15–123.

    Google Scholar 

  • Bartness, T. J. (1997). Food hoarding is increased by pregnancy, lactation and food deprivation in Siberian hamsters. American Journal of Physiology, 272, R118–R125.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., & Clein, M. R. (1994). Effects of food deprivation and restriction, and metabolic blockers on food hoarding in Siberian hamsters. American Journal of Physiology, 266, R1111–R1117.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., & Day, D. E. (2003). Food hoarding: A quintessential anticipatory appetitive behavior. In S. J. Fluharty, & H. J. Grill (Eds). New York: Academic Press.

    Google Scholar 

  • Bartness, T. J., McGriff, W. R., & Maharaj, M. P. (1991). Effect of diabetes and insulin on photoperiodic responses in Siberian hamsters. Physiology and Behavior, 49, 613–620.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., Morley, J. E., & Levine, A. S. (1986). Photoperiod-peptide interactions in the energy intake of Siberian hamsters. Peptides, 7, 1079–1085.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., Morley, J. E., & Levine, A. S. (1995). Effects of food deprivation and metabolic fuel utilization on the photoperiodic control of food intake in Siberian hamsters. Physiology and Behavior, 57, 61–68.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., Ruby, N. F., & Wade, G. N. (1984). Dietary obesity in exercising or cold-exposed Syrian hamsters. Physiology and Behavior, 32, 85–90.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., & Wade, G. N. (1984). Photoperiodic control of body weight and energy metabolism in Syrian hamsters (Mesocricetus auratus): Role of pineal gland, melatonin, gonads, and diet. Endocrinology, 114, 492–498.

    CAS  PubMed  Google Scholar 

  • Bartness, T. J., & Wade, G. N. (1985). Photoperiodic control of seasonal body weight cycles in hamsters. Neuroscience and Biobehavioral Reviews, 9, 599–612.

    CAS  PubMed  Google Scholar 

  • Baskin, D. G., Latteman, D. F., Seeley, R. J., Woods, S. C., Porte, D. Jr., & Schwartz, M. W. (1999). Insulin and leptin: Dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Research, 848, 114–123.

    CAS  PubMed  Google Scholar 

  • Beck, B., Jhanwar-Uniyal, M., Burlet, A., Chapleur-Chateau, M., Leibowitz, S. F., & Burlet, C. (1990). Rapid and localized alterations of neuropeptide Y (NPY) in discrete hypothalamic nuclei with feeding status. Brain Research, 528, 245–249.

    CAS  PubMed  Google Scholar 

  • Bernard, S. F., Mioskowski, E., & Groscolas, R. (2002). Blockade of fatty acid oxidation mimics phase II-phase III transition in a fasting bird, the king penguin. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283, R144–R152.

    CAS  PubMed  Google Scholar 

  • Berthoud, H. R. (2002). Multiple neural systems controlling food intake and body weight. Neuroscience and Biobehavioral Reviews, 26, 393–428.

    PubMed  Google Scholar 

  • Berthoud, H. R., & Mogenson, G. J. (1977). Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-D-glucose. American Journal of Physiology, 233, R127–R133.

    CAS  PubMed  Google Scholar 

  • Billington, C. J., Morley, J. E., Levine, A. S., & Gerritsen, G. C. (1984). Feeding systems in Chinese hamsters. American Journal of Physiology, 2447, R405–R411.

    Google Scholar 

  • Blevins, J. E., Stanley, B. G., & Reidelberger, R. D. (2000). Brain regions where cholecystokinin suppresses feeding in rats. Brain Research, 860, 1–10.

    CAS  PubMed  Google Scholar 

  • Blundell, J. E., Lawton, C. L., Cotton, J. R., & Macdiarmid, J. I. (1996). Control of human appetite: Implications for the intake of dietary fat. Annual Review of Nutrition, 16, 285–319.

    CAS  PubMed  Google Scholar 

  • Bodkin, N. L., Nicolson, M., Ortmeyer, H. K., & Hansen, B. C. (1996). Hyperleptinemia: Relationship to adiposity and insulin resistance in the spontaneously obese rhesus monkey. Hormone and Metablic Research, 28, 674–678.

    CAS  Google Scholar 

  • Borer, K. T., Allen, E. R., Smalley, R. E., Lundell, L., & Stockton, J. (1985). Recovery from energy deficit in golden hamsters. American Journal of Physiology, 248, R439–R446.

    CAS  PubMed  Google Scholar 

  • Borer, K. T., Rowland, N. E., Mirow, A., Borer, R. C., Jr., & Kelch, R. P. (1979). Physiological and behavioral responses to starvation in the golden hamster. American Journal of Physiology, 236, E105–E112.

    CAS  PubMed  Google Scholar 

  • Borker, A. S., & Gogate, M. G. (1981). Hunger versus hoarding and body weight in rats. Indian Journal of Physiology and Pharmacology, 25, 365–368.

    CAS  PubMed  Google Scholar 

  • Boss-Williams, K. A., & Bartness, T. J. (1996). NPY stimulation of food intake in Siberian hamsters is not photoperiod dependent. Physiology and Behavior, 59, 157–164.

    CAS  PubMed  Google Scholar 

  • Boswell, T., Millam, J. R., Li, Q., & Dunn, I. C. (1998). Cellular localization of neuropeptide Y mRNA and peptide in the brain of the Japanese quail and domestic chicken. Cell Tissue Research, 293, 31–38.

    CAS  PubMed  Google Scholar 

  • Boyer, B. B., Ormseth, O. A., Buck, L., Nicolson, M., Pelleymounter, M. A., & Barnes, B. M. (1997). Leptin prevents posthibernation weight gain but does not reduce energy expenditure in arctic ground squirrels. Comparative Biochemistry and Physiology. Part C, Pharmacology Toxicology and Endocrinology, 118, 405–412.

    CAS  Google Scholar 

  • Broberger, C., & Hokfelt, T. (2001). Hypothalamic and vagal neuropeptide circuitries regulating food intake. Physiology and Behavior, 74, 669–682.

    CAS  PubMed  Google Scholar 

  • Browne, S. A., & Borer, K. T. (1978). Basis for the exercise-induced hyperphagia in adult hamsters. Physiology and Behavior, 20, 553–557.

    CAS  PubMed  Google Scholar 

  • Bungo, T., Shimojo, M., Masuda, Y., Tachibanab, T., Tanaka, S., Sugahara, K. et al. (1999). Intracerebroventricular administration of mouse leptin does not reduce food intake in the chicken. Brain Research, 817, 196–198.

    CAS  PubMed  Google Scholar 

  • Cabanac, M., & Gosselin, C. (1996). Ponderostat: Hoarding behavior satisfies the condition for a lipostat in the rat. Appetite, 27, 251–261.

    CAS  PubMed  Google Scholar 

  • Calhoun, J. B. (1962). The ecology and sociology of the Norway rat. Washington, DC: US Government Printing Office.

    Google Scholar 

  • Campfield, L. A., Smith, F. J., Guisez, Y., Devos, R., & Burn, P. (1995). Recombinant mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science, 269, 546–549.

    CAS  PubMed  Google Scholar 

  • Castellini, M. A., Costa, D. P., & Huntley, A. C. (1987). Fatty acid metabolism in fasting elephant seal pups. Journal of Comparative Physiology [B], 157, 445–449.

    CAS  Google Scholar 

  • Chen, Y., Ono, F., Yoshida, T., & Yoshikawa, Y. (2002). Relationship between body weight and hematological and serum biochemical parameters in female cynomolgus monkeys (Macaca fascicularis). Experimental Animals, 51, 125–131.

    CAS  PubMed  Google Scholar 

  • Cherel, Y., Charrassin, J. B., & Challet, E. (1994). Energy and protein requirement for molt in the king penguin Aptenodytes patagonicus. American Journal of Physiology, 266, R1182–R1188.

    CAS  Google Scholar 

  • Cherel, Y., Leloup, J., & Le Maho, Y. (1988). Fasting in king penguin. II. Hormonal and metabolic changes during molt. American Journal of Physiology, 254, R178–R184.

    CAS  PubMed  Google Scholar 

  • Cherel, Y., Robin, J. P., Walch, O., Karmann, H., Netchitailo, P., & Le Maho, Y. (1988). Fasting in king penguin. I. Hormonal and metabolic changes during breeding. American Journal of Physiology, 254, R170–R177.

    CAS  PubMed  Google Scholar 

  • Chlouverakis, C., & Hojnicki, D. (1974). Lipectomy in obese hyperglycemic mice (ob/ob). Metabolism, 23, 133–137.

    CAS  PubMed  Google Scholar 

  • Choi, Y. H., Furuse, M., Satoh, S., & Okumura, J. (1994). Endogenous cholesystokinin is not a major regulatorn of food intake in the chicken. Journal of Comparative Physiology B, 164, 425–429.

    CAS  Google Scholar 

  • Clark, J. T., Kalra, P. S., Crowley, W. R., & Kalra, S. P. (1984). Neuropeptide Y and human pancreatic polypeptide stimulate feeding behavior in rats. Endocrinology, 115, 427–429.

    CAS  PubMed  Google Scholar 

  • Clark, J. T., Kalra, P. S., & Kalra, S. P. (1985). Neuropeptide Y stimulates feeding but inhibits sexual behavior in rats. Endocrinology, 117, 2435–2442.

    CAS  PubMed  Google Scholar 

  • Clarke, I. J. (2001). Sex and season are major determinants of voluntary food intake in sheep. Reproduction, Fertility, and Development, 13, 577–582.

    CAS  PubMed  Google Scholar 

  • Clarke, I. J., Rao, A., Chilliard, Y., Delavaud, C., & Lincoln, G. A. (2003). Photoperiod effects on gene expression for hypothalamic appetite-regulating peptides and food intake in the ram. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 284, R101–R115.

    CAS  PubMed  Google Scholar 

  • Concannon, P., Levac, K., Rawson, R., Tennant, B., & Bensadoun, A. (2001). Seasonal changes in serum leptin, food intake and body weight in photoentrained woodchucks. American Journal of Physiology, 281, R951–R959.

    CAS  PubMed  Google Scholar 

  • Corp, E. S., Greco, B., Powers, J. B., Bivens, C. L., & Wade, G. N. (2001). Neuropeptide Y inhibits estrous behavior and stimulates feeding via separate receptors in Syrian hamsters. American Journal of Physiology, 280, R1061–R1068.

    CAS  PubMed  Google Scholar 

  • Corp, E. S., McQuade, J., Krasnicki, S., & Conze, D. B. (2001). Feeding after fourth ventricular administration of neuropeptide Y receptor agonists in rats. Peptides, 22, 493–499.

    CAS  PubMed  Google Scholar 

  • Covasa, M., & Forbes, J. M. (1994). Effects of the CCK receptor antagonist MK-329 on food intake in broiler chickens. Pharmacology, Biochemistry, and Behavior, 48, 479–486.

    CAS  PubMed  Google Scholar 

  • Craig, W. (1918). Appetites and aversions as constituents of instincts. The Biological Bulletin, 34, 91–107.

    Google Scholar 

  • Cusin, I., Dryden, S., Wang, Q., Rohner-Jeanrenaud, F., Jeanrenaud, B., & Williams, G. (1995). Effect of sustained physiological hyperinsulinaemia on hypothalamic neuropeptide Y and NPY mRNA levels in the rat. Journal of Neuroendocrinology, 7, 193–197.

    CAS  PubMed  Google Scholar 

  • Dark, J., Forger, N. G., Stern, J. S., & Zucker, I. (1985). Recovery of lipid mass after removal of adipose tissue in ground squirrels. American Journal of Physiology, 249, R73–R78.

    CAS  PubMed  Google Scholar 

  • Dark, J., Zucker, I., & Wade, G. N. (1983). Photoperiodic regulation of body mass, food intake, and reproduction in meadow voles. American Journal of Physiology, 245, R334–R338.

    CAS  PubMed  Google Scholar 

  • Davis, D. E. (1976). Hibernation and circannual rhythms of food consumption in marmots and ground squirrels. The Quarterly Review of Biology, 51, 477–514.

    CAS  PubMed  Google Scholar 

  • Davis, D. E., & Finnie, E. P. (1975). Entrainment of circannual rhythm in weight of woodchucks. Journal of Mammalogy, 56, 199–203.

    CAS  PubMed  Google Scholar 

  • Day, D. E., & Bartness, T. J. (2001). Foraging effort alters body fat and food hoarding by Siberian hamsters (Phodopus sungorus). The Journal of Experimental Zoology, 289, 162–171.

    CAS  PubMed  Google Scholar 

  • Day, D. E., & Bartness, T. J. (2003). Fasting-induced increases in food hoarding are dependent on the foraging level. Physiology and Behavior, 78, 655–668.

    CAS  PubMed  Google Scholar 

  • Day, D. E., & Bartness, T. J. (2004). AgRP increases food hoarding, but not food intake by Siberian hamsters. American Journal of Physiology, 286, R38–R45.

    CAS  PubMed  Google Scholar 

  • Day, D. E., Mintz, E. M., & Bartness, T. J. (1999). Diet self-selection and food hoarding after food deprivation by Siberian hamsters. Physiology and Behavior, 68, 187–194.

    CAS  PubMed  Google Scholar 

  • de Pedro, N., Lopez-Patino, M. A., Guijarro, A. I., Pinillos, M. L., & Delgado, M. J., & Alonso-Bedate, M. (2000). NPY receptors and opioidergic system are involved in NPY-induced feeding in goldfish. Peptides, 21, 1495–1502.

    PubMed  Google Scholar 

  • Della-Fera, M. A., & Baile, C. A. (1980). CCK-octapeptide injected in CSF decreases meal size and daily food intake in sheep. Peptides, 1, 51–54.

    CAS  PubMed  Google Scholar 

  • Demas, G. E., & Bartness, T. J. (1999). Effects of food deprivation and metabolic fuel utilization on food hoarding by jirds (Meriones shawi). Physiology and Behavior, 67, 243–248.

    CAS  PubMed  Google Scholar 

  • Demas, G. E., Bowers, R. R., Bartness, T. J., & Gettys, T. W. (2002). Photoperiodic regulation of gene expression in brown and white adipose tissue of Siberian hamsters (Phodopus sungorus). American Journal of Physiology, 282, R114–R121.

    CAS  PubMed  Google Scholar 

  • Denbow, D. M., Meade, S., Robertson, A., McMurtry, J. P., Richards, M., & Ashwell, C. (2000). Leptininduced decrease in food intake in chickens. Physiology and Behavior, 69, 359–362.

    CAS  PubMed  Google Scholar 

  • Dewasmes, G., LeMaho, Y., Cornet, A., & Groscolas, R. (1980). Resting metabolic rate and cost of locomotion in long-term fasting emperor penguins. Journal of Applied Physiology, 49, 888–896.

    CAS  PubMed  Google Scholar 

  • DiBattista, D. (1982). Effects of 5-thioglucose on feeding and glycemia in the hamster. Physiology and Behavior, 29, 803–806.

    CAS  PubMed  Google Scholar 

  • DiBattista, D. (1983). Food deprivation and insulin-induced feeding in the hamster. Physiology and Behavior, 30, 683–687.

    CAS  PubMed  Google Scholar 

  • DiBattista, D. (1984). Characteristics of insulin-induced hyperphagia in the golden hamster. Physiology and Behavior, 32, 381–387.

    CAS  PubMed  Google Scholar 

  • DiBattista, D. (1987). Dietary self-selection of golden hamsters in response to acute food deprivation and chronic food restriction. Behavioral Neuroscience, 101, 568–575.

    CAS  PubMed  Google Scholar 

  • DiBona, G. F. (2002) Neuropeptide Y. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 282, R635–R636.

    CAS  PubMed  Google Scholar 

  • Drazen, D. L., Demas, G. E., & Nelson, R. J. (2001). Leptin effects on immune function and energy balance are photoperiod dependent in Siberian hamsters Phodopus sungorus. Endocrinology, 142, 2768–2775.

    CAS  PubMed  Google Scholar 

  • Drazen, D. L., Kriegsfeld, L. J., Schneider, J. E., Nelson, R. J. (2000) Leptin, but not immune function, is linked to reproductive responsiveness to photoperiod. American Journal of Physiology, 278, R1401–R1407.

    CAS  PubMed  Google Scholar 

  • Dridi, S., Raver, N., Gussakovsky, E. E., Derouet, M., Picard, M., Gertler, A. et al. (2000). Biological activities of recombinant chicken leptin C4S analog compared with unmodified leptins. American Journal of Physiology. Endocrinology and Metabolism, 279, E116–E123.

    CAS  PubMed  Google Scholar 

  • Dyer, C. J., Simmons, J. M., Matteri, R. L., & Keisler, D. H. (1997a). Effects of an intravenous injection of NPY on leptin and NPY-Y1 receptor mRNA expression in ovine adipose tissue. Domestic Animal Endocrinology, 14, 325–333.

    CAS  PubMed  Google Scholar 

  • Dyer, C. J., Simmons, J. M., Matteri, R. L., Keisler, & D. H. Leptin (1997b). receptor mRNA is expressed in ewe anterior pituitary and adipose tissues and is differentially expressed in hypothalamic regions of well-fed and feed-restricted ewes. Domestic Animal Endocrinology, 14, 119–128.

    CAS  PubMed  Google Scholar 

  • Dynes, R. A., Poppi, D. P., Barrell, G. K., & Sykes, A. R. (1998). Elevation of feed intake in parasiteinfected lambs by central administration of a cholecystokinin receptor antagonist. British Journal of Nutrition, 79, 47–54.

    CAS  PubMed  Google Scholar 

  • Ebenezer, I. S., de la, R. C., & Baldwin, B. A. (1990). Effects of the CCK receptor antagonist MK-329 on food intake in pigs. Physiology and Behavior, 47, 145–148.

    CAS  PubMed  Google Scholar 

  • Ebihara, K., Ogawa, Y., Katsuura, G., Numata, Y., Masuzaki, H., Satoh, N. et al. (1999). Involvement of agouti-related protein, an endogenous antagonist of hypothalamic melanocortin receptor, in leptin action. Diabetes, 48, 2028–2033.

    CAS  PubMed  Google Scholar 

  • El-Bakry, H. A., Plunkett, S. S., & Bartness, T. J. (1999). Photoperiod, but not a high fat diet, alters body fat in Shaw’s jird. Physiology and Behavior, 68, 87–91.

    CAS  PubMed  Google Scholar 

  • Elmquist, J. K. (2001). Hypothalamic pathways underlying the endocrine, autonomic, and behavioral effects of leptin. International Journal of Obesity and Related Metabolic Disorders, 25(Suppl. 5), S78–S82.

    CAS  PubMed  Google Scholar 

  • Even, P., & Nicolaidis, S. (1985). Spontaneous and 2DG induced metabolic changes and feeding: The ischymetric hypothesis. Brain Research Bulletin, 15, 429–435.

    CAS  PubMed  Google Scholar 

  • Faust, I. M., Johnson, P. R., & Hirsch, J. (1977). Adipose tissue regeneration following lipectomy. Science, 197, 391–393.

    CAS  PubMed  Google Scholar 

  • Faust, I. M., Johnson, P. R., Stern, J. S., & Hirsch, J. (1978). Diet-induced adipocyte number increase in adult rats: A new model of obesity. American Journal of Physiology, 235, E279–E286.

    CAS  PubMed  Google Scholar 

  • Fine, J. B., & Artness, T. J. (1996). Daylength and body mass affect diet self-selection by Siberian hamsters. Physiology and Behavior, 59 1039–1050.

    CAS  PubMed  Google Scholar 

  • Fishman, R. B., & Dark, J. (1987). Sensory innervation of white adipose tissue. American Journal of Physiology, 253, R942–R944.

    CAS  PubMed  Google Scholar 

  • Florant, G. L., Richardson, R. D., Mahan, S., Singer, L., & Woods, S. C. (1991). Seasonal changes in CSF insulin levels in marmots: Insulin may not be a satiety signal for fasting in winter. American Journal of Physiology, 260, R712–R716.

    CAS  PubMed  Google Scholar 

  • Florant, G. L., Tokuyama, K., & Rintoul, D. A. (1989). Carbohydrate and lipid utilization in hibernators. In A. Malan, & B. Canguilhem (Eds). Living in the cold, II (pp. 137–145). London: John Libbey Eurotext.

    Google Scholar 

  • Flynn, F. W., & Grill, H. J. (1983). Insulin elicits ingestion in decerebrate rats. Science, 221, 188–190.

    CAS  PubMed  Google Scholar 

  • Flynn, F. W., & Grill, H. J. (1985). Fourth ventricular phlorizin dissociates feeding from hyperglycemia in rats. Brain Research, 341, 331–336.

    CAS  PubMed  Google Scholar 

  • Frederich, R. C., Lollmann, B., Hamann, A., Napolitano-Rosen, A., Kahn, B. B., Lowell, B. B. et al. (1995). Expression of ob mRNA and its encoded protein in rodents: Impact of nutrition and obesity. Journal of Clinical Investigation, 96, 1658–1663.

    CAS  PubMed  Google Scholar 

  • Fredholm, B. B. (1985). Nervous control of circulation and metabolism in white adipose tissue. In: A. Cryer, & R. L. R. Van (Eds.) New perspectives in adipose tissue: Structure, function and development (pp. 45–64). Bston: Butterworth.

    Google Scholar 

  • Friedman, J. M. (1998). Leptin, leptin receptors, and the control of body weight. Nutrition Review, 56, S38–S46.

    CAS  Google Scholar 

  • Friedman, M. I. (1995). Control of energy intake by energy metabolism. American Journal of Clinical Nutrition, 62, 1096S–1100S.

    CAS  PubMed  Google Scholar 

  • Friedman, M. I., Ramirez, I., Bowden, C. R., & Tordoff, M. G. (1990). Fuel partitioning and food intake: Role for mitochondrial fatty acid transport. American Journal of Physiology, 258, R216–R221.

    CAS  PubMed  Google Scholar 

  • Friedman, M. I., & Tordoff, M. G. (1986). Fatty acid oxidation and glucose utilization interact to control food intake in rats. American Journal of Physiology, 251, R840–R845.

    CAS  PubMed  Google Scholar 

  • Galster, W., & Morrison, P. (1976). Seasonal changes in body composition of the arctic ground squirrel, Citellus undulatus. Canadian Journal of Zoology, 54, 74–78.

    CAS  Google Scholar 

  • Gauthier-Klerc, M., LeMaho, Y., Clerquin, Y., Drault, S., & Handrich, Y. (2000). Penguin fathers preserve food for their chicks. Nature, 408, 928–929.

    Google Scholar 

  • Gavrilova, O., Leon, L. R., Marcus-Samuels, B., Mason, M. M., Castle, A. L., Refetoff, S. et al. (1999). Torpor in mice is induced by both leptin-dependent and-independent mechanisms. Proceedings of the National Academy of Sciences, USA, 96, 14623–14628.

    CAS  Google Scholar 

  • Gettys, T. W., Schanbacher, B. D., & Taylor, I. L. (1989). An assessment of the interaction between photoperiod and sex phenotype in relation to appetite development in sheep. Livestock Production Science, 22, 283–293.

    Google Scholar 

  • Gibbs, J., & Smith, G. P. (1982). Gut peptides and food in the gut produce similar satiety effects. Peptides, 3, 553–557.

    CAS  PubMed  Google Scholar 

  • Gibbs, J., Young, R. C., & Smith, G. P. (1973). Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology, 84, 488–495.

    CAS  PubMed  Google Scholar 

  • Gil, K. M., & Friedman, M. I. (1982). Caloric compensation following insulin administration in rats. Physiology and Behavior, 29, 847–855.

    CAS  PubMed  Google Scholar 

  • Granneman, J., & Wade, G. N. (1982). Effects of photoperiod and castration on post-fast food intake and body weight gain in golden hamsters. Physiology and Behavior, 28, 847–850.

    CAS  PubMed  Google Scholar 

  • Grill, H. J., Schwartz, M. W., Kaplan, J. M., Foxhall, J. S., Breininger, J., & Baskin, D. G. (2002). Evidence that the caudal brainstem is a target for the inhibitory effect of leptin on food intake. Endocrinology 143, 239–246.

    CAS  PubMed  Google Scholar 

  • Groscolas, R., & Cherel, Y. (1992). How to molt while fasting in the cold: The metabolic and hormonal adapations of the emperor and king penguins. Ornis Scandinavican, 23, 328–334.

    Google Scholar 

  • Groscolas, R., & Clement, G. (1976). Utilisation des reserves energetiques au cours due jenune du manchot empereur, aptenodytes fosteri. Comptes rendus de l’Academie des Sciences Paris Serie D, 282, 297–300.

    CAS  Google Scholar 

  • Groscolas, R., & Robin, J. P. (2001). Long-term fasting and re-feeding in penguins. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 128, 645–655.

    CAS  Google Scholar 

  • Halaas, J. L., Gajiwala, K. S., Maffei, M., Cohen, S. L., Chait, B. T., Rabinowitz, D. et al. (1995). Weightreducing effects of the plasma protein encoded by the obese gene. Science, 269, 543–546.

    CAS  PubMed  Google Scholar 

  • Hamilton, J. M., Mason, P. W., McElroy, J. F., & Wade, G. N. (1986). Dissociation of sympathetic and thermogenic activity in brown fat of Syrian hamsters. American Journal of Physiology, 250, R389–R395.

    CAS  PubMed  Google Scholar 

  • Hamilton, J. M., & Wade, G. N. (1988).Lipectomy does not impair fattening induced by short photoperiods or high-fat diets in female Syrian hamsters. Physiology and Behavior, 43, 85–92.

    CAS  PubMed  Google Scholar 

  • Harland, D., Bennett, T., & Gardiner, S. M. (1988). Cardiovascular actions of neuropeptide Y in the hypothalamic paraventricular nucleus of conscious Long Evans and Brattleboro rats. Neuroscience Letters, 85, 121–123.

    Google Scholar 

  • Harris, R. B., Zhou, J., Redmann, S. M., Jr., Smagin, G. N., Smith, S. R., Rodgers, E. et al. (1998). A leptin dose-response study in obese (ob/ob) and lean (_/?) mice. Endocrinology, 139, 8–19.

    CAS  PubMed  Google Scholar 

  • Harris, R. B. S. (2000). Leptin-much more than a satiety signal. Annual Review of Nutrition, 20, 45–75.

    CAS  PubMed  Google Scholar 

  • Harris, R. B. S., Hausman, D. B., & Bartness, T. J. (2002). Compensation for partial lipectomy in mice with genetic alterations of leptin and its receptor subtypes. American Journal of Physiology, 283, R1094–R1103.

    PubMed  Google Scholar 

  • Henry, B. A., Goding, J. W., Alexander, W. S., Tilbrook, A. J., Canny, B. J., Dunshea, F. et al. (1999). Central administration of leptin to ovariectomized ewes inhibits food intake without affecting the secretion of hormones from the pituitary gland: Evidence for a dissociation of effects on appetite and neuroendcrine function. Endocrinology, 140, 1175–1182.

    CAS  PubMed  Google Scholar 

  • Henry, B. A., Goding, J. W., Tilbrook, A. J., Dunshea, F. R., & Clarke, I. J. (2001). Intracerebroventricular infusion of leptin elevates the secretion of luteinising hormone without affecting food intake in long-term food-restricted sheep, but increases growth hormone irrespective of bodyweight. Journal of Endocrinology, 168, 67–77.

    CAS  PubMed  Google Scholar 

  • Hiebert, S. M., Thomas, E. M., Lee, T. M., Pelz, K. M., Yellon, S. M., & Zucker, I. (2000). Photic entrainment of circannual rhythms in golden-mantled ground squirrels: Role of the pineal gland. Journal of Biological Rhythms, 15, 126–134.

    CAS  PubMed  Google Scholar 

  • Hill, B., Ralevic, V., Crowe, R., & Burnstock, G. (1996). Innervation and nitric oxide modulation of mesenteric arteries of the Golden hamster. European Journal of Pharmacology, 317, 275–283.

    CAS  PubMed  Google Scholar 

  • Himick, B. A., & Peter, R. E. (1994). CCK/gastrin-like immunoreactivity in brain and gut, and CCK suppression of feeding in goldfish. American Journal of Physiology, 267, R841–R851.

    CAS  PubMed  Google Scholar 

  • Hoffman, R. A., Davidson, K., & Steinberg, K. (1982). Influence of photoperiod and temperature on weight gain, food consumption, fat pads and thyroxine in male golden hamsters. Growth, 46, 150–162.

    CAS  PubMed  Google Scholar 

  • Horton, T. H., Buxton, O. M., Losee-Olson, S., & Turek, F. W. (2000). Twenty-four-hour profiles of serum leptin in Siberian and golden hamsters: Photoperiodic and diurnal variations. Hormones and Behavior, 37, 388–398.

    CAS  PubMed  Google Scholar 

  • Hotta, K., Gustafson, T. A., Ortmeyer, H. K., Bodkin, N. L., Nicolson, M. A., & Hansen, B. C. (1996). Regulation of obese (ob) mRNA and plasma leptin levels in rhesus monkeys. Journal of Biological Chemistry, 271, 25327–25331.

    CAS  PubMed  Google Scholar 

  • Houpt, T. R. (1983). The sites of action of cholecystokinin in decreasing meal size in pigs. Physiology and Behavior, 31, 693–698.

    CAS  PubMed  Google Scholar 

  • Invartsen, K. L., & Boisclaire, Y. R. (2001). Leptin and the regulation of food intake, energy homeostasis and immunity with special focus on periparturient ruminants. Domestic Animal Endocrinology, 21, 215–250.

    Google Scholar 

  • Iyengar, S., Li, D. L., & Simmons, R. M. (1999). Characterization of neuropeptide Y-induced feeding in mice: Do Y1-Y6 receptor subtypes mediate feeding? Journal of Pharmacology and Experimental Therapeutics, 289, 1031–1040.

    CAS  PubMed  Google Scholar 

  • Jain, M. R., Dube, M. G., Kalra, S. P., & Kalra, P. S. (1998). Neuropeptide Y release in the paraventricular nucleus is decreased during transient hyperphagia induced by microinjection of colchicine into the ventromedial nucleus of rats. Neuroscience Letters, 256, 21–24.

    CAS  PubMed  Google Scholar 

  • Jensen, J. (2001). Regulatory peptides and control of food intake in non-mammalian vertebrates. Comparative Biochemistry and Physiology. Part A, Molecular and Integrative Physiology, 128, 471–479.

    CAS  Google Scholar 

  • Kalra, S. P., Clark, J. T., Sahu, A., Kalra, P. S., & Crowley, W. R. (1989). Hypothalamic NPY: A local circuit in the control of reproduction and behavior. In V. Mutt (Ed.), Neuropeptide Y (pp. 229–241). New York: Raven Press.

    Google Scholar 

  • Kanarek, R. B., & Hirsch, E. (1977). Dietary-induced overeating in experimental animals. In R. B. Kanarek, E. Hirsch (Eds), Dietary-induced overeating in experimental animals. Federation Proceedings, 36, 154–158.

    Google Scholar 

  • Kanarek, R. B., Ogilby, J. D., & Mayer, J. (1977). Effects of dietary caloric density on feeding behavior in Mongolian gerbils (Meriones). Physiology and Behavior, 19, 497–501.

    CAS  PubMed  Google Scholar 

  • Kanatani, A., Ishihara, A., Asahi, S., Tanaka, T., Ozaki, S., & Ihara, M. (1996). Potent neuropeptide YY1 receptor antagonist, 1229U91: Blockade of neuropeptide Y-induced and physiological food intake. Endocrinology, 137, 3177–3182.

    CAS  PubMed  Google Scholar 

  • Kanatani, A., Ito, J., Ishihara, A., Iwaasa, H., Fukuroda, T., Fukami, T. et al. (1998). NPY-induced feeding involves the action of a Y1-like receptor in rodents. Regulatory Peptides, 75–76, 409–415.

    PubMed  Google Scholar 

  • Keys, A., Brozek, J., Henschel, A., Mickelson, O., & Taylor, H. L. (1950). The biology of human starvation. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Klingenspor, M., Dickopp, A., Heldmaier, G., & Klaus, S. (1997). Short photoperiod reduces leptin gene expression in white and brown adipose tissue of Djungarian hamsters. FEBS Letters, 399, 290–294.

    Google Scholar 

  • Klingenspor, M., Niggemann, H., & Heldmaier, G. (2000). Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. Journal Comparative Physiology B, 170, 37–43.

    CAS  Google Scholar 

  • Korner, J., Savontaus, E., Chua, S. C., Jr., Leibel, R. L., & Wardlaw, S. L. (2001). Leptin regulation of Agrp and Npy mRNA in the rat hypothalamus. Journal of Neuroendocrinology, 13, 959–966.

    CAS  PubMed  Google Scholar 

  • Kortner, G., & Heldmaier, G. (1995). Body weight cycles and energy balance in the alpine marmot (Marmota marmota). Physiological Zoology, 68, 149–163.

    Google Scholar 

  • Kristensen, P., Judge, M. E., Thim, L., Ribel, U., Christjansen, K. N., Wulff, B. S. et al. (1998). Hypothalamic CART is a new anorectic peptide regulated by leptin. Nature, 393, 72–76.

    CAS  PubMed  Google Scholar 

  • Kuenzel, W. J., Douglass, L. W., & Davison, B. A. (1987). Robust feeding following central administration of neuropeptide Y or peptide YY in chicks, Gallus domesticus. Peptides, 8, 823–828.

    CAS  PubMed  Google Scholar 

  • Kulkosky, P. J., Glazner, G. W., Moore, H. D., Low, C. A., & Woods, S. C. (1988). Neuropeptide Y: Behavioral effects in the golden hamster. Peptides, 9, 1389–1393.

    CAS  PubMed  Google Scholar 

  • Lambert, P. D., Couceyro, P. R., McGirr, K. M., Dall Vechia, S. E., Smith, Y., & Kuhar, M. J. (1998). CART peptides in the central control of feeding and interactions with neuropeptide Y. Synapse, 29, 293–298.

    CAS  PubMed  Google Scholar 

  • Larsen, P. J., Tang-Christensen, M., Stidsen, C. E., Madsen, K., Smith, M. S., & Cameron, J. L. (1999). Activation of central neuropeptide Y Y1 receptors potently stimulates food intake in male rhesus monkeys. Journal Clinical Endocrinology and Metabolism, 84, 3781–3791.

    CAS  Google Scholar 

  • Lawrence, D. H., & Mason, W. A. (1955). Food intake in the rat as a function of deprivation intervals and feeding rhythms. Journal of Comparative and Physiological Psychology, 48, 267–271.

    CAS  PubMed  Google Scholar 

  • Lazzarini, S. J., Schneider, J. E., & Wade, G. N. (1988). Inhibition of fatty acid oxidation and glucose metabolism does not affect food intake or hunger motivation in Syrian hamsters. Physiology and Behavior, 44, 209–213.

    CAS  PubMed  Google Scholar 

  • Le Maho, Y. (1989). Utilization of proteins vs. lipid reserves in spontaneous fasting and hibernation. In A. Malan, & B. Canguilhem (Eds.), Living in the cold II (pp. 147–152). London: John Libbey Eurotext.

    Google Scholar 

  • Le Maho, Y., Delclitte, P., & Chatonnet, J. (1976). Thermoregulation in fasting emperor penguins under natural conditions. American Journal of Physiology, 231, 913–922.

    PubMed  Google Scholar 

  • Lea, S. E. G., & Tarpy, R. M. (1986). Hamsters’s demand for food to eat and hoard as a function of deprivation and cost. Animal Behaviour, 34, 1759–1768.

    Google Scholar 

  • LeMagnen, J. (1984). Is regulation of body weight elucidated? Neuroscience and Biobehavioral Reviews, 8, 515–522.

    CAS  Google Scholar 

  • Lemonnier, D. (1972). Effect of age, sex, and site on the cellularity of the adipose tissue in mice and rats rendered obese by a high-fat diet. Journal of Clinical Investigation, 51, 2907–2915.

    CAS  PubMed  Google Scholar 

  • Lemonnier, D., Suquet, J. P., Aubert, R., de Gasquet, P., & Pequignot, E. (1975). Metabolism of the mouse made obese by a high-fat diet. Diabete and Metabolisme, 1, 77–85.

    CAS  Google Scholar 

  • Levin, B. E., Dunn-Meynell, A. A., Balkan, B., & Keesey, R. E. (1997). Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Amercian Journal of Physiology, 273, R725–R730.

    CAS  Google Scholar 

  • Levine, A. S., & Morley, J. E. (1984). Neuropeptide Y: A potent inducer of consummatory behavior in rats. Peptides 5, 1025–1029.

    CAS  PubMed  Google Scholar 

  • Liebelt, R. A., Ichinoe, S., & Nicholson, N. (1965). Regulatory influences of adipose tissue on food intake and body weight. Annals of the New York Academy Sciences, 131, 559–582.

    CAS  Google Scholar 

  • Lopez-Patino, M. A., Guijarro, A. I., Isorna, E., Delgado, M. J., Alonso-Bedate, M., & de Pedro, N. (1999). Neuropeptide Y has a stimulatory action on feeding behavior in goldfish (Carassius auratus). European Journal of Pharmacology, 377, 147–153.

    CAS  PubMed  Google Scholar 

  • Lopez-Valpuesta, F. J., Nyce, J. W., Griffin-Biggs, T. A., Ice, J. C., & Myers, R. D. (1996). Antisense to NPYY1 demonstrates that Y1 receptors in the hypothalamus underlie NPY hypothermia and feeding in rats. Proceedings of the Royal Society of London [Biol.], 263, 881–886.

    CAS  Google Scholar 

  • Lore, R. K., & Flannelly, D. J. (1978). Comparative studies of wild and domestic rats: Some difficulties in solating the effects of geneotype and environment. Aggressive Behavior, 7, 253–257.

    Google Scholar 

  • Marie, M., Findlay, P. A., Thomas, L., & Adam, C. L. (2001). Daily patterns of plasma leptin in sheep: Effects of photoperiod and food intake. Journal of Endocrinology, 170, 277–286.

    CAS  PubMed  Google Scholar 

  • Masek, J., & Fabry, P. (1959). High-fat diet and the development of obesity in albino rats. Experientia, 15, 444–446.

    CAS  PubMed  Google Scholar 

  • Mauer, M. M., & Bartness, T. J. (1994). Body fat regulation following partial lipectomy in Siberian hamsters is photoperiod-dependent and fat pad-specific. American Journal of Physiology, 266, R870–R878.

    CAS  PubMed  Google Scholar 

  • Mauer, M. M., & Bartness, T. J. (1996). Photoperiod-dependent fat pad mass and cellularity changes following partial lipectomy in Siberian hamsters. American Journal of Physiology, 270, R383–R392.

    CAS  PubMed  Google Scholar 

  • Mauer, M. M., & Bartness, T. J. (1997). Fat pad-specific compensatory mass increases after varying degrees of partial lipectomy in Siberian hamsters. American Journal of Physiology, 273, 2117–2123.

    Google Scholar 

  • Mauer, M. M., Harris, R. B. S., & Bartness, T. J. (2001). The regulation of total body fat: Lessons learned from lipectomy studies. Neuroscience and Biobehavioral Reviews, 25, 15–28.

    CAS  PubMed  Google Scholar 

  • Mayer, J. (1953). Glucostatic mechanism of regulation of food intake. New England Journal of Medicine, 249, 13–16.

    CAS  PubMed  Google Scholar 

  • McElroy, J. F., Mason, P. W., Hamilton, J. M., & Wade, G. N. (1986). Effects of diet and photoperiod on NE turnover and GDP binding in Siberian hamster brown adipose tissue. American Journal of Physiology, 250, R383–R388.

    CAS  PubMed  Google Scholar 

  • Melchoir, J. C., Rigaud, D., Rozen, R., Malon, M., & Apfelbaum, M. (1989).Energy expenditure economy induced by decrease in lean body mass in anorexia nervosa. European Journal of Clinical Nutrition, 43, 793–799.

    Google Scholar 

  • Mercer, J. G. (1998). Regulation of appetite and body weight in seasonal mammals. Comparative Biochemistry and Physiology. Part C, Pharmacology, Toxicology and Endocrinology, 119, 295–303.

    CAS  Google Scholar 

  • Mercer, J. G., Lawrence, B., Beck, B., Burlet, A., Atkinson, T., & Barrett, P. (1995). Hypothalamic NPY and preproNPY mRNA in Djungarian hamsters: Effects of food deprivation and photoperiod. American Journal of Physiology, 269, R1099–R1106.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., Lawrence, C. B., & Atkinson, T. (1996). Hypothalamic NPY and CRF gene expression in the food-deprived Syrian hamster. Physiology and Behavior, 60, 121–127.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., Lawrence, C. B., Moar, K. M., Atkinson, T., & Barrett, P. (1997). Short day weight loss and effect on hypothalamic NPY and CRF mRNA of food deprivation in Djungarian hamsters. American Journal of Physiology, 273, R768–R776.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., Moar, K. M., Logie, T. J., Findlay, P. A., Adam, C. L., & Morgan, P. J. (2001). Seasonally inappropriate body weight induced by food restriction: Effect on hypothalamic gene expression in male siberian hamsters. Endocrinology, 142, 4173–4181.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., Moar, K. M., Ross, A. W., Hoggard, N., & Morgan, P. J. (2000). Photoperiod regulates arcuate nucleus POMC, AGRP, and leptin receptor mRNA in Siberian hamster hypothalamus. American Journal of Physiology, 278, R271–R281.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., Moar, K. M., Ross, A. W., & Morgan, P. J. (2000). Regulation of leptin receptor, POMC and AGRP gene expression by photoperiod and food deprivation in the hypothalamic arcuate nucleus of the male Siberian hamster (Phodopus sungorus). Appetite, 34, 109–111.

    CAS  PubMed  Google Scholar 

  • Miceli, M. O., & Malsbury, C. W. (1983). Feeding and drinking responses in the golden hamster following treatment with cholecystokinin and angiotensin II. Peptides, 4, 103–106.

    CAS  PubMed  Google Scholar 

  • Miceli, M. O., & Malsbury, C. W. (1985). Effects of putative satiety peptides on feeding and drinking behavior in golden hamsters (Mesocricetus auratus). Behavioral Neuroscience, 99, 1192–1207.

    CAS  PubMed  Google Scholar 

  • Miceli, M. O., & Steiner, M. (1989). Novel localizations of central-and peripheral-type cholecystokinin binding sites in Syrian hamster brain as determined by autoradiography. European Journal of Pharmacology, 169, 215–224.

    CAS  PubMed  Google Scholar 

  • Miceli, M. O., van der, K. D., Post, C. A., Della-Fera, M. A., & Baile, C. A. (1987). Differential distributions of cholecystokinin in hamster and rat forebrain. Brain Research, 402, 318–330.

    CAS  PubMed  Google Scholar 

  • Michel, C., & Cabanac, M. (1999). Lipectomy, body weight, and body weight set point in rats. Physiology and Behavior, 66, 473–479.

    CAS  PubMed  Google Scholar 

  • Mickelsen, O., Takahashi, S., & Craig, C. (1955). Experimental obesity. I. Production of obesity in rats by feeding high-fat diets. Journal of Nutrition, 57, 541–554.

    CAS  PubMed  Google Scholar 

  • Milgram, S. L., Balasubramaniam, A., Andrews, P. C., McDonald, J. K., & Noe, B. D. (1989). Characterization of aPY-like peptides in anglerfish brain using a novel radioimmunoassay for aPY-Gly. Peptides, 10, 1013–1017.

    CAS  PubMed  Google Scholar 

  • Miner, J. L., Della-Fera, M. A., Paterson, J. A., & Baile, C. A. (1989). Lateral cerebroventricular injection of neuropeptide Y stimulates feeding in sheep. American Journal of Physiology, 257, R383–R387.

    CAS  PubMed  Google Scholar 

  • Moinat, M., Deng, C., Muzzin, P., Assimacopoulos-Jeannet, F., Seydoux, J., Dulloo, A. G. et al. (1995). Modulation of obese gene expression in rat brown and white adipose tissues. FEBS Letters, 373, 131–134.

    CAS  PubMed  Google Scholar 

  • Morley, J. E., Levine, A. S., Bartness, T. J., Nizielski, S. E., Shaw, M. J., & Hughes, J. J. (1985). Species differences in the response to cholecystokinin. Annals of the New York Academy of Sciences, 448, 413–416.

    CAS  PubMed  Google Scholar 

  • Morris, Y. A., & Crews, D. (1990). The effects of exogenous neuropeptide Y on feeding and sexual behavior in the red-sided garter snake (Thamnophis sirtalis parietallis). Brain Research, 530, 339–341.

    CAS  PubMed  Google Scholar 

  • Morton, M. L. (1975). Seasonal cycles of body weights and lipids in Belding ground squirrels. Bulletin of the Southern California Academy of Science, 4, 128–143.

    Google Scholar 

  • Mrosovsky, N., & Sherry, D. F. (1980). Animal anorexias. Science, 207, 837–842.

    CAS  PubMed  Google Scholar 

  • Naito, C., Yoshitoshi, Y., Higo, K., & Ookawa, H. (1973). Effects of long-term administration of 2-deoxy-D-glucose on food intake and weight gain in rats. Journal of Nutrition, 103, 730–737.

    CAS  PubMed  Google Scholar 

  • Narnaware, Y. K., & Peter, R. E. (2001a). Effects of food deprivation and refeeding on neuropeptide Y (NPY) mRNA levels in goldfish. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 129, 633–637.

    CAS  Google Scholar 

  • Narnaware, Y. K., & Peter, R. E. (2001b). Neuropeptide Y stimulates food consumption through multiple receptors in goldfish. Physiology and Behavior, 74, 185–190.

    CAS  PubMed  Google Scholar 

  • Narnaware, Y. K., Peyon, P. P., Lin, X., & Peter, R. E. (2000). Regulation of food intake by neuropeptide Y in goldfish. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 279, R1025–R1034.

    CAS  PubMed  Google Scholar 

  • Newsholme, E. A., & Leech, A. R. (1983). Biochemistry for the medical sciences. Chichester UK: John Wiley.

    Google Scholar 

  • Niijima, A. (1998). Afferent signals from leptin sensors in the white adipose tissue of the epididymis, and their reflex effect in the rat. Journal of the Autonomic Nervous System, 73, 19–25.

    CAS  PubMed  Google Scholar 

  • Niijima, A. (1999). Reflex effects from leptin sensors in the white adipose tissue of the epididymis to the efferent activity of the sympathetic and vagus nerve in the rat. Neuroscience Letters, 262, 125–128.

    CAS  PubMed  Google Scholar 

  • Noe, B. D., Milgram, S. L., Balasubramaniam, A., Andrews, P. C., Calka, J., & McDonald, J. K. (1989). Localization and characterization of neuropeptide Y-like peptides in the brain and islet organ of the anglerfish (Lophius americanus). Cell Tissue Research, 257, 303–311.

    CAS  PubMed  Google Scholar 

  • Nordoy, E. S., & Blix, A. S. (1991). Glucose and ketone body turnover in fasting grey seal pups. Acta Physiologica Scandinavica, 141, 565–571.

    CAS  PubMed  Google Scholar 

  • Nowak, R., Orgeur, P., Piketty, V., Alster, P., Andersson, R., & Uvnas-Moberg, K. (1997). Plasma cholecystokinin concentrations in 3-day-old lambs: Effect of the duration of fasting preceding a sucking bout. Reproduction, Nutrition, Development, 37, 551–558.

    CAS  PubMed  Google Scholar 

  • Ormseth, O. A., Nicolson, M., Pelleymounter, M. A., & Boyer, B. B. (1996). Leptin inhibits prehibernation hyperphagia and reduces body weight in arctic ground squirrels. American Journal of Physiology, 271, R1775–R1779.

    CAS  PubMed  Google Scholar 

  • Owens, J. L., Thompson, D., Shah, N., & DiGirolamo, M. (1979). Effects of fasting and refeeding in the rat on adipocyte metabolic functions and response to insulin. Journal of Nutrition, 109, 1584–1591.

    CAS  PubMed  Google Scholar 

  • Parrott, R. F. (1993). Peripheral and central effects of CCK receptor agonists on operant feeding in pigs. Physiology and Behavior, 53, 367–372.

    CAS  PubMed  Google Scholar 

  • Peacock, W. L., & Speakman, J. R. (2001). Effect of high-fat diet on body mass and energy balance in the bank vole. Physiology and Behavior, 74, 65–70.

    CAS  PubMed  Google Scholar 

  • Pekas, J. C. (1991). Effect of cholecystokinin immunization, enhanced food intake and growth of swine on lean yield and carcass composition. Journal of Nutrition, 121, 563–567.

    CAS  PubMed  Google Scholar 

  • Pekas, J. C., & Trout, W. E. (1990). Stimulation of food intake and growth of swine by cholecystokinin immunization. Growth Development, and Aging, 54, 51–56.

    CAS  Google Scholar 

  • Pelleymounter, M. A., Cullen, M. J., Baker, M. B., Hecht, R., Winters, D., Boone, T. et al. (1995). Effects of the obese gene product on body weight regulation in ob/ob mice. Science, 269, 540–543.

    CAS  PubMed  Google Scholar 

  • Pinshow, B., Fedak, M. A., Battles, D. R., & Schmidt-Nielsen, K. (1976). Energy expenditure for thermoregulation and locomotion in emperor penguins. American Journal of Physiology, 231, 903–912.

    CAS  PubMed  Google Scholar 

  • Pisano, R. G., & Storer, T. I. (1948). Burrows and feeding of the Norway rat. Journal of Mammalogy, 29, 374–383.

    Google Scholar 

  • Plunkett, S. S. (2002). The influence of a 24 hour fast on the food intake patterns of free-living individuals. Doctoral Dissertation, Georgia State University.

    Google Scholar 

  • Prevost, J. (1962). Ecologie du manchot empereur. Paris: Hermann.

    Google Scholar 

  • Rafael, J., & Heldt, H. W. (1976). Binding of guanine nucleotides to the outer surface of the inner membrane of guinea-pig brown fat mitochondria in correlation with the thermogenic capacity of the tissue. FEBS Letters, 63, 304–308.

    CAS  PubMed  Google Scholar 

  • Ramirez, I., & Friedman, M. I. (1990). Dietary hyperphagia in rats: Role of fat, carbohydrate, and energy content. Physiology and Behavior, 47, 1157–1163.

    CAS  PubMed  Google Scholar 

  • Ramsey, J. J., Kemnitz, J. W., Colman, R. J., Cunningham, D., & Swick, A. G. (1998). Different central and peripheral responses to leptin in rhesus monkeys: Brain transport may be limited. Journal of Clinical Endocrinology and Metabolism, 83, 3230–3235.

    CAS  PubMed  Google Scholar 

  • Rawson, N. E., Blum, H., Osbakken, M. D., & Friedman, M. I. (1994). Hepatic phosphate trapping, decreased ATP, and increased feeding after 2,5-anhydro-D-mannitol. American Journal of Physiology, 266, R112–R117.

    CAS  PubMed  Google Scholar 

  • Rawson, N. E., & Friedman, M. I. (1994). Phosphate loading prevents the decrease in ATP and increase in food intake produced by 2,5-anhydro-D-mannitol. American Journal of Physiology, 266, R1792–R1796.

    CAS  PubMed  Google Scholar 

  • Rawson, N. E., Ulrich, P. M., & Friedman, M. I. (1994). L-Ethionine, an amino acid analogue, stimulates eating in rats. American Journal of Physiology, 267, R612–R615.

    CAS  PubMed  Google Scholar 

  • Rawson, N. E., Ulrich, P. M., & Friedman, M. I. (1996). Fatty acid oxidation modulates the eating response to the fructose analogue 2,5-anhydro-D-mannitol. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 271, R144–R148.

    CAS  Google Scholar 

  • Reddy, A. B., Cronin, A. S., Ford, H., & Ebling, F. J. (1999). Seasonal regulation of food intake and body weight in the male Siberian hamster: Studies of hypothalamic orexin (hypocretin), neuropeptide Y (NPY) and pro-opiomelanocortin (POMC). European Journal of Neuroscience, 11, 3255–3264.

    CAS  PubMed  Google Scholar 

  • Reidelberger, R. D. (1994). Cholecystokinin and control of food intake. Journal of Nutrition, 124, 1327S–1333S.

    CAS  PubMed  Google Scholar 

  • Reidelberger, R. D., & O’Rourke, M. F. (1989). Potent cholecystokinin antagonist L 364718 stimulates food intake in rats. American Journal of Physiology, 257, R1512–R1518.

    CAS  PubMed  Google Scholar 

  • Reidelberger, R. D., Varga, G., & Solomon, T. E. (1991). Effects of selective cholecystokinin antagonists L 364718 and L 365260 on food intake in rats. Peptides, 12, 1215–1221.

    CAS  PubMed  Google Scholar 

  • Reuss, S. (1991). Photoperiod effects on bombesin-and cholecystokinin-like immunoreactivity in the suprachiasmatic nuclei of the Djungarian hamster (Phodopus sungorus). Neuroscience Letters, 128, 13–16.

    CAS  PubMed  Google Scholar 

  • Richardson, R. D., Boswell, T., Raffety, B. D., Seeley, R. J., Wingfield, J. C., & Woods, S. C. (1995). NPY increases food intake in white-crowned sparrows: Effect in short and long photoperiods. American Journal of Physiology, 268, R1418–R1422.

    CAS  PubMed  Google Scholar 

  • Richardson, R. D., Boswell, T., Weatherford, S. C., Wingfield, J. C., & Woods, S. C. (1993). Cholecystokinin octapeptide decreases food intake in white-crowned sparrows. American Journal of Physiology, 264, R852–R856.

    CAS  PubMed  Google Scholar 

  • Rigaud, D., Hassid, J., Meulemans, A., Poupard, A. T., & Boulier, A. (2000). A paradoxical increase in resting energy expenditure in malnourished patients near death: The king penguin syndrome. American Journal of Clinical Nutrition, 72, 355–360.

    CAS  PubMed  Google Scholar 

  • Ritter, R. C., & Balch, O. K. (1978). Feeding in response to insulin but not to 2-deoxy-D-glucose in the hamster. American Journal of Physiology, 234, E20–24.

    CAS  PubMed  Google Scholar 

  • Ritter, R. C., & Slusser, P. G. (1980). 5-Thio-D-glucose causes increased feeding and hyperglycemia in the rat. American Journal of Physiology, 238, E141–E144.

    CAS  PubMed  Google Scholar 

  • Ritter, S., & Taylor, J. S. (1989). Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. American Journal of Physiology, 256, R1232–R1239.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Sinovas, A., Fernandez, E., Manteca, X., Fernandez, A. G., & Gonalons, E. (1997). CCK is involved in both peripheral and central mechanisms controlling food intake in chickens. American Journal of Physiology, 272, R334–R340.

    CAS  PubMed  Google Scholar 

  • Ross, I., & Smith, W. I. (1953). The hoarding behavior of the mouse II. The role of deprivation, satiation and stress. The Journal of General Psychology, 82, 279–297.

    Google Scholar 

  • Rousseau, K., Atcha, Z., Cagampang, F. R., Le Rouzic, P., Stirland, J. A., Ivanov, T. R. et al. (2002). Photoperiodic regulation of leptin resistance in the seasonally breeding Siberian hamster (Phodopus sungorus). Endocrinology, 143, 3083–3095.

    CAS  PubMed  Google Scholar 

  • Rousseau, K., Atcha, Z., & Loudon, A. S. (2003). Leptin and seasonal mammals. Journal of Neuroendocrinology, 15, 409–414.

    CAS  PubMed  Google Scholar 

  • Rowland, N., & Bartness, T. J. (1982). Naloxone suppresses insulin-induced food intake in novel and familiar environments, but does not affect hypoglycemia. Pharmacology, Biochemistry, and Behavior, 16, 1001–1003.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E. (1978). Effects of insulin and 2-deoxy-D-glucose on feeding in hamsters and gerbils. Physiology and Behavior, 21, 291–294.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E. (1982). Failure by deprived hamsters to increase food intake: Some behavioral and physiological determinants. Journal of Comparative and Physiological Psychology, 96, 591–603.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E. (1983). Physiology and Behavior, responses to glucoprivation in the golden hamster. Physiology and Behavior, 30, 743–747.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E. (1984). Metabolic fuel homeostasis in golden hamsters: Effects of fasting, refeeding, glucose, and insulin. American Journal of Physiology, 247, R57–R62.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E., Miceli, M. O., Malsbury, C. W., Baile, C. A., Della-Fera, M. A., Gingerich, R. L. et al. (1986). Medial hypothalamic lesions in Syrian hamsters: Characterization of hyperphagia and weight gain. Physiology and Behavior, 36, 513–521.

    CAS  PubMed  Google Scholar 

  • Rowland, N. E., Watkins, L., & Carlton, J. (1985). Failure of 2-deoxy-D-glucose to stimulate feeding in deermice. Physiology and Behavior, 34, 155–157.

    CAS  PubMed  Google Scholar 

  • Sahu, A., Kalra, P. S., & Kalra, S. P. (1988). Food deprivation and ingestion induce reciprocal changes in neuropeptide Y concentrations in the paraventricular nucleus. Peptides, 9, 83–86.

    CAS  PubMed  Google Scholar 

  • Sanacora, G., Kershaw, M., Finkelstein, J. A., & White, J. D. (1990). Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. Endocrinology, 127, 730–737.

    CAS  PubMed  Google Scholar 

  • Satcher, D. (2001). Overweight and obesity threaten U.S. health gains. (pp. 1–3) Retrieved from www.surgeongeneral.gov/topics/obesity

    Google Scholar 

  • Savory, C. J. (1987). An alternative explanation for apparent satiating properties of peripherally administered bombesin and cholecystokinin in domestic fowls. Physiology and Behavior, 39, 191–202.

    CAS  PubMed  Google Scholar 

  • Savory, C. J., & Gentle, M. J. (1983). Effects of food deprivation, strain, diet and age on feeding responses of fowls to intravenous injections of cholecystokinin. Appetite, 4, 165–176.

    CAS  PubMed  Google Scholar 

  • Savory, C. J., & Hadgkiss, J. P. (1984). Influence of vagotomy in domestic fowls on feeding activity, food passage, digestibility and satiety effect of two peptides. Physiology and Behavior, 33, 937–944.

    CAS  PubMed  Google Scholar 

  • Scharrer, E., & Langhans, W. (1986). Control of food intake by fatty acid oxidation. American Journal of Physiology, 250, R1003–R1006.

    CAS  PubMed  Google Scholar 

  • Schemmel, R., & Mickelsen, O. (1970). Dietary obesity in rats: Body weight and body fat accretion in seven strains of rats. Journal of Nutrition, 100, 1041–1048.

    CAS  PubMed  Google Scholar 

  • Schemmel, R., Mickelsen, O., Pierce, S. A., Johnson, J. T., & Schirmer, R. G. (1971). Fat depot removal, food intake, body fat, and fat depot weights in obese rats. Proceedings of the Society for Experimental Biology and Medicine, 136, 1269–1273.

    CAS  PubMed  Google Scholar 

  • Scheurink, A. J. W., & Nolan, L. J. (1996). Food intake, fuel homeostasis, and the autonomic nervous system. Appetite, 26, 304.

    CAS  PubMed  Google Scholar 

  • Schneider, J. E., Blum, R. M., & Wade, G. N. (2000). Metabolic control of food intake and estrous cycles in syrian hamsters. I. Plasma insulin and leptin. American Journal of Physiology, 278, R476–R485.

    CAS  PubMed  Google Scholar 

  • Schneider, J. E., & Buckley, C. A. (2003). Food hoarding is increased by food deprivation and decreased by leptin treatment in Syrian hamsters. American Journal of Physiology, 285, R1021–R1029.

    PubMed  Google Scholar 

  • Schneider, J. E., Friedenson, D. G., Hall, A. J., & Wade, G. N. (1993). Glucoprivation induces anestrus and lipoprivation may induce hibernation in Syrian hamsters. American Journal of Physiology, 264, R573–R577.

    CAS  PubMed  Google Scholar 

  • Schneider, J. E., Goldman, M. D., Tang, S., Bean, B., Ji, H., & Friedman, M. I. (1998). Leptin indirectly affects estrous cycles by increasing metabolic fuel oxidation. Hormones and Behavior, 33, 217–228.

    CAS  PubMed  Google Scholar 

  • Schneider, J. E., Lazzarini, S. J., Friedman, M. I., & Wade, G. N. (1988). Role of fatty acid oxidation in food intake and hunger motivation in Syrian hamsters. Physiology and Behavior, 43, 617–623.

    CAS  PubMed  Google Scholar 

  • Schneider, J. E., & Wade, G. N. (1989). Availability of metabolic fuels controls estrous cyclicity of Syrian hamsters. Science, 244, 1326–1328.

    CAS  PubMed  Google Scholar 

  • Schneider, J. E., & Wade, G. N. (1999). Inhibition of reproduction in service of energy balance. In K. Wallen, & J. E. Schneider (Eds.), Reproduction in context: Environmental and social influences on reproductive physiology and behavior (pp. 35–82). Cambridge: MIT Press.

    Google Scholar 

  • Schneider, J. E., & Watts, A. G. (2002). Energy balance, ingestive behavior and reproductive success. In D. Pfaff (Ed.), Hormones brain and behavior (pp. 435–523). New York: Academic Press.

    Google Scholar 

  • Schwartz, J. H., Young, J. B., & Landsberg, L. (1983). Effect of dietary fat on sympathetic nervous system activity in the rat. Journal of Clinical Investigation, 72, 361–370.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. W., Seeley, R. J., Woods, S. C., Weigle, D. S., Campfield, L. A., Burn, P. et al. (1997). Leptin increases hypothalamic pro-opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes, 46, 2119–2123.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. W., Sipols, A. J., Grubin, C. E., & Baskin, D. G. (1993). Differential effects of fasting on hypothalamic expression of genes encoding neuropeptide Y, galanin and glutamic acid decarboxylase. Brain Research Bulletin, 31, 361–367.

    CAS  PubMed  Google Scholar 

  • Sclafani, A., & Eisenstadt, D. (1980). 2-Deoxy-D-glucose fails to induce feeding in hamsters fed a preferred diet. Physiology and Behavior, 24, 641–643.

    CAS  PubMed  Google Scholar 

  • Seeley, R., Payne, C. J., & Woods, S. C. (1995). Neuropeptide Y fails to increase intraoral intake in rats. American Journal of Physiology, 268, R423–R427.

    CAS  PubMed  Google Scholar 

  • Shapiro, B., Borer, K. T., Fig, L. M., & Vinik, A. I. (1987). Exercise-induced hyperphagia in the hamster is associated with elevated plasma somatostatin-like immunoreactivity. Regulatory Peptides, 18, 85–92.

    CAS  PubMed  Google Scholar 

  • Silverman, H. J., & Zucker, I. (1976). Absence of post-fast food compensation in the golden hamster (Mesocricetus auratus). Physiology and Behavior, 17, 271–285.

    CAS  PubMed  Google Scholar 

  • Simek, V. (1974). Energy metabolism of golden hamsters adapted to intermittent fasting: Influence of season and sex. Physiologia Bohemoslovaca, 23, 437–446.

    CAS  PubMed  Google Scholar 

  • Simek, V. (1975). Effect of sex and season on the production and deposition of lipid and glycid reserves in the intermittently starving golden hamster. Physiologia Bohemoslovaca, 24, 183–190.

    CAS  PubMed  Google Scholar 

  • Simek, V. (1980). Effect of intermittent fasting followed by cold on growth, formation of reserves and energy metabolism in the golden hamster. Physiologia Bohemoslovaca, 29, 167.

    CAS  PubMed  Google Scholar 

  • Simek, V., & Petrasek, R. (1974). The effects of two time-different feeding regimens on food intake, growth rate and lipid metabolism in golden hamster (Rodentia). Vest. Csek. Spol. Zool. 38, 152–159.

    CAS  Google Scholar 

  • Sipols, A. J., Figelwicz, D. P., Seeley, R. J., Chavez, M., Woods, S. C., & Porte, D., Jr. (1996). Intraventricular neuropeptide Y does not stimulate food intake in the baboon. Physiology and Behavior, 60, 717–719.

    CAS  PubMed  Google Scholar 

  • Slusser, P. G., & Ritter, R. C. (1980). Increased feeding and hyperglycemia elicited by intracerebroventricular 5-thioglucose. Brain Research, 202, 474–478.

    CAS  PubMed  Google Scholar 

  • Smith, G. P. (1996). The direct and indirect controls of meal size. Neuroscience and Biobehavioral Reviews, 20, 41–46.

    CAS  PubMed  Google Scholar 

  • Smith, G. P., & Epstein, A. N. (1969). Increased feeding in response to decreased glucose utilization in the rat and monkey. American Journal of Physiology, 217, 1083–1087.

    CAS  PubMed  Google Scholar 

  • Song, C. K., Warren, W. S., Youngstrom, T. G., & Bartness, T. J. (1996). Sensory and motor innervation of white adipose tissue. Society for the study of ingestive behavior.

    Google Scholar 

  • Srinivasan, V., Thombre, D. P., Lakshmanan, S., & Chakrabarty, A. S. (1986). Effect of removal of epididymal fat on spermatogenesis in albino rats. Indian Journal of Experimental Biology, 24, 487–488.

    CAS  PubMed  Google Scholar 

  • Stamper, J. L., & Dark, J. (1997). Metabolic fuel availability influences thermoregulation in deer mice (Peromyscus maniculatus). Physiology and Behavior, 61, 521–524.

    CAS  PubMed  Google Scholar 

  • Stamper, J. L., Dark, J., & Zucker, I. (1999). Photoperiod modulates torpor and food intake in Siberian hamsters challenged with metabolic inhibitors. Physiology and Behavior, 66, 113–118.

    CAS  PubMed  Google Scholar 

  • Stanley, B. G., & Leibowitz, S. F. (1984). Neuropeptide Y: Stimulation of feeding and drinking by injection into the paraventricular nucleus. Life Sciences, 35, 2635–2642.

    CAS  PubMed  Google Scholar 

  • Stanley, B. G., Magdalin, W., Seira., A., Nguyen, M. M., & Leibowitz, S. F. (1992). Evidence for neuropeptide Y mediation of eating produced by food deprivation and for a variant of the Y1 receptor mediating this peptide’s effect. Peptides, 13, 581–587.

    CAS  PubMed  Google Scholar 

  • Steinlechner, S., Heldmaier, G., & Becker, H. (1983). The seasonal cycle of body weight in the Djungarian hamster: Photoperiodic control and the influence of starvation and melatonin. Oecologia, 60, 401–405.

    Google Scholar 

  • Steinman, J. L., Fujikawa, D. G., Wasterlain, C. G., Cherkin, A., & Morley, J. E. (1987). The effects of adrenergic, opioid and pancreatic polypeptidergic compounds on feeding and other behavior in neonatal leghorn chicks. Peptides, 8, 585–592.

    CAS  PubMed  Google Scholar 

  • Stephens, D. W., & Krebs, J. R. (1986). Foraging theory. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Storlien, L., James, D. E., Burleigh, K. M., Chisholm, D. J., & Kraegn, E. W. (1986). Fat feeding causes widespread in vivo insulin resistance, decreased energy expenditure, and obesity in rats. American Journal of Physiology, 251, E576–E583.

    CAS  PubMed  Google Scholar 

  • Strader, A. D., & Buntin, J. D. (2001). Neuropeptide-Y: A possible mediator of prolactin-induced feeding and regulator of energy balance in the ring dove (Streptopelia risoria). Journal of Neuroendocrinology, 13, 386–392.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., & Rowland, N. E. (1978). Hepatic versus cerebral origin of stimulus for feeding induced by 2-deoxy-D-glucose in rats. Journal of Comparative and Physiological Psychology, 92, 126–132.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., Rowland, N. E., Saller, C. F., & Friedman, M. I. (1977). Homeostasis during hypoglycemia: Central control of adrenal secretion and peripheral control of feeding. Science, 196, 79–81.

    CAS  PubMed  Google Scholar 

  • Takahhashi, L. K., & Lore, R. K. (1980). Foraging and food hoarding of wild Rattus norvegicus in an urban environment. Behavioral and Neural Biology, 29, 537–541.

    Google Scholar 

  • Tang-Christensen, M., Havel, P. J., Jacobs, R. R., Larsen, P. J., & Cameron, J. L. (1999). Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. Journal of Clinical Endocrinology and Metabolism, 84, 711–717.

    CAS  PubMed  Google Scholar 

  • Taouis, M., Dridi, S., Cassy, S., Benomar, Y., Raver, N., Rideau, N. et al. (2001). Chicken leptin: Properties and actions. Domestic Animal Endocrinology, 21, 319–327.

    CAS  PubMed  Google Scholar 

  • Thouzeau, C., Duchamp, C., & Handrich, Y. (1999). Energy metabolism and body temperature of barn owls fasting in the cold. Physiological and Biochemical Zoology, 72, 170–178.

    CAS  PubMed  Google Scholar 

  • Tsai, A. C., Bach, J., & Borer, K. T. (1981). Somatic, endocrine, and serum lipid changes during detraining in adult hamsters. American Journal of Clinical Nutrition, 34, 373–376.

    CAS  PubMed  Google Scholar 

  • Tsai, A. C., Rosenberg, R., & Borer, K. T. (1982). Metabolic alterations induced by voluntary exercise and discontinuation of exercise in hamsters. American Journal of Clinical Nutrition, 35, 943–949.

    CAS  PubMed  Google Scholar 

  • Vander Wall, S. B. (1990). Food hoarding in animals. Chicago: University of Chicago Press.

    Google Scholar 

  • VanNess, J. M., DeMaria, J. E., & Overton, J. M. (1999). Increased NPY activity in the PVN contributes to food-restriction induced reductions in blood pressure in aortic coarctation hypertensive rats. Brain Research, 821, 263–269.

    CAS  PubMed  Google Scholar 

  • Vaughan, T. A. (1978). Mammalogy. Philadelphia: W. B. Saunders.

    Google Scholar 

  • Wade, G. N. (1982). Obesity without overeating in golden hamsters. Physiology and Behavior, 29, 701–707.

    CAS  PubMed  Google Scholar 

  • Wade, G. N. (1983). Dietary obesity in golden hamsters: Reversibility and effects of sex and photoperiod. Physiology and Behavior, 30, 131–137.

    CAS  PubMed  Google Scholar 

  • Wade, G. N., & Bartness, T. J. (1983). Dietary obesity in hamsters: Effects of age, fat source and species. Nutrition and Behavior, 1, 169–177.

    Google Scholar 

  • Wade, G. N., & Bartness, T. J. (1984a). Effects of photoperiod and gonadectomy on food intake, body weight and body composition in Siberian hamsters. American Journal of Physiology, 246, R26–R30.

    CAS  PubMed  Google Scholar 

  • Wade, G. N., & Bartness, T. J. (1984b). Seasonal obesity in Syrian hamsters: Effects of age, diet, photoperiod, and melatonin. American Journal of Physiology, 247, R328–R334.

    CAS  PubMed  Google Scholar 

  • Wade, G. N., Schneider, J. E., & Friedman, M. I. (1991). Insulin-induced anestrus in Syrian hamsters. American Journal of Physiology, 260, R148–R152.

    CAS  PubMed  Google Scholar 

  • Waldbillig, R. J., & Bartness, T. J. (1982). The suppression of sucrose intake by cholecystokinin is scaled according to the magnitude of the orosensory control over feeding. Physiology and Behavior, 28, 591–595.

    CAS  PubMed  Google Scholar 

  • Wang, Q., Bing, C., Al-Barazanji, K., Mossakowaska, D. E., Wang, X. M., McBay, D. L. et al. (1997). Interactions between leptin and hypothalamic neuropeptide Y neurons in the control of food intake and energy homeostasis in the rat. Diabetes, 46, 335–341.

    CAS  PubMed  Google Scholar 

  • Webb, G. P., Jagot, S. A., & Jakobson, M. E. (1982). Fasting-induced torpor in Mus musculus and its implications in the use of murine models for human obesity studies. Comparative Biochemistry and Physiology, A, 72A, 211–219.

    Google Scholar 

  • Webb, P. I., & Skinner, J. D. (1996). Summer torpor in African woodland dormice Graphiurus murinus (Myoxidae: Graphiurinae). Journal of Comparative Physiology B, 166, 325–330.

    CAS  Google Scholar 

  • Weigle, D. S., Bukowsk, T., Foster, D., Holderman, S., Kramer, J., Lasser, G. et al. (1995). Recombinant ob protein reduces feeding and body weight in the ob/ob mouse. Journal of Clinical Investigation, 96, 2065–2070.

    CAS  PubMed  Google Scholar 

  • Weiner, J. (1987). Limits to energy budget and tactics in energy investments during reproduction in the Djungarian hamster (Phodopus sungorus sungorus Pallas, 1770). Symposium Zoological Society London, 57, 167–187.

    Google Scholar 

  • West, D. B., Boozer, C. N., Moody, D. L., & Atkinson, R. L. (1995). Dietary obesity in nine inbred mouse strains. American Journal of Physiology, 262, R1025–R1032.

    Google Scholar 

  • West, D. B., Waguespack, J., & McCollister, S. (1995). Dietary obesity in the mouse: Interaction of strain with diet composition. American Journal of Physiology, 268, R658–R665.

    CAS  PubMed  Google Scholar 

  • West, D. B., & York, B. (1998). Dietary fat, genetic predisposition, and obesity: Lessons from animal models. American Journal of Clinical Nutrition, 67, 505S–512S.

    CAS  PubMed  Google Scholar 

  • Whishaw, I. Q., & Whishaw, G. E. (1996). Conspecific aggression influences food carrying: Studies on a wild population of Rattus norvegicus. Aggressive Behavior, 22, 47–66.

    Google Scholar 

  • White, J. D., & Kershaw, M. (1989). Increased hypothalamic neuropeptide Y expression following food deprivation. Molecular and Cellular Neurosciences, 1, 41–48.

    Google Scholar 

  • Williams, A. J., Siegfried, W. R., Burger, A. E., & Berruti, A. (1977). Body composition and energy metabolism of moulting eudyptid penguins. Comparative Biochemistry and Physiology A, 56, 27–30.

    CAS  Google Scholar 

  • Williams, T. D. (1995). The penguins. Oxford: Oxford University Press.

    Google Scholar 

  • Wingfield, J. C., Hahn, T. P., Wada, M., & Schoech, S. J. (1997). Effects of day length and temperature on gonadal development, body mass, and fat depots in white-crowned sparrows, Zonotrichia leucophrys pugetensis. General and Comparative Endocrinology, 107, 44–62.

    CAS  PubMed  Google Scholar 

  • Wong, R., & Jones, C. H. (1985). A comparative analysis of feeding and hoarding in hamsters and gerbils. Behavioral Processes, 11, 301–308.

    Google Scholar 

  • Wood, A. D., & Bartness, T. J. (1996). Food deprivation-induced increases in food hoarding in Siberian hamsters is not photoperiod-dependent. Physiology and Behavior, 60, 1137–1145.

    CAS  PubMed  Google Scholar 

  • Wood, A. D., & Bartness, T. J. (1997). Partial lipectomy, but not PVN lesions, increases food hoarding by Siberian hamsters. American Journal of Physiology, 272, R783–R792.

    CAS  PubMed  Google Scholar 

  • Woods, S. C., Figlewicz, D. P., Madden, L., Porte, D., Jr., Sipols, A. J., & Seeley, R. J. (1998). NPY and food intake: Discrepancies in the model. Regulatory Peptides, 75–76, 403–408.

    PubMed  Google Scholar 

  • Zucker, I., & Boshes, M. (1982). Circannual body weight rhythms of ground squirrels: Role of gonadal hormones. American Journal of Physiology, 243, R546–R551.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Bartness, T.J., Demas, G.E. (2004). Studies of Food Intake: Lessons from Nontraditionally Studied Species. In: Stricker, E.M., Woods, S.C. (eds) Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-48643-1_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48643-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48484-1

  • Online ISBN: 978-0-306-48643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics