Skip to main content

Integrating and Tagging Biological Structures with Nanoscale Semiconductor Quantum dot Structures

  • Chapter
Book cover Biological Nanostructures and Applications of Nanostructures in Biology

Conclusion

This account has highlighted the recent progress in using semiconductor biotags based on their narrow, tunable and symmetric emission spectra as well as their temporal stability and resistance to photobleaching, especially as compared to fluorescent dyes. This progress has been possible as a result of key developments underlying the synthesis and functionalization of semiconductor nanocrystals. The advances in binding fluorescent semiconductor nanocrystals to biomolecules have facilitated the selective binding of these nanoscale fluorescent structures to specific subcellular structures. To go beyond using nanocrystals as biotags by integrating semiconductor nanocrystals directly with biological structures, it is necessary to further understand the physical properties of semiconductor nanocrystals in biological environments and in direct contact with biological structures. This review has highlighted several such interaction mechanisms, including the interaction of electrolytes with nanocrystals, the modification of the photoluminescence spectra of nanocrystals due to the environmentally-induced changes in the acoustic phonon spectra in nanocrystals, and the role of surface states on the observed intermittent blinking of quantum dots. To realize the possible uses of semiconductor nanocrystals as elements of coupled nanocrystal-biological-systems, it is necessary to study such interaction mechanisms in greater detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thomas M. Jovin, Quantum dots finally come of age, Nature Biotechnology 21, 32–33 (2003).

    Article  Google Scholar 

  2. A. P. Alivisatos, Perspectives on the Physical Chemistry of Semiconductor Nanocrystals, J. Phys. Chem. 100, 13226–13239 (1996).

    Article  Google Scholar 

  3. Erica Klarreich, Biologists Join the Dots, Nature 413, 450–452 (2001).

    Google Scholar 

  4. Jyoti K. Jaiswal, Hedi Mattoussi, J. Matthew Mauro, and Sanford M. Simon, Long term-multiple color imaging of live cells using quantum dot bioconjugates, Nature Biotechnology 21, 47–51 (2003); published online 2 December 2002.

    Article  Google Scholar 

  5. Xingyong Wu, Hongjian Liu, Jianquan Liu, Kari N. Haley, Joseph A. Treadway, J. Peter Larson, Nianfeng Ge, Frank Peale, and Marcel P. Bruchez, Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots, Nature Biotechnology 21, 41–46 (2003).

    Google Scholar 

  6. Marcel Bruchez, Jr., Mario Moronne, Peter Gin, Shimon Weiss, Paul A. Alivisatos, Semiconductor Nanocrystals as Fluorescent Biological Labels, Science, 281,(1998) 2013–2016 (1998).

    Google Scholar 

  7. Warren C. W. Chan and Shuming Nie, Quantum Dot Bioconjugated for Ultrasensitive Nonisotropic Detection, Science 281, 2016–2018 (1998).

    Article  Google Scholar 

  8. Mingyong Han, Xiaohu Gao, Jck Z. Su, and Shuming Nie, Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nature Biotechnology 19, 631–635 (2001).

    Google Scholar 

  9. Michael A. Stroscio and Mitra Dutta, Advances in Quantum Dot Research and Technology: The Path to Applications in Biology, in Advanced Semiconductor Heterostructures, edited by (Mitra Dutta and Michael A. Stroscio, (World Scientific Publ. Co., 2003), pages 101–118.

    Google Scholar 

  10. Gregoy P. Mitchell, Chad A. Mirkin, and Robert L. Letsinger, Programmed assembly of DNA functionalized quantum dots, Journal of the American Chemical Society 121 8122–8123 (1999).

    Google Scholar 

  11. Keith J. Watson, Jin Zhu, SonBinh T. Nguyen, and Chad A. Mirkin, Hybrid nanoparticles with block copolymer shell structures,” Journal of the American Chemical Society 121 462–463 (1999).

    Article  Google Scholar 

  12. YunWei Cao, Ronachao Jin, and Chad A. Mirkin, “DNA-modified core shell Ag/Au nanoparticles,” Journal of the American Chemical Society 123 7961–7962 (2001).

    Google Scholar 

  13. Dimitri Alexson, Yang Li, Dinakar Ramadurai, Peng Shi, Leena George, Lenu George, Muzna Uddin, Preetha Thomas, Salvador Rufo, Mitra Dutta, and Michael A. Stroscio, Binding of semiconductor quantum dots to cellular integrins, accepted for publication in IEEE Transactions on Nanotechnology (2004).

    Google Scholar 

  14. Jessica O. Winter, Timothy Y. Liu, Brian A. Korgel, and Christine E. Schmidt, Recognition molecule directed interfacing between semiconductor quantum dots and nerve cells, Advanced Materials 13, 1673–1677 (2001).

    Article  Google Scholar 

  15. Christine E. Schmidt, Venkatram R. Shastri, Joseph P. Vacanti, and Robert Langer, Stimultion of neurite outgrowth using an electrically conducting polymer, Proceedings of the National Academy of Sciences U.S.A. 94, 8948–8953 (1997).

    Google Scholar 

  16. H. M. Chen, X. F. Huang, L. Xu, J. Xu, K. J. Chen, and D. Feng, Self-assembly and photoluminescence of CdS-mercaptoacetic clusters with internal structures, Superlattices and Microstructures 27, 1–5 (2000).

    Article  Google Scholar 

  17. A. Ekimov, Growth and optical properties of semiconductor nanocrystals, Journal of Luminescence 70, 1–20 (1996).

    Article  Google Scholar 

  18. Yasushi Ohfuti, and Kikuo Cho, Size-and shape-dependent optical properties of assembled semiconductor spheres, Journal of Luminescence 70, 203–211 (1996).

    Article  Google Scholar 

  19. O. I. Micic and A. J. Nozik, Synthesis and characterization of binary and ternary III–V quantum dots, Journal of Luminescence 70, 95–107 (1996).

    Article  Google Scholar 

  20. T. Takagahara, Electron-phonon in semiconductor nanocrystals, Journal of Luminescence 70, 129–143 (1996).

    Article  Google Scholar 

  21. L. Banyai and S. W. Koch, editors, Semiconductor Quantum Dots, Series of Atomi,C Molecular, and Optical Physics, 2 (World Scientifi, Singapore, New Jersey, London, Hong Kong, 1993).

    Google Scholar 

  22. D. Binberg, M. Grundmann, and N. N. Ledentson, Quantum Dot Heterostructures (John Wiley & Sons, Chichester, 1999).

    Google Scholar 

  23. U. Woggon, Optical Properties of Semiconductor Quantum Dots, Springer Tracts in Modern Physics 136 (Springer, Berlin, 1996).

    Google Scholar 

  24. V. Vasilevskiy, A. G. Rolo, and M. J. M. Gomes, One-phonon Raman scattering from arrays of semiconductor nanocrystals, Solid State Communications 104, 381–386 (1997).

    Article  Google Scholar 

  25. R. Englman and R. Ruppin, Optical lattice vibrations in finite ionic crystals: I, Journal of Physics C (Proc. Phys. Soc.) 1, 614–629 (1968).

    Google Scholar 

  26. X. X. Liang and Jinsheng Yang, Effective-phonon approximation of polarons in ternary mixed crystals, Solid State Communications 100, 629–634 (1996).

    Article  Google Scholar 

  27. Xin-Qi Li and Yasuhiko Arakawa, Optical linewidths in an individual quantum dots, Physical Review B60, 1915–1920 (1999).

    Google Scholar 

  28. L. Banyai, P. Gilloit, Y. Z. Hu, and S. W. Koch, Surface-polarization instabilities of electron-hole pairs in semiconductor quantum dots, Physical Review B45, 14136–14142 (1992).

    Google Scholar 

  29. Xin-Qi Li, Hajime Nakayama, and Yasuhiko Arakawa, Phonon bottleneck in quantum dots: Role of lifetime of the confined optical phonons, Physical Review B59, 5069–5073 (1999).

    Google Scholar 

  30. Igor Vurgaftman and Jasprit Singh, Effect of spectral broadening and electron-hole scattering on carrier relaxation in GaAs quantum dots, Applied Physics Letters 64, 232–234 (1994).

    Google Scholar 

  31. T. Takagahara, Theory of exciton dephasing in semiconductor quantum dots, Physical Review B60, 2638–2652 (1999).

    Google Scholar 

  32. L. P. Kouwenhoven, S. Jauhar, J. Orenstein, P. L. McEuen, Y. Nagamune, J. Motohisa, and H. Sakaki, Observation of phonon-assisted tunneling through a quantum dot, Physical Review Letters 73, 3443–3446 (1994).

    Article  Google Scholar 

  33. Hideki Gotoh, Hiroaki Ando, and Toshihide Takagahara, Radiative recombination lifetime of excitons in thin quantum boxes, Journal of Applied Physics 81, 1785–1789 (1997).

    Article  Google Scholar 

  34. Igor Vurgaftman, Yeeloy Lam, and Jasprit Singh, Carrier thermalization in sub-three-dimensional electronic systems: Fundamental limits on modulation bandwidth in semiconductor lasers, Physical Review B50, 14309–14326 (1994).

    Google Scholar 

  35. Xin-Qi Li and Yasuhiko Arakawa, Ultrafast energy relaxation in quantum dots through defect states: A lattice-relaxation approach, Physical Review B56, 10423–10427 (1997).

    Google Scholar 

  36. M. Grundmann, J. Christen, N. N. Ledentsov, J. Bohrer, D. Bimberg, S. S. Ruvimov, P. Werner, U. Richter, U. Gosele, J. Heydenreich, V. M. Ustinov, A. E. Zhukov, P. S. Kop’ev, and Zh. I. Alferov, Ultranarrow luminescence lines from single quantum dots, Physical Review Letters 74, 4043–4046 (1995).

    Article  Google Scholar 

  37. Mohammad El-Said, Study of the energy level-crossings in GaAs/AlxGa1−xAs quantum dots, Solid State Communications 97, 971–971 (1996).

    Google Scholar 

  38. T. Inoshita and H. Sakaki, Electron-phonon intercation and the so-called phonon bottleneck effect in semiconductor quantum dots, Physics B 227, 373–377 (1996).

    Google Scholar 

  39. S. Komiyama, O. Astafiev, V. Antonov, T. Kutsuwa, and H. Hirai, A single-photon detector in the far-infrared range, Nature 403, 405–407 (2000).

    Article  Google Scholar 

  40. Selvakumar V. Nair and T. Takagahara, Weakly correlated exciton pair states in large quantum dots, Physical Review B53, R10516–R10519 (1996).

    Google Scholar 

  41. M. Grundmann, O. Stier, and D. Bimberg, InAs/GaAs pyramidal quantum dots: Strain distribution, optical phonons, and electronic structure, Physical Review B52, 11969–11981 (1995).

    Google Scholar 

  42. J.-Y. Marzin, J.-M. Gerard, A. Izael, D. Barrier, and G. Bastard, Photoluminescence of single InAs quantum dots obtained by self-organized growth on GaAs, Physical Review Letters 73, 716–719 (1994).

    Article  Google Scholar 

  43. P. Boucaud, K. S. Gill, J. B. Williams, M. S. Sherwin, W. V. Schoenfeld, and P. M. Petroff, Saturation of THz-frequency intraband absorption in InAs/GaAs quantum dot molecules, Applied Physics Lettters 77, 510–512 (2000); P. Boucaud, J. B. Williams, K. S. Gill, M. S. Sherwin, W. V. Schoenfeld, and P. M. Petroff, Terahertz-frequency electronic coupling in vertically coupled quantum dots, Applied Physics Letters 77, 4356–4358 (2000).

    Google Scholar 

  44. S. Sauvage, P. Boucaud, F. H. Julien, J.-M. Gerard, and V. Thierry-Mieg, Intraband absorption in ndoped InAs/GaAs quantum dots, Applied Physics Letters 71, 2785–2787 (1997).

    Google Scholar 

  45. Hailong Zhou, A. V. Nurmikko, C.-C. Chu, J. Han, R. L. Gunshor, and T. Takagahara, Observation of antibound states for exciton pairs by four-wave-mixing experiments in a single ZnSe quantum well, Physical Review B58, R10131–R10134 (1998).

    Google Scholar 

  46. B. Legrand, S. Grandidier, J. P. Nyes, D. Stievenard, J. M. Gerard, and V. Thierry-Mieg, Scanning tunneling microscopy and scanning tunneling spectroscopy of self-assembled In As quantum dots, Applied Physics Letters 73, 96–98 (1998).

    Article  Google Scholar 

  47. S. Sauvage, P. Boucaud, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaitre, J.-M. Gerard, V. Thierry-Mieg, Saturation of intraband and electron relaxation time in n-doped InAs/GaAs self-assembled quantum dots, Applied Physics Letters 73, 3818–3820 (1998).

    Article  Google Scholar 

  48. B. Legrand, J. P. Nys, S. Grandidier, A. Lemaitre, J. M. Gerard, and V. Thierry-Mieg, Quantum box size effect on vertical self-alignment studied using cross-sectional scanning tunneling microscopy, Applied Physics Letters 74, 2608–2610 (1999).

    Google Scholar 

  49. S. Ruvimov, P. Werner, K. Scheerschmidt, U. Gosele, J. Heydenreich, U. Richter, N. N. Ledentsov, M. Grundmann, D. Bimberg, V. M. Ustinov, A. Yu. Ergorov, P. S. Kop’ev, and Zh. I. Alferov, Structural charaterization of (In.Ga)As quantum dots in a GaAs matrix, Physical Review B51, 14766–14769 (1995).

    Google Scholar 

  50. T. Bruchez, P. Boucaud, S. Sauvage, F. Glotin, R. Prazeres, J.-M. Ortega, A. Lemaitre, and J.-M. Gerard, Midinfrared second-harmonic generation in p-type InAs/GaAs self-assembled quantum dots, Applied Physics Letters 75, 835–837 (1999).

    Google Scholar 

  51. S. Sauvage, P. Boucaud, T. Brunhes, V. Immer, E. Finkman, and J.-M. Gerard, Midinfrared absorption and photocurrent spectroscopy of InAs/GaAs self-assembled quantum dots, Applied Physics Letters 78, 2327–2329 (2001).

    Article  Google Scholar 

  52. V. V. Mitin, V. I. Pipa, A. V. Sergeev, M. Dutta and M. Stroscio, High-gain quantum-dot infrared photodetector, Infrared Physics & Technology 42, 467–472 (2001).

    Article  Google Scholar 

  53. V. Ryzhii, I. Khmyrova, V. Mitin, M. Stroscio, and M. Willander, On the detectivity of quantum-dot infrared photodetectors, Applied Physics Letters 78, 3523–3525 (2001).

    Google Scholar 

  54. J. Phillips, Pallab Bhattacharya, S. W. Kennerly, D. W. Beekman, and Mitra Dutta, Self-assembled InAs-GaAs quantum-dot intersubband detectors, IEEE Journal of Quantum Electronics 35, 936–943 (1999).

    Article  Google Scholar 

  55. G. Yusa, and H. Sakaki, InAs quantum dot field effect transistors, Superlattices and Microstructures 25, 247–250 (1999).

    Article  Google Scholar 

  56. R. L. Sellin, Ch. Ribbat, M. Grundmann, N. N. Ledentsov, and D. Bimberg, Close-to-ideal device characteristics of high-power InGaAs/GaAs quantum dot lasers, Applied Physics Letters 78, 1207–1209 (2001).

    Article  Google Scholar 

  57. Ph. Lelong, K. Suzuki, G. Bastard, H. Sakaki, and Y. Arakawa, Enhancement of the Coulomb correlations in type-II quantum dots, Physica E 7, 393–397 (2000).

    Google Scholar 

  58. O. I. Micic, S. P., Ahrenkiel, D., Bertram, and A. J. Nozik, Synthesis, structure, and optical properties of colloidal GaN quantum dots, Applied Physics Letters 75, 478–480 (1999).

    Google Scholar 

  59. K. Tachibana, T. Someya, Y. Arakawa, R. Werner, and A. Forchel, Room-temperature lasing oscillation in an InGaN self-assembled quantum dot laser, Applied Physics Letters 75, 2605–2607 (1999).

    Article  Google Scholar 

  60. Michael A. Stroscio and Mitra Dutta, Mitra, Damping of nonequilibrium acoustic phonon modes in a semiconductor quantum dot, Physical Review B60, 7722 (1999).

    Google Scholar 

  61. Michael A. Stroscio, K. W. Kim, SeGi Yu, and Arthur Ballato, Quantized acoustic phonons in quantum wires and quantum dots, Journal of Applied Physics 76, 4670–4975 (1994).

    Google Scholar 

  62. Todd D. Krauss, and Frank W. Wise, Coherent acoustic phonons in a semiconductor quantum dot, Physical Review Letters 79, 5102–5105 (1997).

    Article  Google Scholar 

  63. Todd D. Krauss, Frank W. Wise, and David B. Tanner, Observation of coupled vibrational modes of a semiconductor nanocrystal, Physical Review Letters 76, 1376–1379 (1996).

    Article  Google Scholar 

  64. P. Hoyer and R. Konenkamp, Photoconduction in porous TiO2 sensitized PdS quantum dots, Applied Physics Letters 66, 349–351 (1995).

    Google Scholar 

  65. Brian L. Wehrenberg, Congjun Wang, and Phillip Guyot-Sionnest, Interband and intraband optical studies of PbSe colloidal quantum dots, J. Phys. Chem. B 106, 10634–10640 (2002).

    Google Scholar 

  66. G. Springholz, V. Holy, M. Pinczolits, and G. Bauer, Self-organized growth of three-dimensional quantum-dot crystals with fcc-like stacking and tunable lattice constant, Science 282, 734–737 (1998).

    Article  Google Scholar 

  67. A. M. de Paula, L. C. Barbosa, C. H. B. Cruz, O. L. Alves, J. A. Sanjurjo, and C. L. Cesar, Quantum confinement effects on the optical phonons of CdTe quantum dots, Superlattices and Microstructures 23, 1104–1106 (1998).

    Google Scholar 

  68. C. R. M. de Oliveira, A. M. de Paula, F. O. Filho, Neto Plentz, J. A. Medeiros, L. C. Brabosa, O. L. Alves, E. A. Menezes, J. M. M. Rios, H. L. Fragnito, C. H. Brito Cruz, and C. L. Cesar, Probing of the quantum dot size distribution in CdTe-doped glasses by photoluminescence excitation spectroscopy, Applied Physics Letters 66, 439–441 (1995).

    Google Scholar 

  69. V. Esch, B. Fluegel, G. Khitrova, H. M. Gibbs, Xu Jiajin, K. Kang, S. W. Koch, L. C. Liu, S. H. Risbud, and N. Peyghambarian, State filling, Coulomb, and trapping effects in the optical nonlinearity of CdTe quantum dots in glass, Physical Review B42, 7450–7453 (1990).

    Google Scholar 

  70. O. I. Mici, S. P. Ahrenkiel, and Arthur J. Nozik, Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films, Applied Physics Letters 78, 4022–4024 (2001).

    Google Scholar 

  71. Olga I. Micic, Julian Sprague, Zhenghao Lu, and Arthur J. Nozik, Highly efficient band-edge emission from InP quantum dots, Applied Physics Letters 68, 3150–3152 (1996).

    Google Scholar 

  72. U. Banin, G. Cerullo, A. A. Guzelian, C. J. Bardeen, A. P. Alivisatos, and C. V. Shank, Quantum confinement and ultrafast dephasing in InP nanocrystals, Physical Review Letters B55, 7059–7067 (1997).

    Google Scholar 

  73. H. Giessen, B. Fluegel, G. Mohs, N. Peyghambarian, J. R. Sprague, O. I. Mimi, and A. J. Nozik, Observation of the quantum confined ground state in InP quantum dots, Applied Physics Letters 68, 304–306 (1996).

    Article  Google Scholar 

  74. J. J. Shiang, S.H. Rishbud, and A.P. Alivisatos, Resonance Raman studies of the ground and lowest electronic excited state in CdS nanocrystals, J. Chem. Phys. 98(11), 8432–8442 (1993).

    Article  Google Scholar 

  75. M. Danek, K. F. Jensen, C. B. Murray, and M. G. Bawendi, Electrospray organometallic chemical vapor deposition-A novel technique for preparation of II–VI quantum dot composites, Applied Physics Letters 65, 2795–2797 (1994).

    Article  Google Scholar 

  76. M. Danek, Klavs F. Jensen, Chris B. Murray, and Moungi G. Bawendi, Synthesis of luminescent thin-film CdSe/ZnSe quantum dot composites using CdSe quantum dots passivated with an overlayer of ZnSe, Che. Mater. 8, 173–180 (1996).

    Google Scholar 

  77. E. Empedocles, D. J. Norris, and M. G. Bawendi, Photoluminescence spectroscopy of single CdSe nanocrystallite quantum dots, Physical Review Letters 77, 3873–3876 (1996).

    Article  Google Scholar 

  78. J. R. Heine, J. Rodriguez-Viejo, M. G. Bawendi, and K. F. Jensen, K.. F., Synthesis of CdSe quantum dot-ZnS matrix thin films via electrospray organometallic chemical vapor deposition, Journal of Crystal Growth 195, 564–568 (1998).

    Article  Google Scholar 

  79. Hedi Mattoussi, J. Matthew Mauro, Ellen R. Goldman, George P. Anderson, Vikrim C. Sundar, Frederic V. Mikule, and Moungi G. Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, Journal of the Americam Chemical Society 122, 12142–12150 (2000).

    Google Scholar 

  80. Xiaogang Peng, Liberato Manna, Weidong Yang, Juanita Wickham, Erik Scher, E. Kadavanich, and A. P. Alivisatos, Shape control of CdSe nanocrystals, Nature 404, 59–61 (2000).

    Google Scholar 

  81. Chia-Chun Chen, A. B. Herhold, C. S. Johnson, and A. P. Alivisatos, Size dependence of structural metastability in semiconductor nanocrystals, Science 276, 398–401 (1997).

    Google Scholar 

  82. D. E. Fogg, L. H. Radziloski, B. O. Dabbousi, R. R. Schrock, E. L. Thomas, and M. G. Bawendi, Fabrication of quantum dot-polymer composites: Semiconductor nanoclusters in dual-function polymer matrices with electron-transporting and cluster-passivating properties, Macromolecules 30, 8433–8439 (1997).

    Google Scholar 

  83. Margaret Hines and Philippe Guyot-Sionnest, Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals, Journal of Physical Chemistry 100, 468–471 (1996).

    Article  Google Scholar 

  84. Phedon Palinginis and Hailin Wang, High-resolution spectral hole burning in CdSe/ZnS core/shell nanocrystals, Applied Physics Letters 78, 1541–1543 (2001).

    Article  Google Scholar 

  85. C. E. Finlayson, D. S. Ginger, and Neil C. Greenham, Optical microcavities using highly luminescent films of semiconductor nanocrystals, Applied Physics Letters 77, 2500–2502 (2000).

    Article  Google Scholar 

  86. Ehud Poles, Donald C. Selmarten, Olga I. Mici, and Arthur J. Nozik, Anti-Stokes photoluminescence in colloidal semiconductor quantum dots, Applied Physics Letters 75, 971–973 (1999).

    Article  Google Scholar 

  87. Philippe Guyot-Sionnest, and Margaret A. Hines, “Intraband transition in semiconductor nanocrystals,” Applied Physics Letters 72, 686–688 (1998).

    Article  Google Scholar 

  88. Mark E. Schmidt, Sean A. Blanton, Margaret A. Hines, and Philippe Guyot-Sionnest, Polar CdSe nanocrystals: Implications for electronic structure, Journal of Chemical Physics 106, 5254–5259 (1997).

    Article  Google Scholar 

  89. B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, and M. F. Rubner, Electroluminescence from CdSe quantum-dot/polymer composites, Applied Physics Letters 66, 1316–1318 (1995).

    Article  Google Scholar 

  90. D. J. Norris, A. Sacra, C. B. Murray, and M. G. Bawendi, Measurement of the size dependent hole spectrum in CdSe quantum dots, Physical Review Letters 72, 2612–2615 (1994).

    Article  Google Scholar 

  91. U. Woggon, S. Gaponenko, W. Langbein, A. Uhrig, and C. Klingshirn, Homogeneous linewidth of confined electron-hole-pair states in II-VI quantum dots, Physical Review B47, 3684–3689 (1993).

    Google Scholar 

  92. Shinrtaro Nomura, and Takayoshi Kabayashi, Exciton-LO-phonon couplings in spherical microcrystallites, Physical Review B45, 1305–1316 (1992).

    Google Scholar 

  93. M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Size dependence of electron-phonon coupling in semiconductor nanospheres: The case of CdSe, Physical Review B42,(1990) 11123–11132 (1990).

    Google Scholar 

  94. Gaetano Scamarcio, Mario Lugara, and Daniela Manno, Size-dependent lattice constant in CdS1−xSex nanocrystals embedded in glass observed by Raman scattering, Physical Review B45, 13792–13795 (1992).

    Google Scholar 

  95. T. Takagahara, Electron-phonon interactions and exciton dephasing in semiconductor nanocrystals, Physical Review Letters 71,3577–3580 (1993).

    Article  Google Scholar 

  96. R. W. Schoenlein, D. M. Mittleman, J. J. Shiang, A. P. Alivisatos, and C. V. Shank, Investigation of femtosecond electronic dephasing in CdSe nanocrystals using quantum-beat-suppressed photon echoes, Physical Review Letters 70, 1014–1017 (1993).

    Article  Google Scholar 

  97. D. M. Mittleman, R. W. Schoenlein, J. J. Shiang, V. L. Colvin, A. P. Alivisatos, and C. V. Shank, Quantum size dependence of femtosecond electronic dephasing and vibrational dynamics in CdSe nanocrystals, Physical Review B49, 14435–14447 (1994).

    Google Scholar 

  98. Sean A. Blanton, Margaret A. Hines, and Philippe Guyot-Sionnest, Photoluminescence wandering in single CdSe nanocrystals, Applied Physics Letters 69, 3905–3907 (1996).

    Article  Google Scholar 

  99. J. Rodriguez-Viejo, K. F. Jensen, H. Mattoussi, J. Michel, B. O. Dabbousi, and M. G. Bawendi, Cathodoluminescence and photoluminescence of highly luminescent CdSe/ZnS quantum dot composites, Applied Physics Letters 70, 2132–2134 (1997).

    Article  Google Scholar 

  100. Boaz Alperson, Israel Rubinstein, and Gary Hodges, Energy level tunneling spectroscopy and single electron charging in individual CdSe quantum dots, Applied Physics Letters 75, 1751–1753 (1999).

    Article  Google Scholar 

  101. V. I. Klimov, Ch. J. Schwarz, D. W. McBranch, C. A. Leatherdale, and M. G. Bawendi, Ultrafast dynamics of inter-and intraband transitions in semiconductors nanocrystals: Implications for quantum-dot lasers, Physical Review B60, R2177–R2180 (1999).

    Google Scholar 

  102. Moonsub Shim and Philippe Guyot-Sionnest, n-type colloidal semiconductor nanocrystals, Nature 407, 981–983 (2000).

    Article  Google Scholar 

  103. Congjun Wang, Moonsub Shim, and Philippe Guyot-Sionnest, Electrochromic nanocrystal quantum dots, Science 291 2390–2392 (2001).

    Google Scholar 

  104. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Electronic structure and photoexcited-carrier dynamics in nanometer-size CdSe clusters, Physical Review Letters 65, 1623–1626 (1990).

    Article  Google Scholar 

  105. Sean A. Blanton, Robert L. Leheny, Margaret A. Hines, and Philippe Guyot-Sionnest, Dielectric dispersion measurements of CdSe nanocrystal colloids: Observation of a permanent dipole moment, Physical Review Letters 79, 865–868 (1997).

    Article  Google Scholar 

  106. David L. Klein, Richard Roth, Andrew K. L. Lim, A. Paul Alivisatos,, and Paul L McEuen, “A single-electron transistor made from a cadmium selenide nanocrystal,” Nature 389 (1997) 699–701.

    Google Scholar 

  107. D. S. Ginger, A. S. Dhoot, C. E. Finlayson, and N. C. Greenham, Long-lived quantum-confined infrared transitions in CdSe nanocrystals, Applied Physics Letters 77, 2816–2818 (2000).

    Article  Google Scholar 

  108. Moonsub Shim and Philippe Guyot-Sionnest, n-type colloidal semiconductor nanocrystals, Nature 407, 981–983 (2000).

    Article  Google Scholar 

  109. Sean A. Blanton, Robert L. Leheny, Margaret A. Mines, and Philippe Guyot-Sionnest, Dielectric dispersion measurements of CdSe nanocrystal colloids: Observation of a permanent dipole moment, Physical Review Letters 79, 865–868 (1997).

    Article  Google Scholar 

  110. Pallab Bhattacharya, Quantum Dot Semiconductor Lasers, in Advances in Semiconductor Lasers and Applications to Optoelectronics, Selected Topics in Electronics and Systems, 16, eds., (Mitra Dutta and Michael A. Stroscio (World Scientifi, Singapore, New Jersey, London, Hong Kong, 2000), pp. 235–261.

    Google Scholar 

  111. A. E. Zhukov, V. M. Ustinov, and Z. I. Alferov, Device characteristics of low-threshold quantumdot lasers, in: Advances in Semiconductor Lasers and Applications to Optoelectronics, Selected Topics in Electronics and Systems, 16, eds. Dutta, Mitra and Stroscio, Michael A. (World Scientifi, Singapore, New Jersey, London, Hong Kong, 2000), pp. 419–431.

    Google Scholar 

  112. M. Dutta and M. A. Stroscio, Advanced semiconductor lasers: Phonon engineering and phonon interactions, in: Advances in Semiconductor Lasers and Applications to Optoelectronics, SelectedTopics in Electronics and Systems, 16, eds. Dutta, Mitra and Stroscio, Michael A. (World Scientifi, Singapore, New Jersey, London, Hong Kong, 2000), pp. 419–431.

    Google Scholar 

  113. A. D. Andreev and E. P. O’Reilly, Theory of the electric structure of GaN/AlN hexagonal quantum dots, Phys. Rev. B62, 15851–15870 (2001).

    Google Scholar 

  114. J. Jerphagnon, Imvariants of the third-rank Cartesian-tensor: Optical nonlinear susceptibilities, Phys. Rev. B2, 1091–1098 (1970).

    Google Scholar 

  115. Christina J. Zhang, Howard W. H. Lee, Ian M. Kennedy, and Subhash H. Risbud, Observation of quantum confined excited states in GaN nanocrystals, Appl. Phys. Lett. 72, 3035–3037 (1998).

    Google Scholar 

  116. Sandra J. Rosenthal, Ian Tomlinson, Erika M. Adkins, Sally Schroeter, Scott Adams, Laura Swafford, James McBride, Yongqiang Wang, Louis J. DeFeli, and Randy D. Blakey, Targeting cell surface receptors with ligand-conjugated nanocrystals, Journal of the American Chemical Society 124 4586–4594 (2000).

    Google Scholar 

  117. Maria E. Akerman, Warren C.W. Chan, Pirjo Laakkonen, Sangeeta N. Bhatia, and Erkki Ruoslahti, Nanocrystal targeting in vivo, Proceedings of the National Academy of Sciences 99(20), 12617–12621 (2002).

    Article  Google Scholar 

  118. Hedi Mattoussi, J. Matthew Mauro, Ellen R. Goldman, George P. Anderson, Vikram C. Sundar, Frederic V. Mikule, and Moungi G. Bawendi, Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein, J. Am. Chem. Soc. 122 12142–12150 (2000).

    Article  Google Scholar 

  119. E. R. Goldman, G. P. Anderson, P. T. Tran, H. Mattousi, P. T. Charles, and J. M. Mauro, Conjugation of luminescent quantum dots with antibodies using an engineered adaptor protein to provide new reagents for fluoroimmunoassays, Anal. Chem. 74 841–847 (2002).

    Article  Google Scholar 

  120. W.C. Chan and S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection, Science 281, 2016–2018 (1998).

    Article  Google Scholar 

  121. Maxime Dahan, Sabine Levi, Camilla Luccardini, Philippe Rostaing, Beatrice Riveau, and Antoine Triller, Diffusion dynamics of glycine receptors revealed by single quantum dot tracking, Science 302, 442–445 (2003).

    Article  Google Scholar 

  122. Michael A. Stroscio and Mitra Dutta, Phonons in Nanostructures (Cambridge University Press, Cambridge, 2001).

    Google Scholar 

  123. R. M. de la Cruz, S. W. Teitsworth, and M. A. Stroscio, Phonon bottleneck effects for confined longitudinal optical phonons in quantum boxes, Superlattices and Microstructures, 13, (1993) 481–486.

    Google Scholar 

  124. R. M. de la Cruz, S. W. Teitsworth, and M. A. Stroscio, Interface Phonons in spherical GaAs/Al(x)Ga(1-x)As quantum dots, Physical Review B52 1489–1492 (1995).

    Google Scholar 

  125. V. Mitin, V. Kochelap, and Michael Stroscio, Quantum Heterostructures for Microelectronics and Optoelectronics (Cambridge University Press, Cambridge, 1999).

    Google Scholar 

  126. M. P. Chamberlain, C. Trallero-Giner, and M. Cardona, Theory of one-phonon Raman scattering in semiconductor microcrystallites, Physical Review B51, 1680–1683 (1995).

    Google Scholar 

  127. J. C. Marini, B. Stebe, and E. Kartheuser, Exciton-phonon interaction in CdSe and CuCl polar semiconductor nanospheres, Physical Review B50, 14302–14311 (1994).

    Google Scholar 

  128. E. Roca, C. Trallero-Giner, and M. Cardona, Polar optical vibrational modes in quantum dots, Physical Review B49, 13704–13711 (1994).

    Google Scholar 

  129. P. A. Knipp and T. L. Reinecke, Classical interface modes in quantum dots, Physical Review B46, 10310–10319 (1992).

    Google Scholar 

  130. Dmitri Romanov, Vladimir Mitin, and Michael Stroscio, Polar surface vibration strips on GaN/AlN quantum dots and their interaction with confined electrons, Physica E 12, 491–494 (2002).

    Google Scholar 

  131. Augusto M. Alcalde and Gerald Weber, Scattering rates due to electron-phonon interaction in quantum dots, Semiconductor Science and Technology 15, 1082–1086 (2000).

    Article  Google Scholar 

  132. C. A. Leatherdale, and M. G. Bawendi, Observation of solvatochromism in CdSe colloidal quantum dots, Physical Review B63, 165315–1–6 (2001).

    Google Scholar 

  133. C. A. Leatherdale, C. R., Kagan, N. Y. Morgan, S. A. Empedocles, M. A. Kastner, and M.G. Bawendi, Photoconductivity in CdSe quantum dot solids, Physical Review B62, 2669–2679 (2000).

    Google Scholar 

  134. Raphael Tsu, and Davorin Babi, Doping of a quantum dot, Applied Physics Letters 64, 1806–1808 (1994).

    Article  Google Scholar 

  135. D. B. Tran Thoai, Y. Z. Hu, S. W. Koch, Influence of the confinement potential on the electron-holepair states in semiconductor microcrystallites, Physical Review B42, 11261–11266 (1990).

    Google Scholar 

  136. Raphael Tsu, Davorin Babi, and Liderio Ioriatti, Simple model for the dielectric constant of nanoscale silicon particle, Journal of Applied Physics 82, 1327–1329 (1997).

    Article  Google Scholar 

  137. Lin-Wang Wang, and Alex Zunger, Pseudopotential calculations of nanoscale CdSe quantum dots, Physical Review B53, 9579–9582 (1996).

    Google Scholar 

  138. David R. Penn, Wave-mumber-dependent dielectric function of semiconductors, Physical Review 128, 2093–2097 (1992).

    Google Scholar 

  139. Davoran Babic Raphael Tsu, and Richard F. Green, Ground-state energies of one-and two-electron silicon dots in an amorphous silicon dioxide matrix, Physical Review B45, 14150–14155 (1992).

    Google Scholar 

  140. A. Tamura, K. Higeta, and T. Ichinokawa, Lattice vibrations and specific heat of a small particle, Journal of Physics C: Solid State Physics 15, 4975–4991 (1982).

    Article  Google Scholar 

  141. Shaklee, Fred H. Pollak, and Manuel Cardona, Electroreflectance at a semiconductor-electrolyte interface, Phys. Rev. Lett. 15(23) 883–885 (1965).

    Article  Google Scholar 

  142. M. Kuno, D. P. Fromm, H. F. Hamann, A. Gallagher, and D. J. Nesbitt, Nonexponential “blinking” kinetics of single CdSe quantum dots: a universal power law behavior, J. Chem. Phys. 112(7), 3117–3120 (2000).

    Article  Google Scholar 

  143. Mitsura Sugisaki, Hong-Wen Ren, Kenichi Nishi, and Yasuaki Masumoto, Fluorescence intermittency in self-assembled InP quantum dots, Phys. Rev. Lett., 856(21), 4883–4886 (2001).

    Google Scholar 

  144. YounJoon Jung, Eli Barkai, and Robert J. Silbey, Lineshape theory and phonon counting statistics for blinking quantum dots: a Levy walk process, Chemical Physics 284, 181–194 (2002).

    Article  Google Scholar 

  145. Harvey Scher and Elliott W. Montrol, Anomalous transit-time dispersion in amorphous solids, Physical Review B12(6), 2455–2477 (1975).

    Google Scholar 

  146. B. Schreder, C. Dem, M. Schmitt, A. Materny, W. Kiefer, U. Winkler, and E. Umback, Raman spectroscopy of II–VI semoconductor nanostructures: CdS quantum dots, Journal of Raman Spectroscopy 34, 100–103 (2003).

    Article  Google Scholar 

  147. Fabio Bernardini, Vincenzo Fiorentini, and David Vanderbilt, Spontaneous polarization and piezoelectric constants of III–V nitrides, Phys. Review B56, R10024–R10127 (1997).

    Google Scholar 

  148. A. L. Hodgkin, The Conduction of the Nervous Impulse (Liverpool University Press, Liverpool, 1964).

    Google Scholar 

  149. Jonathan Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Inc.-Publishers, Sunderland, Massachusetts, 2001).

    Google Scholar 

  150. Erkki Ruoslahti, RGD and other recognition sequences for integrins, Annual Reviews of Cell & Developmental Biology 12(1), 697–715 (1996).

    Google Scholar 

  151. Gerald Karp, Cell and Molecular Biology, 3rd Ed. (Wiley, 2002).

    Google Scholar 

  152. Robert P. Lanza, Robert Langer, and Joseph Vacanti, editors, Principles of Tissue Engineering (Academic Press, 2000).

    Google Scholar 

  153. Bruce Alberts, Alexander Johnson, Julian Lewis, Martin Raff, Keith Roberts, and Peter Walters, Molecular Biology of the Cell, 4th Ed. (Garland Science, Taylor & Francis Group, 2001).

    Google Scholar 

  154. H. K. Kleinman, B. S. Weeks, F. B. Cannon, T. M. Sweeney, G. C. Sephel, B. Clement, M. Zain, M. O. J. Olson, M. Juncker, B. A. Burrous, Identification of a 110-kDa non-integrin cell surface laminin-binding protein which recognizes an A chain neurite-promoting peptide, Arch. Biochem. Biophys. 2909, 320–325 (1991).

    Google Scholar 

  155. Sharon K. Powell and Hynda Kleinman, Neuronal laminins and their cellular receptors, Int. J. Biochem. Cell. Biol. 29, 401–414 (1997).

    Article  Google Scholar 

  156. Sharon K. Powell, Javashree Rao, Eva Roque, Motoyoshi Nomizu, Yuichiro Kuratomi, Yoshihiko Yamada, and Hynda K. Kleinman, Neural cell response to multiple novel sites on laminin-l, Journal of Neuroscience Research 61, 302–312 (2000).

    Article  Google Scholar 

  157. Dimitri Alexson, Yang Li, Dinakar Ramadurai, Peng Shi, Leena George, Lenu George, Muzna Uddin, Preetha Thomas, Salvador Rufo, Mitra Dutta, and Michael A. Stroscio, Binding of semiconductor quantum dots to cellular integrins, IEEE Transactions on Nanotechnology, in press (2004).

    Google Scholar 

  158. Masao Iwamatsu, Makoto Fujiwara, Naoisa Happo, and Kenju Horii, Effects of dielectric discontinuity on the ground-state energy of charged Si dots covered with a SiO2 layer, Journal of Physics: Condensed Matter 9, 9881–9892 (1997); Masao Iwamats and Kenju Horii, Dielectric confinement effects on the impurity and exciton binding energies of silicon dots covered with a silicon dioxide layer, Japanese Journal of Applied Physics 36, 6416–6423 (1997).

    Article  Google Scholar 

  159. Anand Venkatesan, MS Thesis, Univesity of Illinoisat Chicago (2003).

    Google Scholar 

  160. Dinakar Ramadurai, Babak Kohanpour, Dimitri Alexson, Peng Shi, Akil Sethuraman, Yang Li, Vikas Saini, Mitra Dutta, and Michael A. Stroscio, Tunable optical properties of colloidal quantum dots in electrolytic environments, IEE Proceedings in Nanobiotechnology, in press (2004).

    Google Scholar 

  161. P. E. Lippens and M. Lannoo, Calculation of the band gap for small CdS and ZnS crystallites, Phys. Rev. B39,10935–10942 (1989).

    Google Scholar 

  162. A. S. Davydov, Quantum Mechanics (NEO Press, Ann Arbor, 1966).

    Google Scholar 

  163. Salvador Rufo, Mitra Dutta, and Michael A. Stroscio, “Acoustic modes in free and embedded quantum dots,” Journal of Applied Physics 93, 2900–2905 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Stroscio, M.A. et al. (2004). Integrating and Tagging Biological Structures with Nanoscale Semiconductor Quantum dot Structures. In: Stroscio, M.A., Dutta, M. (eds) Biological Nanostructures and Applications of Nanostructures in Biology. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48628-8_1

Download citation

  • DOI: https://doi.org/10.1007/0-306-48628-8_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48627-2

  • Online ISBN: 978-0-306-48628-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics