Skip to main content

Metabolic Signals in the Control of Food Intake

  • Chapter
Neurobiology of Food and Fluid Intake

Part of the book series: Handbook of Behavioral Neurobiology ((HBNE,volume 14))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahima, R. S., Saper, C. B., Flier, J. S., & Elmquist, J. K. (2000). Leptin regulation of neuroendocrine systems. Frontiers of Neuroendocrinology, 21, 263–307.

    CAS  Google Scholar 

  • Ahren, B., Baldwin, R. M., & Havel, P. J. (2000). Pharmacokinetics of human leptin in mice and rhesus monkeys. International Journal of Obesity and Related Metabolic Disorders, 24, 1579–1585.

    CAS  PubMed  Google Scholar 

  • Air, E. L., Benoit, S. C., Clegg, D. J., Seeley, R. J., & Woods, S. C. (2002). Insulin and leptin combine additively to reduce food intake and body weight in rats. Endocrinology, 143(6), 2449–2452.

    CAS  PubMed  Google Scholar 

  • Bagdade, J. D., Bierman, E. L., & Porte, D., Jr. (1967). The significance of basal insulin levels in the evaluation of the insulin response to glucose in diabetic and nondiabetic subjects. Journal of Clinical Investigation, 46, 1549–1557.

    CAS  PubMed  Google Scholar 

  • Baile, C. A., McLaughlin, C. L., Zinn, W., & Mayer, J. (1971). Exercise, lactate, hormones, and gold thioglucose lesions of the hypothalamus of diabetic mice. American Journal of Physiology, 221, 150–155.

    CAS  PubMed  Google Scholar 

  • Banks, W. A., & Kastin, A. J. (1998). Differential permeability of the blood-brain barrier to two pancreatic peptides: Insulin and amylin. Peptides, 19(5), 883–889.

    CAS  PubMed  Google Scholar 

  • Banks, W. A., Kastin, A. J., & Huang, W. et al. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides, 17, 305–311.

    CAS  PubMed  Google Scholar 

  • Banks, W. A., Tschop, M., Robinson, S. M., & Heiman, M. L. (2002). Extent and direction of ghrelin transport across the blood-brain barrier is determined by its unique primary structure. Journal of Pharmacology and Experimental Therapeutics, 302, 822–827.

    CAS  PubMed  Google Scholar 

  • Barrachina, M. D., Martinez, V., Wang, L., Wei, J. Y., & Tache, Y. (1997). Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proceedings of the National Academy of Sciences USA, 94, 10455–10460.

    CAS  Google Scholar 

  • Baskin, D. G., Breininger, J. F., & Schwartz, M. W. (1999). Leptin receptor mRNA identifies a subpopulation of neuropeptide Y neurons activated by fasting in rat hypothalamus. Diabetes, 48, 828–833.

    CAS  PubMed  Google Scholar 

  • Baskin, D. G., Figlewicz-Lattemann, D., Seeley, R. J., Woods, S. C., Porte, D., Jr., & Schwartz, M. W. (1999). Insulin and leptin: Dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Research 848, 114–123.

    CAS  PubMed  Google Scholar 

  • Baskin, D. G., Hahn, T. M., & Schwartz, M. W. (1999). Leptin sensitive neurons in the hypothalamus. Hormone and Metabolic Research, 31(5), 345–350.

    CAS  PubMed  Google Scholar 

  • Baskin, D. G., Marks, J. L., Schwartz, M. W., Figewicz, D. P., Woods, S. C., & Porte, D., Jr. (1990). Insulin and insulin receptors in the brain in relation to food intake and body weight. In H. Lehnert, R. Murison, H. Weiner, D. Hellhammer, & J. Beyer (Eds.), Endocrine and nutritional control of basic biological functions (pp. 202–222). Stuttgart: Hogrefe & Huber.

    Google Scholar 

  • Baskin, D. G., Schwartz, M. W., Seeley, R. J., Woods, S. C., Porte, D. J., Breininger, J. F. et al. (1999). Leptin receptor long form splice variant protein expression in neuron cell bodies of the brain and colocalization with neuropeptide Y mRNA in the arcuate nucleus. Journal of Histochemistry and Cytochemistry, 47, 353–362.

    CAS  PubMed  Google Scholar 

  • Baskin, D. G., Sipols, A. J., Schwartz, M. W., & White, M. F. (1994). Insulin receptor substrate-1 (IRS-1) expression in rat brain. Endocrinology, 134, 1952–1955.

    CAS  PubMed  Google Scholar 

  • Bates, S. H., Stearns, W. H., Dundon, T. A., Schubert, M., Tso, A. W., Wang, Y. et al. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 421(6925), 856–859.

    CAS  PubMed  Google Scholar 

  • Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L. et al. (2002). Gut hormone PYY(3–36) physiologically inhibits food intake. Nature, 418(6898), 650–654.

    CAS  PubMed  Google Scholar 

  • Baura, G., Foster, D., Porte, D., Jr., Kahn, S. E., Bergman, R. N., Cobelli, C. et al. (1993). Saturable transport of insulin from plasma into the central nervous system of dogs in vivo: A Mechanism for regulated insulin delivery to the brain. Journal of Clinical Investigation, 92, 1824–1830.

    CAS  PubMed  Google Scholar 

  • Baura, G., Foster, D. M., Kaiyala, K., Porte, D., Jr., Kahn, S. E., & Schwartz, M. W. (1996). Insulin transport from plasma into the central nervous system is inhibited by dexamethasone in dogs. Diabetes, 45(1), 86–90.

    CAS  PubMed  Google Scholar 

  • Beglinger, C., Degen, L., Matzinger, D., D’Amato, M., & Drewe, J. (2001). Loxiglumide, a CCK-A receptor antagonist, stimulates calorie intake and hunger feelings in humans. American Journal of Physiology, 280, R1149–R1154.

    CAS  PubMed  Google Scholar 

  • Bellinger, L. L. (1999). A non-essential role of liver innervation in controlling feeding behavior. Nutrition, 15, 506.

    CAS  PubMed  Google Scholar 

  • Bellinger, L. L., Dula, G., & Williams, F. E. (1994). Ingestive patterns of liver-denervated rats presented with several diets. American Journal of Physiology, 267, R44–R52.

    CAS  PubMed  Google Scholar 

  • Bellinger, L. L., Fabia, R., & Husberg, B. S. (1997). Meal patterns prior to and following liver transplantation in rats. Physiology and Behavior, 62, 525–529.

    CAS  PubMed  Google Scholar 

  • Bellinger, L. L., & Williams, F. E. (1983). Liver denervation does not modify feeding responses to metabolic challenges or hypertonic NaCl induced water consumption. Physiology and Behavior, 30, 463–470.

    CAS  PubMed  Google Scholar 

  • Benoit, S. C., Air, E. L., Coolen, L. M., Strauss, R., Jackman, A., Clegg, D. J. et al. (2002). The catabolic action of insulin in the brain is mediated by melanocortins. Journal of Neuroscience, 22(20), 9048–9052.

    CAS  PubMed  Google Scholar 

  • Berridge, K. C. (2004). Motivation concepts in behavioral neuroscience. Physiology and Behavior, in press.

    Google Scholar 

  • Berthoud, H. R., & Powley, T. L. (1992). Vagal afferent innervation of the rat fundic stomach: Morphological characterization of the gastric tension receptor. Journal of Comparative Neurology, 319, 261–276.

    CAS  PubMed  Google Scholar 

  • Bi, S., & Moran, T. H. (2002). Actions of CCK in the controls of food intake and body weight: Lessons from the CCK-A receptor deficient OLETF rat. Neuropeptides, 36, 171–181.

    CAS  PubMed  Google Scholar 

  • Birch, L. L., Johnson, S. L., Andresen, G., Peters, J. C., & Schulte, M. C. (1991). The variability of young children’s energy intake. New England Journal of Medicine, 324, 232–235.

    CAS  PubMed  Google Scholar 

  • Bjorntorp, P. (1997). Body fat distribution, insulin resistance, and metabolic diseases. Nutrition, 13, 795–803.

    CAS  PubMed  Google Scholar 

  • Bolles, R. C. (1980). Some functionalistic thoughts about regulation. In F. M. Toates & T. W. Halliday (Eds.), Analysis of motivational processes (pp. 63–75). New York: Academic Press.

    Google Scholar 

  • Brobeck, J. R. (1947–1948). Food intake as a mechanism of temperature regulation. Yale Journal of Biology and Medicine, 20, 545–552.

    Google Scholar 

  • Bruning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C. et al. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science, 289, 2122–2125.

    CAS  PubMed  Google Scholar 

  • Cabanac, M. (1975). Temperature regulation. Annual Review of Physiology, 37, 415–439.

    CAS  PubMed  Google Scholar 

  • Campfield, L. A., Brandon, P., & Smith, F. J. (1985). On-line continuous measurement of blood glucose and meal pattern in free-feeding rats: The role of glucose in meal initiation. Brain Research Bulletin, 14, 605–616.

    CAS  PubMed  Google Scholar 

  • Campfield, L. A., & Smith, F. J. (1986a). Blood glucose and meal initiation: A role for insulin? Society for Neuroscience Abstracts, 12, 109.

    Google Scholar 

  • Campfield, L. A., & Smith, F. J. (1986b). Functional coupling between transient declines in blood glucose and feeding behavior: Temporal relationships. Brain Research Bulletin, 17, 427–433.

    CAS  PubMed  Google Scholar 

  • Campfield, L. A., & Smith, F. J. (1990a). Systemic factors in the control of food intake: Evidence for patterns as signals. In E. M. Stricker (Ed.), Handbook of behavioral neurobiology. Neurobiology of food and fluid intake (Vol. 10, pp. 183–206). New York: Plenum.

    Google Scholar 

  • Campfield, L. A., & Smith, F. J. (1990b). Transient declines in blood glucose signal meal initiation. International Journal of Obesity, 14(Suppl. 3), 15–31.

    PubMed  Google Scholar 

  • Campfield, L. A., & Smith, F. J. (2003). Blood glucose dynamics and control of meal initiation: A pattern detection and recognition theory. Physiological Reviews, 83, 25–58.

    CAS  PubMed  Google Scholar 

  • Campfield, L. A., Smith, F. J., Gulsez, Y., Devos, R., & Burn, P. (1995). Mouse OB protein: Evidence for a peripheral signal linking adiposity and central neural networks. Science, 269, 546–549.

    CAS  PubMed  Google Scholar 

  • Campfield, L. A., Smith, F. J., Rosenbaum, M., & Hirsch, J. (1996). Human eating: Evidence for a physiological basis using a modified paradigm. Neuroscience and Biobehavioral Reviews, 20, 133–137.

    CAS  PubMed  Google Scholar 

  • Cannon, W. B. (1929). Organization for physiological homeostastis. Physiological Reviews, 9, 399–431.

    Google Scholar 

  • Carlson, A. J. (1916). Control of hunger in health and disease. Chicago: University of Chicago Press.

    Google Scholar 

  • Chance, W. T., Balasubramaniam, A., Zhang, F. S., Wimalawansa, S. J., & Fischer, J. E. (1991). Anorexia following the intrahypothalamic administration of amylin. Brain Research, 539(2), 352–354.

    CAS  PubMed  Google Scholar 

  • Chavez, M., Kelly, L., York, D. A., & Berthoud, H. R. (1997). Chemical lesion of visceral afferents causes transient overconsumption of unfamilar high-fat diets in rats. American Journal of Physiology, 272, R1657–R1663.

    CAS  PubMed  Google Scholar 

  • Cigolini, M., Seidell, J. C., Targher, G., Deslypere, J. P., Ellsinger, B. M., Charzewska, J. et al. (1995). Fasting serum insulin in relation to components of the metabolic syndrome in European healthy men: The European fat distribution study. Metabolism, 44, 35–40.

    CAS  PubMed  Google Scholar 

  • Clegg, D. J., Riedy, C. A., Smith, K. A., Benoit, S. C., & Woods, S. C. (2003). Differential sensitivity to central leptin and insulin in male and female rats. Diabetes, 52(3), 682–687.

    CAS  PubMed  Google Scholar 

  • Clegg, D. J., Wortman, M. D., Benoit, S. C., McOsker, C. C., & Seeley, R. J. (2002). Comparison of central and peripheral administration of C75 on food intake, body weight, and conditioned taste aversion. Diabetes, 51(11), 3196–3201.

    CAS  PubMed  Google Scholar 

  • Cohen, P., Zhao, C., Cai, X., Montez, J. M., Rohani, S. C., Feinstein, P. et al. (2001). Selective deletion of leptin receptor in neurons leads to obesity. Journal of Clinical Investigations, 108, 1113–1121.

    CAS  Google Scholar 

  • Coleman, D. L. (1973). Effects of parabiosis of obese with diabetes and normal mice. Diabetologia, 9, 294–298.

    CAS  PubMed  Google Scholar 

  • Coleman, D. L. (1978). Obese and diabetes: Two mutant genes causing diabetes-obesity syndromes in mice. Diabetologia, 14, 141–148.

    CAS  PubMed  Google Scholar 

  • Collier, G. (1986). The dialogue between the house economist and the resident physiologist. Nutrition and Behavior, 3, 9–26.

    Google Scholar 

  • Collier, G. H., Johnson, D. F., & Mitchell, C. (1999). The relation between meal size and the time between meals: Effects of cage complexity and food cost. Physiology and Behavior, 67, 339–346.

    CAS  PubMed  Google Scholar 

  • Cone, R. D., Cowley, M. A., Butler, A. A., Fan, W., Marks, D. L., & Low, M. J. (2001). The arcuate nucleus as a conduit for diverse signals relevant to energy homeostasis. International Journal of Obesity and Related and Metabolic Disorders, 25(Suppl. 5), S63–S67.

    CAS  Google Scholar 

  • Corp, E. S., McQuade, J., Moran, T. H., & Smith, G. P. (1993). Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Research, 623, 161–166.

    CAS  PubMed  Google Scholar 

  • Corp, E. S., Melville, L. D., Greenberg, D., Gibbs, J., & Smith, G. P. (1990). Effect of fourth ventricular neuropeptide Y and peptide YY on ingestive and other behaviors. American Journal of Physiology, 259, R317–R323.

    CAS  PubMed  Google Scholar 

  • Corp, E. S., Woods, S. C., Porte, D., Jr., Dorsa, D. M., Figlewicz, D. P., & Baskin, D. G. (1986). Localization of 125I-insulin binding sites in the rat hypothalamus by quantitative autoradiography. Neuroscience Letters, 70, 17–22.

    CAS  PubMed  Google Scholar 

  • Cowley, M. A., Smith, R. G., Diano, S., Tschop, M., Pronchuk, N., Grove, K. L. et al. (2003). The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron, 37(4), 649–661.

    CAS  PubMed  Google Scholar 

  • Cox, J. E., Perdue, G. S., & Tyler, W. J. (1995). Suppression of sucrose intake by continuous near-celiac and intravenous cholecystokinin infusions in rats. American Journal of Physiology, 268, R150–R155.

    CAS  PubMed  Google Scholar 

  • Crawley, J. N., & Beinfeld, M. C. (1983). Rapid development of tolerance to the behavioural actions of cholecystokinin. Nature, 302, 703–706.

    CAS  PubMed  Google Scholar 

  • Cummings, D. E., Clement, K., Purnell, J. Q., Vaisse, C., Foster, K. E., Frayo, R. S. et al. (2002). Elevated plasma ghrelin levels in Prader Willi syndrome. Nature Medicine, 8(7), 643–644.

    CAS  PubMed  Google Scholar 

  • Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E., & Weigle, D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 50(8), 1714–1719.

    CAS  PubMed  Google Scholar 

  • Cummings, D. E., & Schwartz, M. W. (2003). Genetics and pathophysiology of human obesity. Annual Review of Medicine, 54, 453–471.

    CAS  PubMed  Google Scholar 

  • Date, Y., Murakami, N., Toshinai, K., Matsukura, S., Niijima, A., Matsuo, H. et al. (2002). The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology, 123, 1120–1128.

    CAS  PubMed  Google Scholar 

  • Debons, A. F., Krimsky, I., & From, A. (1970). A direct action of insulin on the hypothalamic satiety center. American Journal of Physiology, 219, 938–943.

    CAS  PubMed  Google Scholar 

  • Debons, A. F., Krimsky, I., From, A., & Cloutier, R. J. (1969). Rapid effects of insulin on the hypothalamic satiety center. American Journal of Physiology, 217, 1114–1118.

    CAS  PubMed  Google Scholar 

  • Debons, A. F., Krimsky, I., Likuski, H. J., From, A., & Cloutier, R. J. (1968). Gold thioglucose damage to the satiety center: Inhibition in diabetes. American Journal of Physiology, 214, 652–658.

    CAS  PubMed  Google Scholar 

  • de Castro, J. M. (1998). Prior day’s intake has macronutrient-specific delayed negative feedback effects on the spontaneous food intake of free-living humans. Journal of Nutrition, 128, 61–67.

    PubMed  Google Scholar 

  • Despres, J. P. (1998). The insulin-resistance-dyslipidemic syndrome of visceral obesity: Effect on patients’risk. Obesity Research, 6(Suppl. 1), 8S–17S.

    PubMed  Google Scholar 

  • de Vries, J., Strubbe, J. H., Wildering, W. C., Gorter, J. A., & Prins, A. J. A. (1993). Patterns of body temperature during feeding in rats under varying ambient temperatures. Physiology and Behavior, 53, 229–235.

    PubMed  Google Scholar 

  • Dimitropoulos, A., Feurer, I. D., Roof, E. A., Stone, W., Butler, M. G., Sutcliffe, J. et al. (2000). Appetitive behavior, compulsivity, and neurochemistry in Prader-Willi syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 6, 125–130.

    CAS  PubMed  Google Scholar 

  • Dua, A., Hennes, M. I., Hoffman, R. G., Maas, D. L., Krakower, G. R., Sonnenberg, G. E. et al. (1996). Leptin: A significant indicator of total body fat but not of visceral fat and insulin insensitivity in African-American women. Diabetes, 45, 1635–1637.

    CAS  PubMed  Google Scholar 

  • Eastwood, C., Maubach, K., Kirkup, A. J., & Grundy, D. (1998). The role of endogenous cholecystokinin in the sensory transduction of luminal nutrient signals in the rat jejunum. Neuroscience Letters, 254, 145–148.

    CAS  PubMed  Google Scholar 

  • Edwards, G. L., Ladenheim, E. E., & Ritter, R. C. (1986). Dorsomedial hindbrain participation in cholecystokinin-induced satiety. American Journal of Physiology, 251, R971–R977.

    CAS  PubMed  Google Scholar 

  • Elmquist, J. K., Elias, C. F., & Saper, C. B. (1999). From lesions to leptin: Hypothalamic control of food intake and body weight. Neuron, 22, 221–232.

    CAS  PubMed  Google Scholar 

  • Epstein, A. N., Nicolaidis, S., & Miselis, R. (1975). The glucoprivic control of food intake and the glucostatic theory of feeding behavior. In G. J. Mogenson & F. R. Calaresci(Eds.), Neural integration of physiological mechanisms and behavior (pp. 148–168). Toronto: University Press.

    Google Scholar 

  • Figlewicz, D. P., Sipols, A. J., Green, P., Porte, D., Jr., & Woods, S. C. (1989). IVT CCK-8 is more effective than IV CCK-8 in decreasing meal size in the baboon. Brain Research Bulletin, 22, 849–852.

    CAS  PubMed  Google Scholar 

  • Figlewicz, D. P., Sipols, A. J., Seeley, R. J., Chavez, M., Woods, S. C., & Porte, D. J. (1995). Intraventricular insulin enhances the meal-suppressive efficacy of intraventricular cholecystokinin octapeptide in the baboon. Behavioral Neuroscience, 109, 567–569.

    CAS  PubMed  Google Scholar 

  • Fishman, R. B., & Dark, J. (1987). Sensory innervation of white adipose tissue. American Journal of Physiology, 253, R942–R944.

    CAS  PubMed  Google Scholar 

  • Friedman, M. I. (1990). Body fat and the metabolic control of food intake. International Journal of Obesity, 14(Suppl. 3), 53–66; discussion 66-57.

    PubMed  Google Scholar 

  • Friedman, M. I. (1997). An energy sensor for control of energy intake. Proceedings of Nutritional Society, 56(1A), 41–50.

    CAS  Google Scholar 

  • Friedman, M. I. (1998). Fuel partitioning and food intake. American Journal of Clinical Nutrition, 67(Suppl. 3), 513S–518S.

    CAS  PubMed  Google Scholar 

  • Friedman, M. I., Koch, J. E., Graczyk-Milbrandt, G., Ulrich, P. M., & Osbakken, M. D. (2002). High-fat diet prevents eating response and attenuates liver ATP decline in rats given 2,5-anhydro-D-mannitol. American Journal of Physiology, 202, R710–R714.

    Google Scholar 

  • Friedman, M. I., & Tordoff, M. G. (1986). Fatty acid oxidation and glucose utilization interact to control food intake in rats. American Journal of Physiology, 251, R840–R845.

    CAS  PubMed  Google Scholar 

  • Fujimoto, K., Fukagawa, K., Sakata, T., & Tso, P. (1993). Suppression of food intake by apolioprotein A-IV is mediated through the central nervous system in ratsjournal of Clinical Nutrition, 91, 1830–1833.

    CAS  Google Scholar 

  • Fujimoto, K., Machidori, H., Iwakiri, R., Yamamoto, K., Fujisaki, J., Sakata, T. et al. (1993). Effect of intravenous administration of apolipoprotein A-IV on patterns of feeding, drinking and ambulatory activity in rats. Brain Research, 608, 233–237.

    CAS  PubMed  Google Scholar 

  • Funakoshi, A., Miyasaka, K., Shinozaki, H., Masuda, M., Kawanami, T., Takata, Y. et al. (1994). An animal model of congenital defect of gene expression of cholecystokinin (CCK)-A receptor. Biochemical Biophysical Research Communications, 210, 787–796.

    Google Scholar 

  • Gasnier, A., & Mayer, A. (1939). Recherche sur la régulation de la nutrition. II. Mécanismes régulateurs de la nutrition chez le lapin domestique. Annals Physiologie Physicoichemie et Biologie, 15, 157–185.

    CAS  Google Scholar 

  • Geary, N. (1998). Glucagon and the control of meal size. In G. P. Smith (Ed.), Satiation. From gut to brain (pp. 164–197). New York: Oxford University press.

    Google Scholar 

  • Geary, N., Le Sauter, J., & Noh, U. (1993). Glucagon acts in the liver to control spontaneous meal size in rats. American Journal of Physiology, 264, R116–R122.

    CAS  PubMed  Google Scholar 

  • Gibbs, J., Fauser, D. J., Rowe, E. A., Rolls, E. T., & Maddison, S. P. (1979). Bombesin suppresses feeding in rats. Nature, 282, 208–210.

    CAS  PubMed  Google Scholar 

  • Gibbs, J., & Guss, J. L. (1995). Bombesin-like peptides and satiety. Appetite, 24(3), 257.

    CAS  PubMed  Google Scholar 

  • Gibbs, J., & Smith, G. P. (1977). Cholecystokinin and satiety in rats and rhesus monkeys. American Journal of Clinical Nutrition, 30, 757–761.

    Google Scholar 

  • Gibbs, J., Young, R. C., & Smith, G. P. (1973). Cholecystokinin decreases food intake in rats. Journal of Comparative and Physiological Psychology, 84, 488–495.

    CAS  PubMed  Google Scholar 

  • Grill, H. J., & Kaplan, J. M. (2002). The neuroanatomical axis for control of energy balance. Front Neuroendocrinology, 23(1), 2–40.

    CAS  Google Scholar 

  • Grossman, S. P. (1986). The role of glucose, insulin and glucagon in the regulation of food intake and body weight. Neuroscience and Biobehavioral Reviews, 10, 295–315.

    CAS  PubMed  Google Scholar 

  • Hainsworth, F. R. (1967). Saliva spreading, activity, and body temperature regulation in the rat. American Journal of Physiology, 212, 1288–1292.

    CAS  PubMed  Google Scholar 

  • Havel, P. J. (1999). Mechanisms regulating leptin production: Implications for control of energy balance. American Journal of Clinical Nutrition, 70, 305–306.

    CAS  PubMed  Google Scholar 

  • Havel, P. J. (2001). Peripheral signals conveying metabolic information to the brain: Short-term and long-term regulation of food intake and energy homeostasis. Experimental Biology and Medicine (Maywood), 226(11), 963–977.

    CAS  Google Scholar 

  • Havrankova, J., Roth, J., & Browstein, M. (1978). Insulin receptors are widely distributed in the central nervous system of the rat. Nature, 272, 827–829.

    CAS  PubMed  Google Scholar 

  • Hevener, A. L., Bergman, R. N., & Donovan, C. M. (2000). Portal vein afferents are critical for the sympathoadrenal response to hypoglycemia. Diabetes, 49, 8–12.

    CAS  PubMed  Google Scholar 

  • Hewson, G., Leighton, G. E., Hill, R. G., & Hughes, J. (1988). The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of endogenous cholecystokinin. British Journal of Pharmacology, 93, 79–84.

    CAS  PubMed  Google Scholar 

  • Hill, J. O., Wyatt, H. R., Reed, G. W., & Peters, J. C. (2003). Obesity and the environment: Where do we go from here? Science, 299(5608), 853–855.

    CAS  PubMed  Google Scholar 

  • Ikeda, H., West, D. B., Pustek, J. J., Figlewicz, D. P., Greenwood, M. R. C., Porte, D., Jr. et al. (1986). Intraventricular insulin reduces food intake and body weight of lean but not obese Zucker rats. Appetite, 7, 381–386.

    CAS  PubMed  Google Scholar 

  • Ji, H., Graczyk-Milbrandt, G., & Friedman, M. I. (2000). Metabolic inhibitors synergistically decrease hepatic energy status and increase food intake. American Journal of Physiology, 278, R1579–R1582.

    CAS  PubMed  Google Scholar 

  • Kamegai, J., Tamura, H., Shimizu, T., Ishii, S., Sugihara, H., & Wakabayashi, I. (2001). Chronic central infusion of ghrelin increases hypothalamic neuropeptide Y and Agouti-related protein mRNA levels and body weight in rats. Diabetes, 50(11), 2438–2443.

    CAS  PubMed  Google Scholar 

  • Kelly, L. A., Chavez, M., & Berthoud, H. R. (1999). Transient overconsumption of novel foods by deafferented rats: Effects of novel diet composition. Physiology and Behavior, 65, 793–800.

    CAS  PubMed  Google Scholar 

  • Kennedy, G. C. (1953). The role of depot fat in the hypothalamic control of food intake in the rat. Proceedings of the Royal Society of London (Biol), 140, 579–592.

    Google Scholar 

  • Kim, E. K., Miller, I., Landree, L. E., Borisy-Rudin, F. F., Brown, P., Tihan, T. et al. (2002). Expression of FAS within hypothalamic neurons: A model for decreased food intake after C75 treatment. American Journal of Physiology, 283, E867–E879.

    CAS  PubMed  Google Scholar 

  • Kinzig, K. P., D’Alessio, D. A., Herman, J. P., Sakai, R. R., Vahl, T. P., Figueredo, H. F. et al. (2003). CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. Journal of Neuroscience, 23, 6163–6170.

    CAS  PubMed  Google Scholar 

  • Kinzig, K. P., D’Alessio, D. A., & Seeley, R. J. (2002). The diverse roles of CNS GLP-1 in the control of food intake and the mediation of visceral illness. Journal of Neuroscience, 22. 10470–10476.

    CAS  PubMed  Google Scholar 

  • Kissileff, H. R., Pi-Sunyer, F. X., Thornton, J., & Smith, G. P. (1981). Cholecystokinin decreases food intake in man. American Journal of Clinical Nutrition, 34, 154–160.

    CAS  PubMed  Google Scholar 

  • Kloek, C., Haq, A. K., Dunn, S. L., Lavery, H. J., Banks, A. S., & Myers, M. G., Jr. (2002). Regulation of Jak kinases by intracellular leptin receptor sequences. Journal of Biological Chemistry, 277, 41547–41555.

    CAS  PubMed  Google Scholar 

  • Kohno, D., Gao, H. Z., Muroya, S., Kikuyama, S., & Yada, T. (2003). Ghrelin directly interacts with neuropeptide-Y-containing neurons in the rat arcuate nucleus: Ca2+ signaling via protein kinase A and N-type channel-dependent mechanisms and cross-talk with leptin and orexin. Diabetes, 52, 948–956.

    CAS  PubMed  Google Scholar 

  • Kopin, A. S., Mathes, W., F., McBride, E. W., Nguyen, M., Al-Haider, W., Schmitz, F. et al. (1999). The cholecystokinin-A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. Journal of Clinical Investigation, 103, 383–391.

    CAS  PubMed  Google Scholar 

  • Kulkosky, P. J., Breckenridge, C., Krinsky, R., & Woods, S. C. (1976). Satiety elicited by the C-terminal octapeptide of cholecystokinin-pancreozymin in normal and VMH-lesioned rats. Behavioral Biology, 18(2), 227–234.

    CAS  PubMed  Google Scholar 

  • Kumar, M. V., Shimokawa, T., Nagy, T. R., & Lane, M. D. (2002). Differential effects of a centrally acting fatty acid synthase inhibitor in lean and obese mice. Proceedings of the National Academy of Sciences USA 99, 1921–1925.

    CAS  Google Scholar 

  • Ladenheim, E. E., Hampton, L. L., Whitney, A. C., White, W. O., Battey, J. F., & Moran, T. H. (2002). Disruptions in feeding and body weight control in gastrin-releasing peptide receptor deficient mice. Journal of Endocrinology 174, 273–281.

    CAS  PubMed  Google Scholar 

  • Ladenheim, E. E., Jensen, R. T., Mantey, S. A., & Moran, T. H. (1992). Distinct distributions of two bombesin receptor subtypes in the rat central nervous system. Brain Research, 593(2), 168–178.

    CAS  PubMed  Google Scholar 

  • Ladenheim, E. E., Taylor, J. E., Coy, D. H., Carrigan, T. S., Wohn, A., & Moran, T. H. (1997). Caudal hindbrain neuromedin B-preferring receptors participate in the control of food intake. American Journal of Physiology, 272 (1, Pt. 2), R433–R437.

    CAS  PubMed  Google Scholar 

  • Ladenheim, E. E., Wirth, K. E., & Moran, T. H. (1996). Receptor subtype mediation of feeding suppression by bombesin-like peptides. Pharmacology Biochemistry, and Behaviour, 54(4), 705–711.

    CAS  Google Scholar 

  • Lal, S., Kirkup, A. J., Brunsden, A. M., Thompson, D. G., & Grundy, D. (2001). Vagal afferent responses to fatty acids of different chain length in the rat. American Journal of Physiology, 281, G907–G915.

    CAS  PubMed  Google Scholar 

  • Langhans, W. (1996a). Metabolic and glucostatic control of feeding. Proceedings of the Nutrition Society, 55, 497–515.

    CAS  PubMed  Google Scholar 

  • Langhans, W. (1996b). Role of the liver in the metabolic control of eating: What we know—and what we do not know. Neuroscience and Biobehavioral Reviews, 20, 145–153.

    CAS  PubMed  Google Scholar 

  • Langhans, W., & Scharrer, E. (1987a). Evidence for a vagally mediated satiety signal derived from hepatic acid oxidation. Journal of the Autonomic Nervous System, 18, 13–18.

    CAS  PubMed  Google Scholar 

  • Langhans, W., & Scharrer, E. (1987b). Role of fatty acid oxidation in control of meal pattern. Behavioral and Neural Biology, 47, 7–16.

    CAS  PubMed  Google Scholar 

  • Langhans, W., & Scharrer, E. (1992). Metabolic control of eating, energy expenditure and bioenergetics of obesity. In A. P. Simopoulos (Ed.), World review of nutrition and dietetics (pp. 1–67). Basel, Switzerland: Karger.

    Google Scholar 

  • Langhans, W., Zieger, U., Scharrer, E., & Geary, N. (1982). Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Science, 218, 894–896.

    CAS  PubMed  Google Scholar 

  • Larsen, P. J., Fledelius, C., Knudsen, L. B., & Tang-Christensen, M. (2001). Systemic administration of the long-acting GLP-1 derivative NN2211 induces lasting and reversible weight loss in both normal and obese rats. Diabetes 50, 2530–2539.

    CAS  PubMed  Google Scholar 

  • Le Sauter, J., Noh, U., & Geary, N. (1991). Hepatic portal infusion of glucagon antibodies increases spontaneous meal size in rats. American Journal of Physiology, 261, R162–R165.

    PubMed  Google Scholar 

  • Levin, B. E. (2002). Glucosensing neurons as integrators of metabolic signals. EWCBR, 22, 67.

    Google Scholar 

  • Levin, B. E., Dunn-Meynell, A. A., & Routh, V. H. (1999). Brain glucose sensing and body energy homeostasis: Role in obesity and diabetes. American Journal of Physiology, 276, R1223–R1231.

    CAS  PubMed  Google Scholar 

  • Liu, M., Doi, T., Shen, L., Woods, S. C., Seeley, R. J., Zheng, S. et al. (2001). Intestinal satiety protein apolipoprotein AIV is synthesized and regulated in rat hypothalamus. American Journal of Physiology, 280, R1382–R1387.

    CAS  PubMed  Google Scholar 

  • Liu, M., Shen, L., Doi, T., Woods, S. C., Seeley, R. J., & Tso, P. (2003). Neuropeptide Y and lipid increase apolipoprotein AIV gene expression in rat hypothalamus. Brain Research, 971, 232–238.

    CAS  PubMed  Google Scholar 

  • Loftus, T. M., Jaworsky, D. E., Frehywot, G. L., Townsend, C. A., Ronnett, G. V., Lane, M. D. et al. (2000). Reduced food intake and body weight in mice treated with fatty acid synthase inhibitors. Science, 288, 2299–2300.

    Google Scholar 

  • Lotter, E. C., & Woods, S. C. (1977). Injections of insulin and changes of body weight. Physiology and Behaviour, 18(2), 293–297.

    CAS  Google Scholar 

  • Louis-Sylvestre, J., & Le Magnen, J. (1980). Fall in blood glucose level precedes meal onset in freefeeding rats. Neuroscience and Biobehavioral Reviews, 4(Suppl. 1), 13–15.

    PubMed  Google Scholar 

  • Louis-Sylvestre, J., Servant, J. M., Molimard, R., & Le Magnen, J. (1980). Effect of liver denervation on the feeding pattern of rats. American Journal of Physiology, 239, R66–R70.

    CAS  PubMed  Google Scholar 

  • Lovett, D., & Booth, D. A. (1970). Four effects of exogenous insulin on food intake. The Quarterly Journal of Experimental Psychology, 22(3), 406–419.

    CAS  PubMed  Google Scholar 

  • Ludvik, B., Kautzky-Willer, A., Prager, R., Thomaseth, K., & Pacini, G. (1997). Amylin: History and overview. Diabetic Medicine, 14(Suppl. 2), S9–S13.

    PubMed  Google Scholar 

  • Lutz, T. A., Althaus, J., Rossi, R., & Scharrer, E. (1998). Anorectic effect of amylin is not transmitted by capsaicin-sensitive nerve fibers. American Journal of Physiology, 274(6, Pt. 2), R1777–R1782.

    CAS  PubMed  Google Scholar 

  • Lutz, T. A., Del Prete, E., & Scharrer, E. (1994). Reduction of food intake in rats by intraperitoneal injection of low doses of amylin. Physiology and Behavior, 55(5), 891–895.

    CAS  PubMed  Google Scholar 

  • Lutz, T. A., Del Prete, E., & Scharrer, E. (1995). Subdiaphragmatic vagotomy does not influence theanorectic effect of amylin. Peptides, 16(3), 457–462.

    CAS  PubMed  Google Scholar 

  • Lutz, T. A., Diener, M., & Scharrer, E. (1997). Intraportal mercaptoacetate infusion increases afferent activity in the common hepatic vagus branch of the rat. American Journal of Physiology, 273, R442–R445.

    CAS  PubMed  Google Scholar 

  • Lutz, T. A., Geary, N., Szabady, M. M., Del Prete, E., & Scharrer, E. (1995). Amylin decreases meal size in rats. Physiology and Behavior, 58(6), 1197–1202.

    CAS  PubMed  Google Scholar 

  • Lutz, T. A., Senn, M., Althaus, J., Del Prete, E., Ehrensperger, F., & Scharrer, E. (1998). Lesion of the area postrema/nucleus of the solitary tract (AP/NTS) attenuates the anorectic effects of amylin and calcitonin gene-related peptide (CGRP) in rats. Peptides, 19(2), 309–317.

    CAS  PubMed  Google Scholar 

  • MacKay, E. M., Calloway, J. W., & Barnes, R. H. (1940). Hyperalimentation in normal animals produced by protamine insulin. Journal of Nutrition, 20, 59–66.

    CAS  Google Scholar 

  • Martin, J. R., Novin, D., & Vanderweele, D. A. (1978). Loss of glucagon suppression of feeding after vagotomy in rats. American Journal of Physiology, 234, E314–E318.

    CAS  PubMed  Google Scholar 

  • Matson, C. A., Reid, D. F., Cannon, T. A., & Ritter, R. C. (2000). Cholecystokinin and leptin act synergistically to reduce body weight. American Journal of Physiology, 278, R882–R890.

    CAS  PubMed  Google Scholar 

  • Matson, C. A., Wiater, M. F., Kuijper, J. L., & Weigle, D. S. (1997). Synergy between leptin and cholecystokinin (CCK) to control daily caloric intake. Peptides, 18, 1275–1278.

    CAS  PubMed  Google Scholar 

  • Mayer, J. (1953). Genetic, traumatic, and environmental factors in the etiology of obesity. Physiological Reviews, 33, 472–508.

    CAS  PubMed  Google Scholar 

  • Mayer, J. (1955). Regulation of energy intake and the body weight: The glucostatic and lipostatic hypothesis. Annals of the New York Academy of Sciences, 63, 14–42.

    Google Scholar 

  • Mayer, J., & Thomas, D. W. (1967). Regulation of food intake and obesity. Science, 156, 328–337.

    CAS  PubMed  Google Scholar 

  • McGowan, M. K., Andrews, K. M., & Grossman, S. P. (1992). Chronicintrahyphothalamic infusions of insulin or insulin antibodies alter body weight and food intake in the rat. Physiology and Behaviour, 51, 753–766.

    CAS  Google Scholar 

  • McLaughlin, C. L., Baile, C. A., Trueheart, P. A., & Mayer, J. (1973). Factors influencing the lesioning effect of gold thioglucose on the ventromedial hypothalamus of Bar Harbor obese mice. Physiology and Behavior, 10, 339–343.

    CAS  PubMed  Google Scholar 

  • Meeran, K., O’Shea, D., Edwards, C. M., Turton, M. D., Heath, M. M., Gunn, I. et al. (1999). Repeated intracerebroventricular administration of glucagon-like peptide-1-(7–36) amide or exendin-(9–39) alters body weight in the rat. Endocrinology, 140(1), 244–250.

    CAS  PubMed  Google Scholar 

  • Mei, J., & Erlanson-Albertsson, C. (1992). Effect of enterostatin given intravenously and intracerebroventricularly on high-fat feeding in rats. Regulatory Peptides, 41, 209–218.

    CAS  PubMed  Google Scholar 

  • Mercer, J. G., & Lawrence, C. B. (1992). Selectivity of cholecystokinin receptor antagonists, MK-329 and L-365,260 for axonally transported CCK binding sites in the rat vagus nerve. Neuroscience Letters, 137, 229–231.

    CAS  PubMed  Google Scholar 

  • Miesner, J., Smith, G. P., Gibbs, J., & Tyrka, A. (1992). Intravenous infusion of CCKA-receptor antagonist increases food intake in rats. American Journal of Physiology, 262, R216–R219.

    CAS  PubMed  Google Scholar 

  • Minamino, N., Kangawa, K., & Matsuo, H. (1983). Neuromedin B: A novel bombesin-like peptide identi fied in porcine spinal cord. Biochemical Biophysical Research Communications, 114, 541–548.

    CAS  Google Scholar 

  • Moran, T. H., Ameglio, P. J., Peyton, H. J., Schwartz, G. J., & McHugh, P. R. (1993). Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. American Journal of Physiology, 265, R620–R624.

    CAS  PubMed  Google Scholar 

  • Moran, T. H., Baldessarini, A. R., Salorio, C. F., Lowery, T., & Schwartz, G. J. (1997). Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. American Journal of Physiology, 272(4, Pt. 2), R1245–R1251.

    CAS  PubMed  Google Scholar 

  • Moran, T. H., Katz, L. F., Plata-Salaman, C. R., & Schwartz, G. J. (1998). Disordered food intake and obesity in rats lacking cholecystokinin A receptors. American Journal of Physiology, 274(3, Pt. 2), R618–R625.

    CAS  PubMed  Google Scholar 

  • Moran, T. H., Knipp, S., Smedh, U., & Ladenheim, E. E. (2003). PYY(3–36) inhibits food intake and gastric emptying in monkeys. Appetite, 40, 349.

    Google Scholar 

  • Moran, T. H., Ladenheim, E. E., & Schwartz, G. J. (2001). Within-meal gut feedback signaling. International Journal of Obesity and Related Metabolic Disorders, 25,(Suppl. 5), S39–S41.

    CAS  PubMed  Google Scholar 

  • Moran, T. H., & Schwartz, G. J. (1994). Neurobiology of cholecystokinin. Critical Reviews of Neurobiology, 9, 1–28.

    CAS  Google Scholar 

  • Moran, T. H., Shnayder, L., Hostetler, A. M., & McHugh, P. R. (1988). Pylorectomy reduces the satiety action of cholecystokinin. American Journal of Physiology, 255, R1059–R1063.

    CAS  PubMed  Google Scholar 

  • Morley, J. E., Levine, A. S., Grace, M., & Kneip, J. (1985). Peptide YY (PYY), a potent orexigenic agent. Brain Research, 341, 200–203.

    CAS  PubMed  Google Scholar 

  • Muurahainen, N. E., Kissileff, H. R., & Pi-Sunyer, F. X. (1993). Intravenous infusion of bombesin reduces food intake in humans. American Journal of Physiology, 264, R350–R354.

    CAS  PubMed  Google Scholar 

  • Muurahainenn, N., Kissileff, H. R., Derogatis, A. J., & Pi-Sunyer, F. X. (1988). Effects of cholecystokininoctapeptide (CCK-8) on food intake and gastric emptying in man. Physiology and Behavior, 44, 644–649.

    Google Scholar 

  • Muurahainenn, N. E., Kissileff, H. R., Lachaussee, J., & Pi-Sunyer, F. X. (1991). Effect of a soup preload on reduction of food intake by cholecystokinin in humans. American Journal of Physiology, 260, R672–R680.

    Google Scholar 

  • Naslund, E., Barkeling, B., King, N., Gutniak, M., Blundell, J. E., Holst, J.J. et al. (1999). Energy intake and appetite are suppressed by glucagon-like peptide-1 (GLP-1) in obese men. International Journal of Obesity and Related Metabolic Disorders, 23(3), 304–311.

    CAS  PubMed  Google Scholar 

  • Nicolaidis, S. (1978). Mecanisme nerveux de l’equilibre energetique. Journees Annuelles de Diabetologie de l’Hotel-Dieu, 1, 152–156.

    Google Scholar 

  • Nicolaidis, S., & Even, P. (1984). Mesure du métabolisme de fond en relation avec la prise alimentaire: Hypothese iscymétrique. Comptes Rendus Academie de Sciences, Paris, 298, 295–300.

    CAS  Google Scholar 

  • Niswender, K. D., Morrison, C. D., Clegg, D. J., Olson, R., Baskin, D. G., Myers, M. G., Jr. et al. (2003). Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes, 52(2), 227–231.

    CAS  PubMed  Google Scholar 

  • Niswender, K. D., Morton, G. J., Stearns, W. H., Rhodes, C. J., Myers, M. G., Jr., & Schwartz, M. W. (2001). Intracellular signalling. Key enzyme in leptin-induced anorexia. Nature, 413(6858), 794–795.

    CAS  PubMed  Google Scholar 

  • Niswender, K. D., & Schwartz, M. W. (2003). Insulin and leptin revisited: Adiposity signals with overlapping physiological and intracellular signaling capabilities. Frontiers in Neuroendocrinology, 24, 1–10.

    CAS  PubMed  Google Scholar 

  • Nonaka, N., Shioda, S., Niehoff, M. L., & Banks, W. A. (2003). Characterization of blood-brain barrier permeability to PYY3–36 in mouse. Journal of Pharmacology and Experimental Therapeutics, 306, 948–953.

    CAS  PubMed  Google Scholar 

  • Obici, S., Feng, Z., Arduini, A., Conti, R., & Rossetti, L. (2003). Inhibition of hypothalamic carnitine palmitoyltransferase-1 decreases food intake and glucose production. Nature Medicine, 9, 756–761.

    CAS  PubMed  Google Scholar 

  • Obici, S., Feng, Z., Karkanias, G., Baskin, D. G., & Rossetti, L. (2002). Decreasing hypothalamic insulin receptors causes hyperphagia and insulin resistance in rats. Nature Neuroscience, 5(6), 566–572.

    CAS  PubMed  Google Scholar 

  • Obici, S., Feng, Z., Morgan, K., Stein, D., Karkanias, G., & Rossetti, L. (2002). Central administration of oleic acid inhibits glucose production and food intake. Diabetes, 51(2), 271–275.

    CAS  PubMed  Google Scholar 

  • Okada, S., York, D. A., Bray, G. A., & Erlanson-Albertsson, C. (1991). Enterostatin (Val-Pro-Asp-Pro-Arg), the activation peptide of procolipase, selectively reduces fat intake. Physiology and Behavior, 49, 1185–1189.

    CAS  PubMed  Google Scholar 

  • Okada, S., York, D. A., Bray, G. A., Mei, J., & Erlanson-Albertsson, C. (1992). Differential inhibition of fat intake in two strains of rat by the peptide enterostatin. American Journal of Physiology, 262, R1111–R1116.

    CAS  PubMed  Google Scholar 

  • Oomura, Y. (1983). Glucose as a regulator of neuronal activity. Advances in Metabolic Disorders, 10, 31–65.

    CAS  PubMed  Google Scholar 

  • Oomura, Y., Ono, T., Ooyama, H., & Wayner, M. J. (1969). Glucose and osmosensitive neurones of the rat hypothalamus. Nature, 222(190), 282–284.

    CAS  PubMed  Google Scholar 

  • Oomura, Y., Ooyama, H., Sugimori, M., Nakamura, T., & Yamada, Y. (1974). Glucose inhibition of the glucose-sensitive neurone in the rat lateral hypothalamus. Nature, 247(439), 284–286.

    CAS  PubMed  Google Scholar 

  • Park, C. R., Benthem, L., Seeley, R. J., Wilkinson, C. W., Friedman, M. I., & Woods, S. C. (1996). A comparison of the effects of food deprivation and of 2–5 anhydrous-D-mannitol on metabolism and ingestion. American Journal of Physiology, 270, R1250–R1256.

    CAS  PubMed  Google Scholar 

  • Park, C. R., Seeley, R. J., Benthem, L., Friedman, M. I., & Woods, S. C. (1995). The effect of 2–5 anhydro-D mannitol on whole body metabolic parameters. American Journal of Physiology, 268, R299–R302.

    CAS  PubMed  Google Scholar 

  • Pinel, J. P. J., Assanand, S., & Lehman, D. R. (2000). Hunger, eating, and ill health. American Psychologist, 55, 1105–1116.

    CAS  PubMed  Google Scholar 

  • Polonsky, K. S., Given, E., & Carter, V. (1988). Twenty-four-hour profiles and pulsatile patterns of insulin secretion in normal and obese subjects. Journal of Clinical Investigation, 81, 442–448.

    CAS  PubMed  Google Scholar 

  • Porte, D. J., Baskin, D. G., & Schwartz, M. W. (2002). Leptin and insulin action in the central nervous system. Nutrition Reviews, 60, S20–S29.

    PubMed  Google Scholar 

  • Ramsay, D. S., Seeley, R. J., Bolles, R. C., & Woods, S. C. (1996). Ingestive homeostasis: The primacy of learning. In E. D. Capaldi (Ed.), Why we eat what we eat (pp. 11–27). Washington, DC: American Psychological Association.

    Google Scholar 

  • Ramsay, D. S., & Woods, S. C. (1997). Biological consequences of drug administration: Implications for acute and chronic tolerance. Psychological Reviews, 104, 170–193.

    CAS  Google Scholar 

  • Reidelberger, R. D., & O’Rourke, M. F. (1989). Potent cholecystokinin antagonist L-364,718 stimulates food intake in rats. American Journal of Physiology, 257, R1512–R1518.

    CAS  PubMed  Google Scholar 

  • Rezek, M., & Novin, D. (1976). Duodenal nutrient infusion: Effects on feeding in intact and vagotomized rabbits. Journal of Nutrition, 106, 812–820.

    CAS  PubMed  Google Scholar 

  • Rezek, M., & Novin, D. (1977). Hepatic-portal nutrient infustion: Effect on feeding in intact and vagotomized rabbits. American Journal of Physiology, 232, E119–E130.

    CAS  PubMed  Google Scholar 

  • Richardson, R. D., Omachi, K., Kermani, R., & Woods, S. C. (2002). Intraventricular insulin potentiates the anorexic Effect of corticotropin releasing hormone in rats. American Journal of Physiology, 283, R1321–R1326.

    CAS  PubMed  Google Scholar 

  • Riedy, C. A., Chavez, M., Figlewicz, D. P., & Woods, S. C. (1995). Central insulin enhances sensitivity to cholecystokinin. Physiology and Behavior, 58, 755–760.

    CAS  PubMed  Google Scholar 

  • Rinaman, L., Hoffman, G. E., Dohanics, J., (ptLe), W. W., Stricker, E. M., & Verbalis, J. G. (1995). Cholecystokinin activates catecholaminergic neurons in the caudal medulla that innervate the paraventricular nucleus of the hypothalamus in rats. Journal of Comparative Neurology, 360, 246–256.

    CAS  PubMed  Google Scholar 

  • Ritter, R. C., & Slusser, P. (1980). 5-Thio-D-glucose causes increased feeding and hyperglycemia in the rat. American Journal of Physiology, 238(2), E141–E144.

    CAS  PubMed  Google Scholar 

  • Ritter, S., & Dinh, T. T. (1994). 2-Mercaptoacetate and 2-deoxy-D-glucose induce Fos-like immunoreactivity in rat brain. Brain Research, 641(1), 111–120.

    CAS  PubMed  Google Scholar 

  • Ritter, S., Llewellyn-Smith, I., & Dinh, T. T. (1998). Subgroups of hindbrain catecholamine neurons are selectively activated by 2-deoxy-D-glucose induced metabolic challenge. Brain Research, 805, 41–54.

    CAS  PubMed  Google Scholar 

  • Ritter, S., Scheurink, A. J. W., & Singer, L. K. (1995). 2-deoxy-D-glucose but not 2-mercaptoacetate increases Fos-like immunoreactivity in adrenal medulla and sympathetic preganglionic neurons. Obesity Research, 3(Suppl. 5), 729S–734S.

    CAS  PubMed  Google Scholar 

  • Ruffin, M., & Nicolaidis, S. (1999). Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Brain Research, 846, 23–29.

    CAS  PubMed  Google Scholar 

  • Rushing, P. A., & Gibbs, J. (1998). Prolongation of intermeal interval by gastrin-releasing peptide depends upon time of delivery. Peptides, 19, 1439–1442.

    CAS  PubMed  Google Scholar 

  • Rushing, P. A., Hagan, M. M., Seeley, R. J., Lutz, T. A., & Woods, S. C. (2000). Amylin: A novel action in the brain to reduce body weight. Endocrinology, 141, 850–853.

    CAS  PubMed  Google Scholar 

  • Rushing, P. A., Henderson, R. P., & Gibbs, J. (1998). Prolongation of the postprandial intermeal interval by gastrin-releasing peptide 1–27 in spontaneously feeding rats. Peptides, 19, 175–177.

    CAS  PubMed  Google Scholar 

  • Rushing, P. A., Lutz, T. A., Seeley, R. J., & Woods, S. C. (2000). Amylin and insulin interact to reduce food intake in rats. Hormone and Metabolic Research, 32, 62–65.

    CAS  PubMed  Google Scholar 

  • Russek, M. (1981). Current status of the hepatostatic theory of food intake control. Appetite, 2, 137–143.

    CAS  PubMed  Google Scholar 

  • Salter, J. M. (1960). Metabolic effects of glucagon in the Wistar rat. American Journal of Clinical Nutrition, 8, 535–539.

    CAS  Google Scholar 

  • Scharrer, E., & Langhans, W. (1986). Control of food intake by fatty acid oxidation. American Journal of Physiology, 250, R1003–R1006.

    CAS  PubMed  Google Scholar 

  • Schwartz, G. J., McHugh, P. R., & Moran, T. H. (1993). Gastric loads and cholecystokinin synergistically stimulate rat gastric vagal afferents. American Journal of Physiology, 265, R872–R876.

    CAS  PubMed  Google Scholar 

  • Schwartz, G. J., & Moran, T. H. (1996). Sub-diaphragmatic vagal afferent integration of meal-related gastrointestinal signals. Neuroscience and Biobehavioral Reviews, 20, 47–56.

    CAS  PubMed  Google Scholar 

  • Schwartz, G. J., Moran, T. H., White, W. O., & Ladenheim, E. E. (1997). Relationships between gastric motility and gastric vagal afferent responses to CCK and GRP in rats differ. American Journal of Physiology, 272(6, Pt. 2), R1726–R1733.

    CAS  PubMed  Google Scholar 

  • Schwartz, G. J., Tougas, G., & Moran, T. H. (1995). Integration of vagal afferent responses to duodenal loads and exogenous CCK in rats. Peptides, 16, 707–711.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. W., Bergman, R. N., Kahn, S. E., Taborsky, G. J., Jr., Fisher, L. D., Sipols, A. J. et al. (1991). Evidence for uptake of plasma insulin into cerebrospinal fluid through an intermediate compartment in dogs. Journal of Clinical Investigation, 88, 1272–1281.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. W., Peskind, E., Raskind, M., Nicolson, M., Moore, J., Morawiecki, A. et al. (1996). Cerebrospinal fluid leptin levels: Relationship to plasma levels and to adiposity in humans. Nature Medicine, 2(5), 589–593.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. W., Seeley, R. J., Campfield, L. A., Burn, P., & Baskin, D. G. (1996). Identification of hypothalmic targets of leptin action. Journal of Clinical Investigation, 98, 1101–1106.

    CAS  PubMed  Google Scholar 

  • Schwartz, M. W., Woods, S. C., Porte, D. J., Seeley, R. J., & Baskin, D. G. (2000). Central nervous system control of food intake. Nature, 404, 661–671.

    CAS  PubMed  Google Scholar 

  • Seeley, R. J., & Moran, T. H. (2002). Principles for interpreting interactions among the multiple systems that influence food intake. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 283(1), R46–R53.

    CAS  PubMed  Google Scholar 

  • Seeley, R. J., Ramsay, D. S., & Woods, S. C. (1997). Regulation of food intake: Interactions between learning and physiology. In M. E. Bouton & M. S. Fanselow (Eds.), Learning, motivation, and cognition: The functional behaviorism of Robert C. Bolles (pp. 99–115). Washington, DC: American Psychological Association.

    Google Scholar 

  • Shargill, N. S., Tsuji, S., Bray, G. A., & Erlanson-Albertsson, C. (1991). Enterostatin suppresses food intake following injection into the third ventricle of rats. Brain Research, 544, 137–140.

    CAS  PubMed  Google Scholar 

  • Shiiya, T., Nakazato, M., Mizuta, M., Date, Y., Mondal, M. S., Tanaka, M. et al. (2002). Plasma ghrelin levels in lean and obese humans and the effect of glucose on ghrelin secretion. Journal of Clinical Endocrinology and Metabolism, 87, 240–244.

    CAS  PubMed  Google Scholar 

  • Shulman, G. I. (1999). Cellular mechanisms of insulin resistance in humans. American Journal of Cardiology, 84, 3J–10J.

    CAS  PubMed  Google Scholar 

  • Sindelar, D. K., Havel, P. J., Seeley, R. J., Wilkinson, C. W., Woods, S. C., & Schwartz, M. W. (1999). Low plasma leptin levels contribute to diabetic hyperphagia in rats. Diabetes, 48, 1275–1280.

    CAS  PubMed  Google Scholar 

  • Singer, L. K., & Ritter, S. (1996). Intraventricular glucose blocks feeding induced by 2-deoxy-D-glucose but not mercaptoacetate. Physiology and Behavior, 59, 921–923.

    CAS  PubMed  Google Scholar 

  • Sipols, A. J., Baskin, D. G., & Schwartz, M. W. (1995). Effect of intracerebroventricular insulin infusion on diabetic hyperphagia and hypothalamic neuropeptide gene expression. Diabetes, 44, 147–151.

    CAS  PubMed  Google Scholar 

  • Smith, G. P., & Epstein, A. N. (1969). Increased feeding in response to decreased glucose utilization in rat and monkey. American Journal of Physiology, 217, 1083–1087.

    CAS  PubMed  Google Scholar 

  • Smith, G. P., & Gibbs, J. (1992). The development and proof of the cholecystokinin hypothesis of satiety. In C. T. Dourish, S. J. Cooper, S. D. Iversen, & L. L. Iversen (Eds.), Multiple cholecystokinin receptors in the CNS (pp. 166–182). Oxford: Oxford University Press.

    Google Scholar 

  • Smith, G. P., & Gibbs, J. (1998). The satiating effects of cholecystokinin and bombesin-like peptides. In G. P. Smith (Ed.), Satiation. From gut to brain (pp. 97–125). New York: Oxford Publishing.

    Google Scholar 

  • Smith, G. P., Jerome, C., Cushin, B. J., Eterno, R., & Simansky, K. J. (1981). Abdominal vagotomy blocks the satiety effect of cholecystokinin in the rat. Science, 213, 1036–1037.

    CAS  PubMed  Google Scholar 

  • Smith, G. P., Jerome, C., & Norgren, R. (1985). Afferent axons in abdominal vagus mediate satiety effect of cholecystokinin in rats. American Journal of Physiology, 249, R638–R641.

    CAS  PubMed  Google Scholar 

  • Spanswick, D., Smith, M. A., Groppi, V. E., Logan, S. D., & Ashford, M. L. (1997). Leptin inhibits hypothalamic neurons by activation of ATP-sensitive potassium channels. Nature, 390(6659), 521–525.

    CAS  PubMed  Google Scholar 

  • Spanswick, D., Smith, M. A., Mirshamsi, S., Routh, V. H., & Ashford, M. L. (2000). Insulin activates ATPsensitive K+ channels in hypothalamic neurons of lean, but not obese rats. Nature Neuroscience, 3(8), 757–758.

    CAS  PubMed  Google Scholar 

  • Stricker, E. M., Rowland, N., Saller, C. F., & Friedman, M. I. (1977). Homeostasis during hypoglycemia: Central control of adrenal secretion and peripheral control of feeding. Science, 196, 79–81.

    CAS  PubMed  Google Scholar 

  • Strubbe, J. H., & Mein, C. G. (1977). Increased feeding in response to bilateral injection of insulin antibodies in the VMH. Physiology and Behavior, 19, 309–313.

    CAS  PubMed  Google Scholar 

  • Strubbe, J. H., & Woods, S. C. (2004). The timing of meals. Psychological Review, 111, 128–141.

    PubMed  Google Scholar 

  • Stuckey, J. A., Gibbs, J., & Smith, G. P. (1985). Neural disconnection of gut from brain blocks bombesininduced satiety. Peptides, 6, 1249–1252.

    CAS  PubMed  Google Scholar 

  • Tang-Christensen, M., Larsen, P. J., Goke, R., Fink-Jensen, A., Jessop, D. S., Moller, M. et al. (1996). Central administration of GLP-1-(7–36) amide inhibits food and water intake in rats. American Journal of Physiology, 271(4, Pt. 2), R848–R856.

    CAS  PubMed  Google Scholar 

  • Tang-Christensen, M., Larsen, P. J., Thulesen, J., Romer, J., & Vrang, N. (2000). The proglucagonderived peptide, glucagon-like peptide-2, is a neurotransmitter involved in the regulation of food intake. Nature Medicine, 6(7), 802–807.

    CAS  PubMed  Google Scholar 

  • Tartaglia, L. A. (1997). The leptin receptor. Journal of Biological Chemistry, 272, 6093–6096.

    CAS  PubMed  Google Scholar 

  • Thaw, A. K., Smith, J. C., & Gibbs, J. (1998). Mammalian bombesin-like peptides extend the intermeal interval in freely feeding rats. Physiology and Behavior, 64, 425–428.

    CAS  PubMed  Google Scholar 

  • Thiele, T. E., Van Dijk, G., Campfield, L. A., Smith, F. J., Burn, P., Woods, S. C. et al. (1997). Central infusion of GLP-1, but not leptin, produces conditioned taste aversions in rats. American Journal of Physiology, 272 (2, Pt. 2), R726–R730.

    CAS  PubMed  Google Scholar 

  • Thöne-Reineke, C., Ortman, S., Castaneda, T., Birringer, M., & Tschöp, M. (2003). Effects of peripheral administration of PYY(3–36) on energy balance in mice. Paper presented at the Endocrine Society, Philadelphia.

    Google Scholar 

  • Tordoff, M. G., & Friedman, M. I. (1986). Hepatic portal glucose infusions decrease food intake and increase food preference. American Journal of Physiology, 251, R192–R196.

    CAS  PubMed  Google Scholar 

  • Tordoff, M. G., & Friedman, M. I. (1988). Hepatic control of feeding: Effect of glucose, fructose, and mannitol infusion. American Journal of Physiology, 254, R969–R976.

    CAS  PubMed  Google Scholar 

  • Tordoff, M. G., & Friedman, M. I. (1994). Altered hepatic metabolic response to carbohydrate loads in rats with hepatic branch vagotomy or cholinergic blockade. Journal of the Autonomic Nervous System, 47, 255–261.

    CAS  PubMed  Google Scholar 

  • Tordoff, M. G., Rafka, R., DiNovi, M. J., & Friedman, M. I. (1988). 2,5-anhydro-D-mannitol: A fructose analogue that increases food intake in rats. American Journal of Physiology, 254, R150–R153.

    CAS  PubMed  Google Scholar 

  • Tordoff, M. G., Rawson, N., & Friedman, M. I. (1991). 2,5-anhydro-D-mannitol acts in liver to initiate feeding. American Journal of Physiology, 261, R283–R288.

    CAS  PubMed  Google Scholar 

  • Tschöp, M., Smiley, D. L., & Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature, 407(6806), 908–913.

    PubMed  Google Scholar 

  • Tschöp, M., Weyer, C., Tataranni, P. A., Devanarayan, V., Ravussin, E., & Heiman, M. L. (2001). Circulating ghrelin levels are decreased in human obesity. Diabetes, 50(4), 707–709.

    PubMed  Google Scholar 

  • Tso, P., Liu, M., Kalogeris, T. J., & Thomson, A. B. (2001). The role of apolipoprotein A-IV in the regulation of food intake. Annual Review of Nutrition, 21, 231–254.

    CAS  PubMed  Google Scholar 

  • Turton, M. D., O’Shea, D., Gunn, I., Beak, S. A., Edwards, C. M. B., Meeran, K. et al. (1996). A role for glucagon-like peptide-1 in the central regulation of feeding. Nature, 379, 69–72.

    CAS  PubMed  Google Scholar 

  • van Dijk, G., Thiele, T. E., Donahey, J. C., Campfield, L. A., Smith, F. J., Burn, P. et al. (1996). Central infusions of leptin and GLP-1-(7-36) amide differentially stimulate c-FLI in the rat brain. American Journal of Physiology, 271(4, Pt. 2), R1096–R1100.

    PubMed  Google Scholar 

  • van Dijk, G., Thiele, T. E., Seeley, R. J., Woods, S. C., & Bernstein, I. L. (1997). Glucagon-like peptide-1 and satiety? Nature, 385, 214.

    PubMed  Google Scholar 

  • Vanderweele, D. A., Geiselman, P. J., & Novin, D. (1979). Pancreatic glucagon, food deprivation and feeding in intact and vagotomized rabbits. Physiology and Behavior, 23, 155–158.

    CAS  PubMed  Google Scholar 

  • Vanderweele, D. A., Novin, D., Rezek, M., & Sanderson, J. D. (1974). Duodenal or hepatic-portal glucose perfusion: Evidence for duodenally-based satiety. Physiology and Behavior, 12, 467–473.

    CAS  PubMed  Google Scholar 

  • VanderWeele, D. A., Skoog, D. R., & Novin, D. (1976). Glycogen levels and peripheral mechanisms of glucose-induced spppression of feeding. American Journal of Physiology, 231, 1655–1659.

    CAS  PubMed  Google Scholar 

  • Virally, M. L., & Guillausseau, P. J. (1999). Hypoglycemia in adults. Diabetes Metabolism, 25, 477–490.

    CAS  PubMed  Google Scholar 

  • Wajchenberg, B. L. (2000). Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Endocrine Reviews, 21(6), 697–738.

    CAS  PubMed  Google Scholar 

  • Wang, L., Saint-Pierre, D. H., & Tache, Y. (2002). Peripheral ghrelin selectively increases Fos expression in neuropeptide Y-synthesizing neurons in mouse hypothalamic arcuate nucleus. Neuroscience Letters, 325(1), 47–51.

    CAS  PubMed  Google Scholar 

  • West, D. B., Fey, D., & Woods, S. C. (1984). Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. American Journal of Physiology, 246, R776–R787.

    CAS  PubMed  Google Scholar 

  • West, D. B., Greenwood, M. R. C., Marshall, K. A., & Woods, S. C. (1987). Lithium chloride, cholecystokinin and meal patterns: Evidence the cholecystokinin suppresses meal size in rats without causing malaise. Appetite, 8, 221–227.

    CAS  PubMed  Google Scholar 

  • Wirtshafter, D., & Davis, J. D. (1977). Set points, settling points, and the control of body weight. Physiology and Behavior, 19, 75–78.

    CAS  PubMed  Google Scholar 

  • Woods, S. C. (1991). The eating paradox: How we tolerate food. Psychological Reviews, 98, 488–505.

    CAS  Google Scholar 

  • Woods, S. C. (2002). The house economist and the eating paradox. Appetite, 38, 161–165.

    PubMed  Google Scholar 

  • Woods, S. C., Lotter, E. C., McKay, L. D., & Porte, D., Jr. (1979). Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature, 282, 503–505.

    CAS  PubMed  Google Scholar 

  • Woods, S. C., Schwartz, M. W., Baskin, D. G., & Seeley, R. J. (2000). Food intake and the regulation of body weight. Annual Review of Psychology, 51, 255–277.

    CAS  PubMed  Google Scholar 

  • Woods, S. C., Seeley, R. J., Baskin, D. G., & Schwartz, M. W. (2003). Insulin and the blood-brain barrier. Current Pharmaceutical Design, 9, 795–800.

    CAS  PubMed  Google Scholar 

  • Woods, S. C., Seeley, R. J., Porte, D. J., & Schwartz, M. W. (1998). Signals that regulate food intake and energy homeostasis. Science, 280, 1378–1383.

    CAS  PubMed  Google Scholar 

  • Woods, S. C., & Strubbe, J. H. (1994). The psychobiology of meals. Psychonomic Bulletin and Review, 1, 141–155.

    Google Scholar 

  • Wortman, M. D., Clegg, D. J., D’Alessio, D., Woods, S. C., & Seeley, R. J. (2003). C75 inhibits food intake by increasing CNS glucose metabolism. Nature Medicine, 9, 483–485.

    CAS  PubMed  Google Scholar 

  • Wren, A. M., Seal, L. J., Cohen, M. A., Brynes, A. E., Frost, G. S., Murphy, K. G. et al. (2001). Ghrelin enhances appetite and increases food intake in humans. Journal of Clinical Endocrinology and Metabolism, 86(12), 5992.

    CAS  PubMed  Google Scholar 

  • Wren, A. M., Small, C. J., Abbott, C. R., Dhillo, W. S., Seal, L. J., Cohen, M. A. et al. (2001). Ghrelin causes hyperphagia and obesity in rats. Diabetes, 50(11), 2540–2547.

    CAS  PubMed  Google Scholar 

  • Wren, A. M., Small, C. J., Ward, H. L., Murphy, K. G., Dakin, C. L., Taheri, S. et al. (2000). The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion. Endocrinology, 141(11), 4325–4328.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Woods, S.C. (2004). Metabolic Signals in the Control of Food Intake. In: Stricker, E.M., Woods, S.C. (eds) Neurobiology of Food and Fluid Intake. Handbook of Behavioral Neurobiology, vol 14. Springer, Boston, MA. https://doi.org/10.1007/0-306-48643-1_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48643-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48484-1

  • Online ISBN: 978-0-306-48643-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics