Product Handling

  • Thomas F. O’Brien
  • Tilak V. Bommaraju
  • Fumio Hine

Abstract

The first three sections of this chapter discuss the processing and handUng of the products of electrolysis. Section 9.1, related to chlorine, comprises most of the chapter. Sections 9.2 and 9.3 then cover hydrogen and caustic soda or potash. Section 9.4 discusses applications of several byproducts that are sometimes found useful.

References

  1. 1.
    Materials of Construction for Use in Contact with Chlorine, GEST 79/82, 7th ed., Euro Chlor, Brussels (1995).Google Scholar
  2. 2.
    Choice of Materials of Construction for Use in Contact with Chlorine (Spreadsheet), GEST 79/82—Annex, 1st ed., Euro Chlor, Brussels (2000).Google Scholar
  3. 3.
    O. A. Hougen and K. M. Watson, Chemical Process Principles, Part One, John Wiley & Sons, Inc., New York (1952), p. 115.Google Scholar
  4. 4.
    H. Schäfer and W. Gann, Z. Anorg. Allg. Chem. 270, 304 (1952).Google Scholar
  5. 5.
    P. C. Westen, The Safe Use of Steel and Titanium in Chlorine. In R. W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 62.Google Scholar
  6. 6.
    K. Hannesen, Materials of Construction for Handling Chlorine, Chlorine Safety Seminar, Brussels (1990).Google Scholar
  7. 7.
    M. W. J. Hammink and P. C. Westen, Corrosion and Erosion of Steel in Liquid Chlorine at Different Conditions of Velocity, Water Content, and Temperature. In K. Wall (ed.), Modern Chlor-Alkali Technology, vol. 3, Ellis Horwood, Chichester (1986), p. 71.Google Scholar
  8. 8.
    B. G. Dixon, D. M. Longenecker, and I. R. Wilcox, Usage of FRP for Combating Corrosion in Caustic/Chlorine Plants, Paper No. 461-57, ICI Americas Inc., Wilmington, DE (1984).Google Scholar
  9. 9.
    D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Co., New York (1950), pp. 828–833.Google Scholar
  10. 10.
    D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Co., New York (1950), pp. 340 et seq. Google Scholar
  11. 11.
    J. R. Fair, Chem. Eng. 79(12), 91 (1972).Google Scholar
  12. 12.
    P. Harriott and H. F. Wiegandt, AIChE J. 10, 755 (1964).Google Scholar
  13. 13.
    H. Z. Kister, Distillation Design, McGraw-Hill Book Co., New York (1992).Google Scholar
  14. 14.
    T. F. O’Brien and I. F. White, Process Engineering Aspects of Chlorine Cooling and Drying, In R. W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 70.Google Scholar
  15. 15.
    D. Q. Kern, Process Heat Transfer, McGraw-Hill Book Co., New York (1950), p. 343.Google Scholar
  16. 16.
    J. P. Kerner, Alberts and Associates, Personal Communication (ca. 1987).Google Scholar
  17. 17.
    J. A. Walkier, Chlorine Safety. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 233.Google Scholar
  18. 18.
    P. C. Westen, How To Use Steel and Titanium Safely, Third Euro Chlor Technical Seminar, Paris (1993).Google Scholar
  19. 19.
    J. S. Grauman and B. Willey, Chem. Eng. 105(8), 106 (1998).Google Scholar
  20. 20.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed., John Wiley and Sons, Inc., New York (1980), p. 226.Google Scholar
  21. 21.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed., John Wiley and Sons, Inc., New York (1980), p. 546.Google Scholar
  22. 22.
    J. A. A. Ketelaar, Electrochem. Technol. 5(3–4), 143 (1967).Google Scholar
  23. 23.
    A. Bouzat and L. Azinières, Compt. Rend. 176, 253; 177, 1444 (1923).Google Scholar
  24. 24.
    K. W. Allen, J. Chem. Soc. 1959, 4131 (1959).Google Scholar
  25. 25.
    C. H. Greenewalt, Ind. Eng. Chem. 17, 522 (1925).Google Scholar
  26. 26.
    R. E. Moore, United Engineers and Constructors, Inc., Personal Communication (1989).Google Scholar
  27. 27.
    Y. Tabata, T. Kodama, and T. Kotoyori, J. Hazard. Mater. 17(1), 47 (1987).Google Scholar
  28. 28.
    Structured Ceramic Packing for Chlorine Drying Towers, Bulletin No. A-100, Koch-Glitsch, Inc., Wichita, KS (2000).Google Scholar
  29. 29.
    S. A. Ziebold, Chem. Eng. 107(5), 94 (2000).Google Scholar
  30. 30.
    P. S. Fabian, R. W. Cusack, P. M. Hennessey, and M. Neuman, Chem. Eng. 100(11), 148 (1993).Google Scholar
  31. 31.
    T. F. O’Brien and I. F. White, Process Engineering Considerations in Chlorine Compression and Liquefaction. In S. Sealey (ed.), Modern Chlor-Alkali Technology, vol. 7, Royal Society of Chemistry, Cambridge (1998), p. 202.Google Scholar
  32. 32.
    A. H. Church, Centrifugal Pumps and Blowers, John Wiley & Sons, Inc., New York (1944).Google Scholar
  33. 33.
    R. P. Lapina, Chem. Eng. 96(8), 122 (1989).Google Scholar
  34. 34.
    R. P. Lapina, Chem. Eng. 97(7), 110 (1990).Google Scholar
  35. 35.
    G. R. Evans and L. J. Istas, Coexisting with the Centrifugal Compressor, 12th Chlorine Institute Plant Managers Seminar, New York (1969).Google Scholar
  36. 36.
    Learning from Experience, Pamphlet 167, Edition 1, The Chlorine Institute, Inc., Alexandria, VA (2002), p. 6.Google Scholar
  37. 37.
    W. G. Hoppock, J. A. Silvaggio, Jr., and K. G. Van Bramer, Centrifugal Compressor Revamps, Proceedings, Rotating Machinery Users Council Meeting, Long Beach, CA (1990).Google Scholar
  38. 38.
    P. M. Mayo, Chlorine Compressors, 30th Chlorine Institute Plant Managers Seminar, Washington, DC (1987).Google Scholar
  39. 39.
    T. A. Weedon, Jr., Pressure Control in Chlorine Plants, Fifth Annual Electrode Corporation Chlorine/Chlorate Industry Seminar, Cleveland, OH (1989).Google Scholar
  40. 40.
    F. G. Davis and A. B. Corripio, Dynamic Simulation of Variable-speed Centrifugal Compressors. In Instrument Society of America, Instrumentation in the Chemical and Process Industries, vol. 10, Research Triangle Park, NC (1974), p. 15.Google Scholar
  41. 41.
    N. V. Sidgwick, The Chemical Elements and Their Compounds, Oxford University Press, London (1950), pp. 1146–1150.Google Scholar
  42. 42.
    L. Miessler and D. A. Tarr, Inorganic Chemistry, 2nd ed., Prentice Hall, Upper Saddle River, NJ (1998), p. 268.Google Scholar
  43. 43.
    F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry-A Comprehensive Text, 4th ed., John Wiley & Sons, Inc., New York (1980), p. 562.Google Scholar
  44. 44.
    T. Moeller, Inorganic Chemistry-An Advanced Textbook, 2nd printing, John Wiley & Sons, Inc., New York (1965), pp. 446 et seq. Google Scholar
  45. 45.
    C.-P. Chen, T. V. Bommaraju, and P. C. Williams, U.S. Patent 5,639,422 (1997).Google Scholar
  46. 46.
    T. A. Liederbach, Unpublished Remarks, Seventh Annual Electrode Corporation Chlorine/Chlorate Industry Seminar, Cleveland, OH (1991).Google Scholar
  47. 47.
    HFSJG, Activity Report 2001, International Foundation High-Altitude Research Stations, http://www.ifjungo.ch/html/11.pdf. (2001).
  48. 48.
    The Northern Hemisphere Stratosphere in the 2002/3 Winter, European Ozone Research Coordinating Unit, University of Cambridge (2003).Google Scholar
  49. 49.
    S. Hieger, Retrofitting a Chlorine Liquefaction System to R-134a, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).Google Scholar
  50. 50.
    A. Bhadsavle and W. W. Humm, A Utility Approach to Alternative Refrigerants, CFC Refrigerant Alternative Seminar, New Orleans, LA (1993).Google Scholar
  51. 51.
    D. O’Shaughnessey, Flammability of R134a, R22, and R123 in Chlorine, Chlorine Institute CFC Refrigerant Alternatives Seminar, New Orleans, LA (1993).Google Scholar
  52. 52.
    J. H. Boyette, The BOCOSITM Chlorine Condensing System, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).Google Scholar
  53. 53.
    W. W. Humm, FES, Inc., Personal Communication (1996).Google Scholar
  54. 54.
    Maximum Levels of Nitrogen Trichloride in Liquid Chlorine. GEST 76/55, 10th ed., Euro Chlor, Brussels (2001).Google Scholar
  55. 55.
    R. F. Strickland-Constable, General Thermodynamic Relationships, In H. W. Cremer and T. Davies (eds.), Chemical Engineering Practice, vol. 4, Butterworths Publications Ltd., London (1957), pp. 61–62.Google Scholar
  56. 56.
    B. G. Kyle, Chemical and Process Thermodynamics, 3rd ed., Prentice Hall PTR, Upper Saddle River, NJ (1999).Google Scholar
  57. 57.
    L. J. Updyke, Method for Calculating Water Distribution in a Chlorine Condensing System, 25th Chlorine Institute Plant Operations Seminar, Atlanta, GA (1982).Google Scholar
  58. 58.
    Soda Handbook, Japan Soda Industry Association, Tokyo (1998), p. 423.Google Scholar
  59. 59.
    R. Le Vine, Guidelines for Safe Storage and Handling of High Toxic Hazard Materials (prepared by team from Arthur D. Little Inc., led by P. A. Croce, from original draft), Center for Chemical Process Safety, New York, NY (1988).Google Scholar
  60. 60.
    S. M. Englund, Opportunities in the Design of Inherently Safer Chemical Plants. In Advances in Chemical Engineering, vol. 15, Academic Press, Inc., San Diego, CA (1990).Google Scholar
  61. 61.
    T. F O’Brien, Beyond Hazan-The Role of Plant Safety Surveys, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).Google Scholar
  62. 62.
    J. Haas, Chlorine Monitors, 30th Chlorine Institute Plant Managers Seminar, Washington, DC (1987).Google Scholar
  63. 63.
    R. Woods, Atmospheric Chlorine Storage, 23rd Chlorine Institute Plant Managers Seminar, New Orleans, LA (1980).Google Scholar
  64. 64.
    N. C. Harris and J. P. Shaw, European Chlorine Storage Practice, 23rd Chlorine Institute Plant Managers Seminar, New Orleans, LA (1980).Google Scholar
  65. 65.
    F. P. Lees, Loss Prevention in the Chemical Industries, Butterworths, London (1980).Google Scholar
  66. 66.
    S. M. Englund, Chem. Eng. Progr. 87(3), 85 (1991).Google Scholar
  67. 67.
    Process Piping, ASME B 31.3, an ANSI Standard, The American Society of Mechanical Engineers, New York, NY (1996).Google Scholar
  68. 68.
    E. L. Sokol, Liquid Chlorine Transfer with External Pumps from Top Outlet Storage Tanks, 23rd Chlorine Institute Plant Managers Seminar, New Orleans, LA (1980).Google Scholar
  69. 69.
    R. E. Means, Chlorine Transfer, 21st Chlorine Institute Plant Operations Seminar, Houston, TX (1978).Google Scholar
  70. 70.
    R. Tujague, Chlorine Unloading Systems, 40th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1997).Google Scholar
  71. 71.
    J. H. Burelle and C. J. Bourgeois, Chlorine Tank Car Loading Systems-Occidental Chemical Taft, LA Facility, 40th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1997).Google Scholar
  72. 72.
    Chlorine Tank Car Marking, Drawing No. 167, Issue 5, The Chlorine Institute, Inc., Washington, DC(2001).Google Scholar
  73. 73.
    J. W. Mason, Design Aspects of Loading and Unloading Systems Which Can Mitigate or Eliminate Accidental Chlorine Releases. In R. W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 48.Google Scholar
  74. 74.
    Industrial Ventilation Manual: A Manual of Recommended Practices, 22nd ed., American Conference of Governmental Industrial Hygienists, Cincinnati, OH (1995).Google Scholar
  75. 75.
    R. Papp, Chlorine Handling and Safety in the European Situation. In C. Jackson (ed.), Modern ChlorAlkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 376.Google Scholar
  76. 76.
    T. F. O’Brien, Common Factors in Hazard Analysis, 35th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1992).Google Scholar
  77. 77.
    M. M. Silver, Chlorine Tailgas and Snift Disposal Systems, 25th Chlorine Institute Plant Operations Seminar, Atlanta, GA (1982).Google Scholar
  78. 78.
    T. F. O’Brien, The Use of Gas-Separation Membranes in Chlorine Processing. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 90.Google Scholar
  79. 79.
    E. Bartholome‘, Z Elektrochem. 54,3 (1950).Google Scholar
  80. 80.
    Remarks by N. C. Harris and J. A. Heilala, 2nd Chlorine Plant Operations Workshop, The Chlorine Institute, Inc., Washington, DC (1987).Google Scholar
  81. 81.
    R. L. Pigford, Course notes, University of Delaware, citing the work of Stephens and Morris (1958).Google Scholar
  82. 82.
    Crosby Style JQ Pressure Relief Valve, Catalog No. 306, Crosby Valve Inc., Wrentham, MA (1997).Google Scholar
  83. 83.
    E. H. Stitt, F. E. Hancock, and K. Kelly, New Process Options for Hypochlorite Destruction. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 315.Google Scholar
  84. 84.
    W D. McCollam, Chlorine Scrubbing Systems-A Discussion of CI Publication #89, 35th Chlorine Institute Plant Operations Seminar, New Orleans, LA (1992).Google Scholar
  85. 85.
    T. F. O’Brien, Emergency Vent Scrubbing Systems-Design; Operation; Hazard Analysis, Seventh Annual Electrode Corporation Chlorine/Chlorate Seminar, Cleveland, OH (1991).Google Scholar
  86. 86.
    H. M. Patel and T. B. Scarfe, Safety Aspects of Niachlor Membrane Cell Plant, 31st Chlorine Institute Plant Operations Seminar, New Orleans, LA (1988).Google Scholar
  87. 87.
    J. E. Vivian and R. P. Whitney, Chem. Eng. Prog. 43, 691 (1947).Google Scholar
  88. 88.
    T. F. O’Brien and I. F. White, Design and Operation of Emergency Chlorine Absorption Systems. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 239.Google Scholar
  89. 89.
    H. Hikita, S. Asai, and T. Takatsuka, Chem. Eng. J. 5, 77 (1973).Google Scholar
  90. 90.
    T. K. Sherwood and R. L. Pigford, Absorption and Extraction, McGraw-Hill Book Co., New York (1952).Google Scholar
  91. 91.
    L. J. Updyke, Emergency Vent Scrubbers-Design Considerations, 5th Chlorine Plant Operations Workshop, Houston, TX (1990).Google Scholar
  92. 92.
    F. Yoshida and K. Akita, A.I.Ch.E. J. 11(1), 9 (1965).Google Scholar
  93. 93.
    T. A. Makhneva and P. P. Gertsen, Zh. Prikl. Khim. 43(4), 766 (1970).Google Scholar
  94. 94.
    J. Boteler and D. Clucas, reprinted in Chemical Engineering Buyers Guide (2000), p. 10.Google Scholar
  95. 95.
    V. K. Gupta, Considerations in Design of Chlorine Expansion Chambers, in Proceedings, Oronzio de Nora Symposium on Chlorine Technology, Venice (1979), p. 369.Google Scholar
  96. 96.
    Explosive Properties of Gaseous Mixtures Containing Hydrogen and Chlorine, Member Information Report 121, Edition 1, The Chlorine Institute, Inc., Washington, DC (1977).Google Scholar
  97. 97.
    O. Suzuki and T. Fukunaga, J. Electrochem. Soc. (Japan) 24, 104 (1956).Google Scholar
  98. 98.
    J. Van Diest and R. DeGraff, Ind. Chem. Belg. 30(11), 1195 (1965).Google Scholar
  99. 99.
    V. N. Antonov, E. Frolov, A. I. Rozlovskii, and A. S. Maltseva, Khim. Prom. 3, 205 (1974).Google Scholar
  100. 100.
    E. J. Laubusch, Water Chlorination. In J. S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 465.Google Scholar
  101. 101.
    B. V. Tilak and C.-P. Chen, Chlor-alkali and Chlorate Technology, in Proceedings, R. B. MacMullin Memorial Symposium, H. S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), The Electrochemical Society, Inc., Pennington, NJ (1999), p. 8.Google Scholar
  102. 102.
    D. Hildebrand, Nitrogen Trichloride Analysis and Sampling, 39th Chlorine Institute Plant Managers Seminar, Washington, DC (1996).Google Scholar
  103. 103.
    J. Fairweather, Orica Yarraville Nitrogen Trichloride Incidents, 30 July 1998. The Chlorine Institute Nitrogen Trichloride Workshop, New Orleans, LA (1998).Google Scholar
  104. 104.
    C. R. Dillmore, Actual Plant Practice in the Use of Ultraviolet Light for Removal of Nitrogen Trichloride from Chlorine Gas, 7th Chlorine Institute Plant Operations Seminar, New York, NY (1962).Google Scholar
  105. 105.
    J. F. Knoop and A. Santavicca, The Chlorine Institute Nitrogen Trichloride Workshop, New Orleans, LA (1998).Google Scholar
  106. 106.
    R. E. Ross and J. L. Bowling, NCl3 Concentrations and Decomposition by Dry Compression, Member Information Report 21, The Chlorine Institute, Washington, DC (1988), p. 101.Google Scholar
  107. 107.
    V. A. Shushunov and L. Z. Pavlova, Zhur. Neorg. Khim. 2, 2272 (1957).Google Scholar
  108. 108.
    C. S. Robinson and E. R. Gilliland, Elements of Fractional Distillation, 4th ed., McGraw-Hill Book Co., New York, NY (1950), p. 110.Google Scholar
  109. 109.
    S. D. Argade, E. N. Balko, D. A. Kramer, and J. F. Louvar, Nitrogen Trichloride Control in Chlorine Manufacture, Electrochemical Society Meeting, Seattle, WA (1978).Google Scholar
  110. 110.
    F. Abraham and J. F. Knoop, Maximum Accumulation of Nitrogen Trichloride in a Continuous-Feed Chlorine Vaporizer, The Chlorine Institute Nitrogen Trichloride Workshop, New Orleans, LA (1998).Google Scholar
  111. 111.
    Ya. J. Apin, Acta Physiochim. URSS 13, 405 (1940).Google Scholar
  112. 112.
    R. F. Zeller, J. P. DeJac, B. B. Guildin, M. J. Korzeuk, and G. J. Garzon, Demonstrating Non-Ideal Solution Behavior of NCl3 in Liquid Chlorine and Its Application to Chlorine Vaporizers, Sixteenth Annual Chlorine/Chlorate Seminar, Cleveland, OH (1999).Google Scholar
  113. 113.
    Compressed Gas Association, Handbook of Compressed Gases, 3d ed., Van Nostrand Reinhold, New York, NY (1990).Google Scholar
  114. 114.
    U. Herrlett, Chem. Eng. 109(5), 62 (2002).Google Scholar
  115. 115.
    I. H. Warren, Energy Saving in Chlorate Production with the Use of a Fuel Cell. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood Limited, Chichester (1983), p. 289.Google Scholar
  116. 116.
    N. P. Chopey, Newsfront; Chem. Eng. 108(7), 37 (2001).Google Scholar
  117. 117.
    E. N. Balko, SPE Hydrochloric Acid Electrolysis Cell: Performance, Cell Configuration, in Proceedings, Oronzio DeNora Symposium on Chlorine Technology, Venice (1979), p. 204.Google Scholar
  118. 118.
    V. H. Thomas and E. J. Rudd, Energy Savings Advances in the Chlor-alkali Industry. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 159.Google Scholar
  119. 119.
    P. Schmittinger, Chlorine-Principles and Industrial Practice, Wiley-VCH, Weinheim (2000), p. 46.Google Scholar
  120. 120.
    Type HGR for Mercury Removal, product bulletin, Calgon Carbon Corporation, Pittsburgh, PA (1993).Google Scholar
  121. 121.
    C. P. Dillon, Corrosion Control in the Chemical Process Industries, McGraw-Hill Book Co., New York, NY (1986), p. 120.Google Scholar
  122. 122.
    G. A. Nelson, Hydrocarbon Processing 44(5), 185 (1965).Google Scholar
  123. 123.
    I. F White, G. J. Dibble, J. E. Harker, and T. F. O’Brien, Safety Considerations in the Design of Chloralkali Plants. In K. Wall (ed.), Modern Chlor-Alkali Technology, vol. 3, Ellis Horwood, Chichester (1986), p. 97.Google Scholar
  124. 124.
    F. Bodurtha, Industrial Explosion Prevention and Protection, McGraw-Hill Book Co., New York (1980).Google Scholar
  125. 125.
    F. Hine and A. J. Acioli M., J. Appl. Electrochem. 22, 699 (1992).Google Scholar
  126. 126.
    A. J. Acioli, E. F. Powell, and F. C. Viana, Production of 70% Caustic Soda Directly from Decomposer, an Effective Way to Save Energy. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 199.Google Scholar
  127. 127.
    R. Coin, Brine Purification, Sixteenth Annual Chlorine/Chlorate Seminar, Cleveland, OH (2000).Google Scholar
  128. 128.
    D. C. Brandt, The Economics of Producing High-Strength Caustic Soda in Membrane Cells, 32nd Chlorine Institute Plant Operations Seminar, Washington, DC (1989).Google Scholar
  129. 129.
    F. Hine and M. Okubo, Corrosion Eng. (Japan) 25, 509 (1976).Google Scholar
  130. 130.
    R. K. Swandby, Chem. Eng. November 12, 1962, p. 186.Google Scholar
  131. 131.
    Corrosion Resistance of Nickel and Nickel-Containing Alloys in Caustic Soda and Other Alkalies, CEB-2, International Nickel Company, New York, NY (1973).Google Scholar
  132. 132.
    C. P. Dillon, Corrosion Control in the Chemical Process Industries, McGraw-Hill Book Co., New York, NY (1986), p. 113.Google Scholar
  133. 133.
    D. E. Jordan, Stress-Corrosion Cracking of Nickel-Base Alloy Weldments, International Institute of Welding Annual Assembly, Montreal (1990).Google Scholar
  134. 134.
    A. R. Mcllree and H. T. Michels, Corrosion 33(2), 60 (1977).Google Scholar
  135. 135.
    C. M. Schillmoller, Alloy Selection for Caustic Soda Service, NiDI Technical Series No. 10019, Nickel Development Institute, Toronto (1988).Google Scholar
  136. 136.
    A. B. Misercola, R. P. Tracy, I. A. Franson, and R. J. Knoth, The Use of E-Brite 26-1® Ferritic Stainless Steel in Production of Caustic Soda, Electrochemical Society meeting, Washington, DC (1976).Google Scholar
  137. 137.
    J. E. Houston, Evaporator Technology Corporation, Personal Communication (1983).Google Scholar
  138. 138.
    B. M. Barkel, Accelerated Corrosion of Nickel Tubes in Caustic Evaporator Service, CORROSION/79, Paper No. 13, Atlanta, GA (1979).Google Scholar
  139. 139.
    M. Yasuda, F. Takeya, and F. Hine, Corrosion 39(10), 399 (1983).Google Scholar
  140. 140.
    T. V. Bommaraju and P. J. Orosz, Caustic Evaporator Corrosion: Causes and Remedy. In T. C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, London (1992), p. 307.Google Scholar
  141. 141.
    T. V. Bommaraju, W. V. Hauck, and V. J. Lloyd, U.S. Patent 4,585,579 (1986).Google Scholar
  142. 142.
    J. R. Crum and W. G. Lipscomb, Performance of Nickel 200 and E-Brite 26-1 in First-Effect Caustic Environments. CORROSION/83, Paper No. 23 (1983).Google Scholar
  143. 143.
    R. Parkinson, Properties and Applications of Electroless Nickel, Technical paper 10081, Nickel Development Institute, Toronto (1997).Google Scholar
  144. 144.
    S. A. Watson, Electroless Nickel Coatings, Technical paper 10055, Nickel Development Institute, Toronto (1990).Google Scholar
  145. 145.
    P. Cutler, Nickel, Nickel Everywhere, Reprint Series No. 14,048, from Materials World, September 1998. Nickel Development Institute, Toronto (1998).Google Scholar
  146. 146.
    C. W. Funk and G. B. Barton, Caustic Stress Corrosion Cracking, CORROSION 77, Paper No. 54, National Association of Corrosion Engineers, Houston, TX (1977).Google Scholar
  147. http://www.swenson-equip.com/fc-evap, Forced-Circulation Evaporator, Swenson Process Equipment Co., Harvey, IL (2002).
  148. 148.
    J. D. Kumana, Chem. Eng. Progr. 86(5), 10 (1990).Google Scholar
  149. 149.
    A. Ward, Fouling of Evaporator Heat Exchangers-Causes and Cures, Fuel/Ethanol Workshop, Wichita, KS (1992).Google Scholar
  150. 150.
    General Electric Co., South African Patent 7,606,336 (1977).Google Scholar
  151. 151.
    D. Mannig and G. Scherer, Hydrogen Peroxide in the Chlor-Alkali Industry, 30th Chlorine Institute Plant Operations Seminar, Washington, DC (1987).Google Scholar
  152. 152.
    S. G. Osborne and S. Davids, U.S. Patent 2,823,177 (1958).Google Scholar
  153. 153.
    L. L. Benezra, D. W. Hill, and S.-P. Tsai, U.S. Patent 4,055,476 (1977).Google Scholar
  154. 154.
    P. Schmittinger (ed.), Chlorine-Principles and Industrial Practice, Wiley-VCH, Weinheim (2000), p. 125.Google Scholar
  155. 155.
    F. C. Standiford and W. L. Badger, Ind. Eng. Chem. 46(11), 2400 (1954).Google Scholar
  156. 156.
    D. J. Pye, U.S. Patent 2,610,105 (1952).Google Scholar
  157. 157.
    A. von Antropoff and W. Sommer, Z phys. Chem. 123, 161 (1926).Google Scholar
  158. 158.
    W. Haltenberger, Jr., Ind. Eng. Chem. 31, 783 (1930).Google Scholar
  159. 159.
    P. S. Nair, Chem. Eng. 110(1), 77 (2003).Google Scholar
  160. 160.
    M. Pasquariello, Chem. Eng. 107(9), 77 (2000).Google Scholar
  161. 161.
    M. E. Bishop, Chem. Eng. 109(5), 77 (2002).Google Scholar
  162. 162.
    W. Cathcart, Caustic Tank Car Lining, 30th Chlorine Institute Plant Operations Seminar, Washington, DC (1987).Google Scholar
  163. 163.
    T. F O’Brien, Considerations in the Conversion of Existing Chlor-alkali Plants to Membrane-cell Operation. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 190.Google Scholar
  164. 164.
    K. A. Stanley, Phased Conversion of a Diaphragm Plant to Membrane Technology. In S. Sealey (ed.), Modern Chlor-Alkali Technology, vol. 7, Royal Society of Chemistry, Cambridge (1998), p. 145.Google Scholar
  165. http://www.swenson-equip.com/dtbxtaliz, Draft Tube Baffle Crysta0llizer, Swenson Process Equipment Co., Harvey, IL (2002).
  166. 166.
    M. J. Niksa, Acid/Base Recovery from Sodium Sulfate, Fourth International Forum on Electro synthesis in the Chemical Industry, Fort Lauderdale, FL (1991).Google Scholar
  167. 167.
    R. B. MacMullin, Chem. Eng. Progr. 46(9), 440 (1950).Google Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  • Thomas F. O’Brien
    • 1
  • Tilak V. Bommaraju
    • 2
  • Fumio Hine
    • 3
  1. 1.Independent Consultant MediaUSA
  2. 2.Independent Consultant Grand IslandNew YorkUSA
  3. 3.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations