Skip to main content

Power Control in Wireless Networks

Characteristics and Fundamentals

  • Chapter

Abstract

The global communications systems critically rely on control algorithms of various kinds. In UMTS (universal mobile telephony system) - the third generation mobile telephony system just being launched, power control algorithms play an important role for efficient resource utilization. This chapter describes power control fundamentals including both theoretical and practical limitations. The relations to session management such as admission and congestion control is also addressed. Concepts and algorithms are illustrated by simple examples and simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 3GPP (2003a). Deployment aspects. Technical Specification TSG RAN 25.943.

    Google Scholar 

  • 3GPP (2003b). Physical radio procedures. Technical Specification TSG RAN 25.214.

    Google Scholar 

  • 3GPP (2003c). UTRAN Iub interface NBAP signalling. Technical Specification TSG RAN 25.433.

    Google Scholar 

  • Adachi, F., Sawahashi, M., and Suda, H. (1998). Wideband DS-CDMA for nextgeneration mobile communications systems. IEEE Communications Magazine, 36(9).

    Google Scholar 

  • Almgren, M., Andersson, H., and Wallstedt, K. (1994). Power control in a cellular system. In Proc. IEEE Vehicular Technology Conference, Stockholm, Sweden.

    Google Scholar 

  • Andersin, M., Mandayam, N., and Yates, D. (1998). Subspace based estimation of the signal to interference ratio for TDMA cellular systems. Wireless Networks, 4(3).

    Google Scholar 

  • Åstrmm, K. and Wittenmark, B. (1997). Computer Controlled Systems-Theory and Design. Prentice-Hall, Englewood Cliffs, NJ, USA, third edition.

    Google Scholar 

  • Berggren, F., Kim, S.-L., Jæntti, R., and Zander, J. (2001). Joint power control and intracell scheduling of DS-CDMA nonreal time data. IEEE Journal on Selected Areas in Communications, 19(10).

    Google Scholar 

  • Bertsekas, D. P. and Tsitsiklis, J. N. (1989). Parallel and Distributed Computation. Prentice Hall, Englewood Cliffs, NJ, USA.

    Google Scholar 

  • Blom, J., Gunnarsson, F., and Gustafsson, F. (1998). Constrained power control subject to time delays. In Proc. International Conference on Telecommunications, Chalkidiki, Greece.

    Google Scholar 

  • Blom, J., Gunnarsson, F., and Gustafsson, F. (1999). Estimation in cellular radio systems. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing., Phoenix, AZ, USA.

    Google Scholar 

  • Choel, S., Chulajata, T., Kwon, H. M., Koh, B.-J., and Hong, S.-C. (1999). Linear prediction at base station for closed loop power control. In Proc. IEEE Vehicular Technology Conference, Houston, TX, USA.

    Google Scholar 

  • Dietrich, P., Rao, R., Chockalingam, A., and Milstein, L. (1996). A log-linear closed loop power control model. In Proc. IEEE Vehicular Technology Conference, Atlanta, GA, USA.

    Google Scholar 

  • Ekman, T., Ahlén, A., and Sternad, M. (2002). Unbiased power prediction of Rayleigh fading channels. In Proc. IEEE Vehicular Technology Conference, Vancouver, Canada.

    Google Scholar 

  • Ekman, T. and Kubin, G. (1999). Nonlinear prediction of mobile radio channels: measurements and MARS model designs. In Proc. IEEE International Conference on Acoustics, Speech, and Signal Processing, Phoenix, AZ, USA.

    Google Scholar 

  • Ericsson, A. and Millnert, M. (1996). Fast power control to counteract rayleigh fading in cellular radio systems. In Proc. RVK, Luleå, Sweden.

    Google Scholar 

  • Foschini, G. and Miljanic, Z. (1993). A simple distributed autonomus power control algorithm and its convergence. IEEE Transactions on Vehicular Technology, 42(4).

    Google Scholar 

  • Freris, N., Jeans, T., and Taaghol, P. (2001). Adaptive SIR estimation in DSCDMA cellular systems using Kalman filtering. IEE Electronics Letters, 37(5).

    Google Scholar 

  • Godlewski, P. and Nuaymi, L. (1999). Auto-interference analysis in cellular systems. In Proc. IEEE Vehicular Technology Conference, Houston, TX, USA.

    Google Scholar 

  • Goldsmith, A. (1997). The capacity of downlink fading channels with variable rate and power. IEEE Transactions on Vehicular Technology, 46(3).

    Google Scholar 

  • Grandell, J. and Salonaho, O. (2001). Closed-loop power control algorithms in soft handover for WCDMA systems. In Proc. IEEE International Conference on Communications, Helsinki, Finland.

    Google Scholar 

  • Grandhi, S., Vijayan, R., and Goodman, D. (1994). Distributed power control in cellular radio systems. IEEE Transactions on Communications, 42(2).

    Google Scholar 

  • Gunnarsson, F. (2000). Power Control in Cellular Radio System: Analysis, Design and Estimation. PhD thesis, Linköpings universitet, Linköping, Sweden.

    Google Scholar 

  • Gunnarsson, F. (2001). Fundamental limitations of power control in WCDMA. In Proc. IEEE Vehicular Technology Conference, Atlantic City, NJ, USA.

    Google Scholar 

  • Gunnarsson, F. and Gustafsson, F. (2001). Time delay compensation in power controlled cellular radio systems. IEEE Communications Letters, 5(7).

    Google Scholar 

  • Gunnarsson, F. and Gustafsson, F. (2002). Power control in cellular radio systems — from a control theory perspective. In Proc. IFAC World Congress, Barcelona, Spain.

    Google Scholar 

  • Gunnarsson, F., Gustafsson, F., and Blom, J. (1999). Pole placement design of power control algorithms. In Proc. IEEE Vehicular Technology Conference, Houston, TX, USA.

    Google Scholar 

  • Gunnarsson, F., Gustafsson, F., and Blom, J. (2001). Dynamical effects of time delays and time delay compensation in power controlled DS-CDMA. IEEE Journal on Selected Areas in Communications, 19(1).

    Google Scholar 

  • Hanly, S. and Tse, D.-N. (1999). Power control and capacity of spread spectrum wireless networks. Automatica, 35(12).

    Google Scholar 

  • Holma, H. and Toskala, A., editors (2000). WCDMA for UMTS. Radio Access for Third Generation Mobile Communications. Wiley, New York, NY, USA.

    Google Scholar 

  • Jakes, W. C. (1974). Microwave mobile communications. John Wiley & Sons, New York, NY, USA.

    Google Scholar 

  • Jäntti, R. and Kim, S.-L. (2000). Second-order power control with asymptotically fast convergence. IEEE Journal on Selected Areas in Communications, 18(3).

    Google Scholar 

  • Kawai, H., Suda, H., and Adachi, F. (1999). Outer-loop control of target SIR for fast transmit power control in turbo-coded W-CDMA mobile radio. IEE Electronics Letters, 35(9).

    Google Scholar 

  • Kurniawan, A., Perreau, S., Choi, J., and Lever, K. (2001). SIR-based power control in third generation CDMA systems. In Proc. International Conference on Information Communications & Signal Processing, Singapore.

    Google Scholar 

  • Lee, T. and Lin, J. (1996). A study on the distributed power control for cellular mobile systems. In Proc. IEEE Vehicular Technology Conference, Atlanta, GA, USA.

    Google Scholar 

  • Lelic, D. and Gajic, Z. (2002). Gauss-Seidel iterations for SIR-based power updates for 3G wireless CDMA communications networks. In Proc. Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, USA.

    Google Scholar 

  • Li, W., Dubey, V., and Law, C. (2001). A new generic multistep power control algorithm for the LEO satellite channel with high dynamics. To appear in IEEE Communications Letters.

    Google Scholar 

  • Li, X. and Gajic, Z. (2002). An improved SIR-based power control for CDMA systems using Steffensen iterations. In Proc. Information Science and Systems Conference, Princeton, NJ, USA.

    Google Scholar 

  • Meyerhoff, H. (1974). Method for computing the optimum power balance in multibeam satellites. COMSAT Technical Review, 4(1).

    Google Scholar 

  • Niida, S., Suzuki, T., and Takeuchi, Y. (2000). Experimental results of outerloop transmission power control using wideband-CDMA for IMT-2000. In Proc. IEEE Vehicular Technology Conference, Tokyo, Japan.

    Google Scholar 

  • Okamura, Y., Ohmori, E., Kawano, T., and Fukuda, K. (1968). Field strength and its variability in VHF and UHF land-mobile radio service. Review of the Electrical Communication Laboratory, 16(9–10).

    Google Scholar 

  • Rabee, S. A., Sharif, B. S., and Sali, S. (2001). Distributed power control algorithm in cellular radio systems using projection onto convex sets. In Proc. IEEE Vehicular Technology Conference, Atlantic City, NJ, USA.

    Google Scholar 

  • Ramakrishna, D., Mandayam, N., and Yates, R. (1997). Subspace based estimation of the signal to interference ratio for CDMA cellular systems. In Proc. IEEE Vehicular Technology Conference, Phoenix, AZ, USA.

    Google Scholar 

  • Rintamäki, M. and Koivo, H. (2001). Adaptive robust power contol for WCDMA systems. In Proc. IEEE Vehicular Technology Conference, Atlantic City, NJ, USA.

    Google Scholar 

  • Rintamäki, M., Zenger, K., and Koivo, H. (2002). Self-tuning adaptive algorithms in the power control of WCDMA systems. In Proc. Nordic Signal Processing Symposium, Hurtigruten, Norway.

    Google Scholar 

  • Romero-Jerez, J. M., Ruiz-Garcia, M., and Diaz-Estrella, A. (2000). Effects of power control errors and multipath fading on BER in a cellular CDMA system. In Proc. IEEE Vehicular Technology Conference, Boston, MA, USA.

    Google Scholar 

  • Rosberg, Z. and Zander, J. (1998). Toward a framework for power control in cellular systems. Wireless Networks, 4(3).

    Google Scholar 

  • Salmasi, A. and Gilhousen, S. (1991). On the system design aspects of code division multiple access (CDMA) applied to digital cellular and personal communications networks. In Proc. IEEE Vehicular Technology Conference, New York, NY, USA.

    Google Scholar 

  • Shannon, C. (1956). The zero error capacity of a noisy channel. IRE Transactions On Information Theory, 2.

    Google Scholar 

  • Sim, M., Gunawan, E., Soh, C., and Soong, B. (1998). Characteristics of closed loop power control algorithms for a cellular DS/CDMA system. IEE Proceedings-Communications, 147(5).

    Google Scholar 

  • Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems. IEEE Communications Magazine, 35(7).

    Google Scholar 

  • Sørensen, T. (1998). Correlation model for slow fading in a small urban macro cell. In Proc. IEEE Personal, Indoor and Mobile Radio Communications, Boston, MA, USA.

    Google Scholar 

  • Tanskanen, J., Mattila, J., Hall, M., Korhonen, T., and Ovaska, S. (1998). Predictive estimators in CDMA closed loop power control. In Proc. IEEE Vehicular Technology Conference, Ottawa, Canada.

    Google Scholar 

  • Ulukus, S. and Yates, R. (1998). Stochastic power control for cellular radio systems. IEEE Transactions on Communications, 46(6).

    Google Scholar 

  • Villier, E., Legg, P., and Barrett, S. (2000). Packet data transmissions in a WCDMA network-examples of uplink scheduling and performance. In Proc. IEEE Vehicular Technology Conference, Tokyo, Japan.

    Google Scholar 

  • Yates, R. (1995). A framework for uplink power control in cellular radio systems. IEEE Journal on Selected Areas in Communications, 13(7).

    Google Scholar 

  • Yates, R., Gupta, S., Rose, C., and Sohn, S. (1997). Soft dropping power control. In Proc. IEEE Vehicular Technology Conference, Phoenix, AZ, USA.

    Google Scholar 

  • Zhang, Y. and Li, D. (1997). Power control based on adaptive prediction in the CDMA/TDD system. In Proc. IEEE International Conference on Universal Personal Communications, San Diego, CA, USA.

    Google Scholar 

  • Zhou, K., Doyle, J., and K. G. (1995). Robust and Optimal Control. Prentice-Hall, Upper Saddle River, NJ, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gunnarsson, F. (2004). Power Control in Wireless Networks. In: Guizani, M. (eds) Wireless Communications Systems and Networks. Information Technology: Transmission, Processing and Storage. Springer, Boston, MA. https://doi.org/10.1007/0-306-48642-3_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48642-3_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48190-1

  • Online ISBN: 978-0-306-48642-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics