Skip to main content

Abstract

In this chapter we investigate transmission systems where more than one antenna is used at both ends of the radio link. The use of multiple transmit and receive antennas allows one to reach capacities that cannot be obtained with any other technique using present-day technology. After computing these capacities, we show how “space-time” codes can be designed, and how suboptimum architectures can be employed to simplify the receiver.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. D. Bai and J. W. Silverstein, “CLT for linear spectral statistics of large dimensional sample covariance matrices,” Annals of Probability, to be published, 2003.

    Google Scholar 

  2. S. Benedetto and E. Biglieri, Principles of Digital Transmission with Wireless Applications. New York: Kluwer/Plenum, 1999.

    MATH  Google Scholar 

  3. E. Biglieri, G. Taricco, and A. Tulino, “Performance of space-time codes for a large number of antennas,” IEEE Trans. Inform. Theory, Vol. 48, No. 7, pp. 1794–1803, Jul. 2002.

    Article  MathSciNet  MATH  Google Scholar 

  4. E. Biglieri, G. Caire, and G. Taricco, “Limiting performance of block-fading channels with multiple antennas,” IEEE Trans. Inform. Theory, Vol. 47, No. 4, pp. 1273–1289, May 2001.

    Article  MathSciNet  MATH  Google Scholar 

  5. E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: Information-theoretic and communication aspects,” IEEE Trans. Inform. Theory, Vol. 44, No. 6, 50th Anniversary Issue, pp. 2619–2692, October 1998.

    Article  MathSciNet  MATH  Google Scholar 

  6. G. Caire, R. Knopp and P. Humblet, “System capacity of F-TDMA cellular systems,” IEEE Trans. Commun., Vol. 46, No. 12, pp. 1649–1661, Dec. 1998.

    Article  Google Scholar 

  7. G. Caire, G. Taricco and E. Biglieri, “Optimal power control for minimum outage rate in wireless communications,” Proc. of IEEE ICC’ 98, Atlanta, GA, June 1998.

    Google Scholar 

  8. G. Caire, G. Taricco and E. Biglieri, “Optimal power control for the fading channel,” IEEE Trans. Inform. Theory, Vol. 45, No. 5, pp. 1468–1489, July 1999.

    Article  MathSciNet  MATH  Google Scholar 

  9. J.-J. Chang, D.-J. Hwang, and M.-C. Lin, “Some extended results on the search for good convolutional codes,” IEEE Trans. Inform. Theory, Vol. 43, No. 5, pp. 1682–1697, Sept. 1997.

    MathSciNet  MATH  Google Scholar 

  10. N. Chiurtu, B. Rimoldi, and E. Telatar, “Dense multiple antenna systems,” Proc. of IEEE ITW 2001, Cairns, Australia, pp. 108–109, Sept. 2–7, 2001.

    Google Scholar 

  11. C.-N. Chuah, D. Tse, and J. M. Kahn, “Capacity of multiantenna array systems in indoor wireless environment,” Proc. of IEEE GLOBECOM, Sydney, Australia, Nov. 8–12, 1998.

    Google Scholar 

  12. T. M. Cover and J. A. Thomas, Elements of Information Theory. New York: Wiley, 1991.

    MATH  Google Scholar 

  13. G. J. Foschini, “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas,” Bell Labs Tech. J., Vol. 1, No. 2, pp. 41–59, Autumn 1996.

    Article  Google Scholar 

  14. G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading environment when using multiple antennas,” Wireless Personal Communications, Vol. 6, No. 3, pp. 311–335, March 1998.

    Article  Google Scholar 

  15. R. G. Gallager, Information Theory and Reliable Communication. New York: J. Wiley & Sons, 1968.

    MATH  Google Scholar 

  16. J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo, “Signal design for transmitter diversity wireless communication systems over Rayleigh fading channels,” IEEE Trans. Commun., Vol. 47, No. 4, pp. 527–537, April 1999.

    Google Scholar 

  17. B. Hassibi, B. M. Hochwald, A. Shokrollahi, and W. Sweldens, “Representation theory for high-rate multiple-antenna code design,” IEEE Trans. Inform. Theory, Vol. 47, No. 6, pp. 2335–2367, Sept. 2001.

    MathSciNet  MATH  Google Scholar 

  18. B. Hochwald and T. Marzetta, “Space-time modulation scheme for unknown Rayleigh fading environment,” Proc.of 36th Annual Allerton Conference on Communication, Control and Computing, Allerton House, Monticello, IL, September 1998.

    Google Scholar 

  19. B. Hochwald and T. Marzetta, “Unitary space-time modulation for multiple-antenna communication in Rayleigh flat-fading,” IEEE Trans. Inform. Theory, Vol. 46, No. 2, pp. 543–564, March 2000.

    Article  MathSciNet  MATH  Google Scholar 

  20. B. M. Hochwald, T. L. Marzetta, and V. Tarokh, “Multi-antenna channel-hardening and its implications for rate feedback and scheduling,” IEEE Trans. Inform. Theory, submitted for publication, May 2002.

    Google Scholar 

  21. B. Hochwald and W. Sweldens, “Differential unitary space time modulation,” IEEE Trans. Commun., Vol. 48, No. 12, pp. 2041–2052, Dec. 2000.

    Article  Google Scholar 

  22. R. Horn and C. Johnson, Matrix Analysis. New York: Cambridge University Press, 1985.

    MATH  Google Scholar 

  23. R. Knopp, Coding and Multiple-Accessing over Fading Channels, PhD dissertation, EPFL, Lausanne (Switzerland), and Institut Eurécom, Sophia Antipolis (France), 1997.

    Google Scholar 

  24. R. Knopp and P. A. Humblet, “On coding for block-fading channels,” IEEE Trans. Inform. Theory, Vol. 46, No. 1, pp. 189–205, Jan. 2000.

    Article  MATH  Google Scholar 

  25. X. Ma and G. B. Giannakis, “Full-diversity full-rate complex-field space-time coding,” IEEE Trans. Sig. Proc., Vol. 51, No. 11, pp. 2917–2930, Nov. 2003.

    MathSciNet  Google Scholar 

  26. E. Malkamäki and H. Leib, “Coded diversity schemes on block fading Rayleigh channels,” Proc. of IEEE ICUPC’ 97, San Diego, CA, Oct. 1997.

    Google Scholar 

  27. E. Malkamäki and H. Leib, “Coded diversity on block-fading channels,” IEEE Trans. Inform. Theory, Vol. 45, No. 2, pp. 771–781, March 1999.

    MathSciNet  MATH  Google Scholar 

  28. T. L. Marzetta; “BLAST training: Estimating channel characteristics for high capacity space-time wireless,” Proc. of 37th Annual Allerton Conference on Communication, Control and Computing, Allerton House, Monticello, IL, pp. 958–966. Sept. 22–24, 1999.

    Google Scholar 

  29. T. L. Marzetta and B. M. Hochwald, “Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading,” IEEE Trans. Inform. Theory, Vol. 45, No. 1, pp. 139–157, January 1999.

    Article  MathSciNet  MATH  Google Scholar 

  30. T. L. Marzetta, B. M. Hochwald, and B. Hassibi, “New approach to single-user multiple-antenna wireless communication,” Proc. of CISS 2000, Princeton University, pp. WA4-16–WA4-21, March 15–17, 2000.

    Google Scholar 

  31. A.L. Moustakas, S.H. Simon, A.M. Sengupta, “MIMO Capacity Through Correlated Channels in the Presence of Correlated Interferers and Noise: A (Not So) Large N Analysis,” IEEE Trans. Inform. Theory Vol. 49, No. 10, pp. 2545–2561, Oct. 2003.

    MathSciNet  Google Scholar 

  32. L. Ozarow, S. Shamai, and A. D. Wyner, “Information theoretic considerations for cellular mobile radio,” IEEE Trans. Vehic. Tech., Vol. 43, No. 2, pp. 359–378, May 1994.

    Article  Google Scholar 

  33. G. Raleigh and J. Cioffi, “Spatio-temporal coding for wireless communication,” IEEE Trans. Commun., Vol. 46, No. 3, pp. 357–366, March 1998.

    Article  Google Scholar 

  34. A. M. Sengupta and P. P. Mitra, “Capacity of multivariate channels with multiplicative noise: Random matrix techniques and large-N expansions for full transfer matrices,” submitted for publication, 2002.

    Google Scholar 

  35. D. Shiu and J. M. Kahn, “Design of high-throughput codes for multiple-antenna wireless systems,” Submitted to IEEE Trans. Inform. Theory, January 1999.

    Google Scholar 

  36. D. Shiu and J. M. Kahn, “Layered space-time codes for wireless communications using multiple transmit antennas,” Proc. of IEEE’ 99 Vancouver, BC, June 6–10, 1999.

    Google Scholar 

  37. J. W. Silverstein, “Strong convergence of the empirical distribution of eigenvalues of large dimensional random matrices,” Journal of Multivariate Analysis, Vol. 55, pp. 331–339, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  38. P. J. Smith and M. Shafi, “On a Gaussian approximation to the capacity of wireless MIMO systems,” Proc. of IEEE ICC 2002, pp. 406–410, New York, April 28–May 2, 2002.

    Google Scholar 

  39. A. S. Stefanov and T. M. Duman, “Turbo coded modulation for systems with transmit and receive antenna diversity,” Proc. of IEEE GLOBECOM Rio de Janeiro, Brazil, pp. 2336–2340, Dec. 5–9, 1999.

    Google Scholar 

  40. G. Szegö, Orthogonal Polynomials. Americal Mathematical Society, Providence, RI, 1939.

    Google Scholar 

  41. G. Taricco and E. Biglieri, “Space-time decoding with imperfect channel estimation,” IEEE Trans. Wireless Communications, submitted for publication, August 2003.

    Google Scholar 

  42. V. Tarokh and T. K. Y. Lo, “Principal ratio combining for fixed wireless applications when transmitter diversity is employed,” IEEE Commun. Letters, Vol. 2, No. 8, pp. 223–225, August 1998.

    Article  Google Scholar 

  43. V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” IEEE Trans. Inform. Theory Vol. 44, No. 2, pp. 744–765, March 1998.

    Article  MathSciNet  MATH  Google Scholar 

  44. V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-time block codes from orthogonal designs,” IEEE Trans. Inform. Theory, Vol. 45, No. 5, pp. 1456–1467, July 1999.

    Article  MathSciNet  MATH  Google Scholar 

  45. E. Telatar, “Capacity of multi-antenna Gaussian channels,” European Trans. Telecomm., Vol. 10, No. 6, pp. 585–595, November–December 1999.

    Google Scholar 

  46. D. Tse and V. Hanly, “Multi-access fading channels-Part I: Polymatroid structure, optimal resource allocation and throughput capacities,” IEEE Trans. Inform. Theory, Vol. 44, No. 7, pp. 2796–2815, November 1998.

    Article  MathSciNet  MATH  Google Scholar 

  47. Z. Wang and G. B. Giannakis, “Outage mutual information of space-tim e MIMO channels,” Fortieth Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL, October 2–4, 2002.

    Google Scholar 

  48. L. Zheng and D. N. C. Tse, “Communication on the Grassman manifold: A geometric approach to the non-coherent multiple-antenna channel,” IEEE Trans. Inform. Theory, Vol. 48, No. 2, pp. 359–383, February 2002.

    MathSciNet  MATH  Google Scholar 

  49. L. Zheng and D. N. C. Tse, “Diversity and multiplexing: A fundamental tradeoff in multiple antenna channels,” IEEE Trans. Inform. Theory, Vol. 49, No. 5, pp. 1073–1096, May 2003.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this chapter

Cite this chapter

Biglieri, E., Taricco, G. (2004). Multiple Antennas. In: Guizani, M. (eds) Wireless Communications Systems and Networks. Information Technology: Transmission, Processing and Storage. Springer, Boston, MA. https://doi.org/10.1007/0-306-48642-3_20

Download citation

  • DOI: https://doi.org/10.1007/0-306-48642-3_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48190-1

  • Online ISBN: 978-0-306-48642-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics