Chlor-Alkali Technologies

  • Thomas F. O’Brien
  • Tilak V. Bommaraju
  • Fumio Hine


About 97 % of the chlorine and nearly 100% of the caustic soda in the world are produced electrolytically from sodium chloride, while the rest of the chlorine is manufactured by the electrolysis of KC1, HC1, chlorides of Ti and Mg, and by the chemical oxidation of chlorides [1]. The electrolytic technologies currently used are mercury, diaphragm, and ion-exchange membrane cells. Figures 5.1 and 3.10 show the distribution of these cell technologies in the world and on a regional basis [2]. Mercury cells had a world share of 45% in 1984 and declined to 18% in 2001 because of the health and environmental concerns associated with mercury. However, it is still the leading technology in Europe.


Bipolar Cell Bypass Channel Diaphragm Cell Cathode Tube Mercury Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T.V. Bommaraju, B. Lüke, G. Dammann, T.F. O’Brien, and M. Blackburn, Chlorine. Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., New York (2003).Google Scholar
  2. 2.
    H.J. Hartz and J. Marciniak, Krupp Uhde, Technology Partner for the Chlor-Alkali Industry. 11th Krupp Uhde Chlorine Symposium, Dortmund, Germany (2001).Google Scholar
  3. 3.
    G.W. Vinal, A. Volta. In CA. Hampel (ed.), Encyclopedia of Electrochemistry, Reinhold Publishing Co., New York (1964), p. 1154.Google Scholar
  4. 4.
    J.E. Colman. Electrolytic Production of Sodium Chlorate. In R. Alkire and T. Beck (eds.), Tutorial Lectures in Electrochemical Engineering and Technology, AlChE Symposium Series 204, vol. 77, American Institute of Chemical Engineers, New York (1981), p. 244.Google Scholar
  5. 5.
    T.A. Ross, Monopolar or Bipolar?-The Current Debate, Reprint from Process Industry J. Feb. 1990.Google Scholar
  6. 6.
    T. Navin, OxyTech Systems Inc., Private Communication (1998).Google Scholar
  7. 7.
    M. Quissek, Asea Brown Boveri Industrie AG, Private Communication (1998).Google Scholar
  8. 8.
    T.R. Beck, I. Rousar, and J. Thonstad, J. Light Metals 485 (1993).Google Scholar
  9. 9.
    U. Bossel, German Patent Application WO-94-EP2181 (1994).Google Scholar
  10. 10.
    A. Kaufman and J. Werth, European Patent Application: EP-85-306022 850823 (1985).Google Scholar
  11. 11.
    U.M. Yang, H. Wu, and J. Selman, J. Appl. Electrochem. 19, 247 (1989).CrossRefGoogle Scholar
  12. 12.
    H.N. Sieger, J. Electrochem. Soc. 133, 2002 (1986).CrossRefGoogle Scholar
  13. 13.
    Y. Yoshida, GS News Tech. Rep. 44, 28 (1985).Google Scholar
  14. 14.
    G. Codina, J.R. Perez, M. Lopez-Atalaya, J.L. Vazquez, and A. Aldaz, J. Power Sources 48, 293 (1994).CrossRefGoogle Scholar
  15. 15.
    M.A. Manzo, R.F. Gahn, O.D. Ganzalez-Somabria, R.L. Cataldo, and R.P. Gemeiner, Proc. Inter. Soc. Energy Corners. Eng. Conf. 22(22), 864 (1987), NASA Tech. Memo, Issue NASA-TM-89907, E-3600 (1987).Google Scholar
  16. 16.
    P. Grimes, R. Bellows, and P. Malachesky, Proc. Symp. Eng. Ind. Electrolytic Processes, PV 86-88, The Electrochemical Society, Pennington, NJ (1986) p. 142.Google Scholar
  17. 17.
    J.R. Driscoll, R. Pollard, J.J. Smith, and S. Szpak, Proc. Inter. Soc. Energy Corners. Eng. Conf. 20(2), 2.55–2.62 (1985).Google Scholar
  18. 18.
    K. Nozaki, H. Kaneko, A. Negishi, K. Kanari, and T. Ozawa, Proc. Inter. Soc. Energy Convers. Eng. Conf. 19(2), 844 (1984).Google Scholar
  19. 19.
    R.I. Cataldo, Proc. Inter. Soc. Energy Convers. Eng. Conf. 18(4), 1561 (1983).Google Scholar
  20. 20.
    R.J. Bellows, H. Einstein, P. Grimes, E. Kantner, K. Newby, and J.A. Shropshire, Proc. Inter. Soc. Energy Convers. Eng. Conf 15(2), 1465 (1980).Google Scholar
  21. 21.
    S. Sarangapani, J.A. Kosek, and A.B. LaConti, Proton Conducting Electrochemical Capacitors with Solid Polymer Electrolyte. In M.Z.A. Munshi (ed.), Handbook-Solid State Batteries and Capacitors, World Scientific, Singapore (1995), p. 601.CrossRefGoogle Scholar
  22. 22.
    Y. Kakihara, S. Mataga, and M. Murata, Japanese Patent JP 61001513 (1986).Google Scholar
  23. 23.
    M. Yoshitake, Y. Nakamura, and Z. Kamio, Japanese Patent JP 60181288 (1985).Google Scholar
  24. 24.
    E. Balko, M. Nicholas, and L.C. Mouthrop, FR 2491957 (1982).Google Scholar
  25. 25.
    T. Morokuma, H. Yoshida, A. Hiroyuki, and J. Akazawa, Japanese Patent JP 48042559 (1973).Google Scholar
  26. 26.
    G.O. Westerlund, Canadian Patent 892733 (1972).Google Scholar
  27. 27.
    R.E. White, C. Walton, H.S. Burney, and R.N. Beaver, J. Electrochem. Soc. 133, 485 (1986).CrossRefGoogle Scholar
  28. 28.
    B.J. Scheiner, D.L. Pool, R.E. Lindstrom, and G.E. McCleland, Prototype Commercial Electrooxidation Cell for the Recovery of Molybdenum and Rhenium from Molybdate Concentrates. Reno Metall. Res. Cent., Bur. Mines, Reno, Report Issue: BM-RI-8357 (1979).Google Scholar
  29. 29.
    R. Collini, PCT Int. Appl. WO 8707652 (1987).Google Scholar
  30. 30.
    G. Zhao, S. Duan, Q. Tian, and T. Wu, Metall Trans B. 21B, 783 (1990).CrossRefGoogle Scholar
  31. 31.
    T.R. Beck, I. Rousar, and I. Thonstad, Metall Trans B. 25B, 661 (1994).CrossRefGoogle Scholar
  32. 32.
    N. Feng, Z. Qiu, G. Kai, and H.K. Zjotheim, J Light Met. 379 (1990).Google Scholar
  33. 33.
    N. Hoy-Patterson, T. Aune, T. Vralstad, K. Andreassen, D. Qymo, T. Haugerod, and O. Skaane, Magnesium. In Ullmanns Encyclopedia of Industrial Chemistry, vol. A15, Wiley-VCH Verlag GmbH, Weinheim, Germany (1990), p. 559.Google Scholar
  34. 34.
    O.G. Sivillotti and A. Briand, U.S. Patent 3,396,094 (1968).Google Scholar
  35. 35.
    O.G. Sivillotti, U.S. Patent 4,055,474 (1977).Google Scholar
  36. 36.
    H. Ishizuka, U.S. Patents 4,495,037 (1985); 4,647,355 (1987).Google Scholar
  37. 37.
    W.G.B. Mandersloot and R.E. Hickes, Desalination 1, 178 (1966).CrossRefGoogle Scholar
  38. 38.
    C.J.H. King and D.E. Danly, Experimental Measurement of Current Leakage in a Commercial Scale Bipolar Cell Stack, Abstract #392, Electrochemical Society Meeting, Montreal (1982).Google Scholar
  39. 39.
    E.A. Kaminski and R.F. Savinell, J. Electrochem. Soc. 130, 1103 (1983).CrossRefGoogle Scholar
  40. 40.
    M. Zahn, RG. Grimes, and R.L Bellows, U.S. Patent 4,197,169 (1980).Google Scholar
  41. 41.
    RG. Grimes, M. Zahn, and R. Bellows, U.S. Patent 4,312,735 (1982).Google Scholar
  42. 42.
    RG. Grimes, U.S. Patent 4,377,445 (1983).Google Scholar
  43. 43.
    RG. Grimes, R.J. Bellows, and M. Zahn, Shunt Current Control in Electrochemical Systems-Theoretical Analysis. In R.E. White (ed.), Electrochemical Cell Design, Plenum Press, New York (1984), p. 259.CrossRefGoogle Scholar
  44. 44.
    V.B. Kogan and R.-R. Ousepyan, Khim-Prom. 8, 463 (1954).Google Scholar
  45. 45.
    A.S. Bogoslovskii, Tsvetnye Metally 29(4), 57 (1956).Google Scholar
  46. 46.
    O.S. Ksenzhek and N.D. Koshel, Soviet Electrochem. 7, 331 (1971).Google Scholar
  47. 47.
    V.A. Onishchuk, Soviet Electrochem. 8, 681 (1972).Google Scholar
  48. 48.
    B.R Nestewrov, G.A. Karnzelev, V.R Gerasimenko, and N.V. Koronin, Soviet Electrochem. 9, 1091 (1973).Google Scholar
  49. 49.
    W. Thiele, M. Schleiff, and H. Matschiner, Electrochim. Acta 26, 1005 (1981).CrossRefGoogle Scholar
  50. 50.
    G. Zhao, S. Duan, Q. Tian, and T. Wu, Metall. Trans. B. 21B, 784 (1990).Google Scholar
  51. 51.
    S.K. Rangarajan and V. Yegnanarayanan, Electrochim. Acta 42, 153 (1997).CrossRefGoogle Scholar
  52. 52.
    S.K. Rangarajan, V. Yegnanarayanan, and M. Muthukumar, Electrochim. Acta 44, 491 (1998).CrossRefGoogle Scholar
  53. 53.
    J. Yang, Q. Zhang, H. Wang, and Y Liu, Trans NFsoc. 5, 29 (1995).Google Scholar
  54. 54.
    I. Rousar, J. Electrochem. Soc. 116, 676 (1969).CrossRefGoogle Scholar
  55. 55.
    J.W. Holmes and R.E. White, A Finite Element Model of Bipolar Plate Cells. In R.E. White (ed.), Electrochemical Cell Design, Plenum Press, New York (1984), p. 311.CrossRefGoogle Scholar
  56. 56.
    G. Bonvin and Ch. Comninellis, J. Appl. Electrochem. 24, 469 (1994).CrossRefGoogle Scholar
  57. 57.
    J.C. Burnett and D.E. Danly, Current Bypass in Electrochemical Cell Assemblies. In M. Krumplett, E.Y Weissmann, and R.C. Alkire (eds), Electro-Organic Synthesis Technology, AIChE Symp. Series 185, vol. 75, American Institute of Chemical Engineers, New York (1979), p. 8.Google Scholar
  58. 58.
    P.P. Pirotskii and N.N. Shvetsov, Ismeri-Tel’naya Technika 12, 43 (1961).Google Scholar
  59. 59.
    A.T. Kuhn and J.S. Booth, J. Appl. Electrochem. 10, 233 (1980).CrossRefGoogle Scholar
  60. 60.
    I. Rousar and V. Cezner, J. Electrochem. Soc. 121, 648 (1974).CrossRefGoogle Scholar
  61. 61.
    French Patent 2,114,043 (1972).Google Scholar
  62. 62.
    Japanese Patent 7,342,559 (1973).Google Scholar
  63. 63.
    Japanese Patent 7,757,086 (1977).Google Scholar
  64. 64.
    German Patent 2,556,065(1976).Google Scholar
  65. 65.
    R.N. Beaver and G.E. Newman, PCT Int. Appl. WO 9404719 (1994).Google Scholar
  66. 66.
    C.L. Mantell, Electrochemical Engineering, 4th Edition, McGraw-Hill Book Company, Inc., New York (1960), p. 248.Google Scholar
  67. 67.
    R.B. MacMullin, Electrolysis of Brines in Mercury Cells. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, R.E. Kreiger Publishing Company, Huntington, New York (1972), p. 127.Google Scholar
  68. 68.
    J.E. Currey and G.G. Pumplin. Chlorine. In J.J. McKetta and W.A. Cunningham (eds), Encyclopedia of Chemical Processing and Design, vol. 7, Marcel Dekker Inc., New York (1978), p. 305.Google Scholar
  69. 69.
    H.A. Sommers, Electrochem. Technol. 5, 108 (1967).Google Scholar
  70. 70.
    Y Chin, Process Economics Program: Chlorine Report 61D, SRI International, Menlo Park, CA (1992).Google Scholar
  71. 71.
    P. Schmittinger, T. Florkiewicz, L.C. Curlin, B. Lüke, R. Scanelli, T. Navin, E. Zelfel, and R. Bartsch, Chlorine. In Ullmann’s Encyclopedia of Industrial Chemistry, 6th Edition, Wiley-VCH Verlag GmbH, Weinheim, Germany (1999), p. 1.Google Scholar
  72. 72.
    D. Francis, DeNora’s Cell Room Technology Enhancements to Reduce Mercury Emissions, paper produced at the Chlorine Institute Conference, New Orleans (2001).Google Scholar
  73. 73.
    Uhde: Alkali Chloride Electrolyse nach dem Quecksilberverfahren.Google Scholar
  74. 74.
    Krebskosmo, Chlor-Alkali-Anlage.Google Scholar
  75. 75.
    R.W. Ralston, U.S. Patent 4,004,989A (1977).Google Scholar
  76. 76.
    U.S. Patents 1,365,875 (1921); 2,282,085 (1924).Google Scholar
  77. 77.
    PJ. Kienholz, Bipolar Chlorine Cell Development. In Chlorine Bicentennial Symposium, The Electrochemical Society, Princeton, NJ (1974), p. 198.Google Scholar
  78. 78.
    R.N. Beaver and C.W. Becker, U.S. Patents 4,093,533 (1978); 4,142,951 (1979).Google Scholar
  79. 79.
    H.D. Dang, R.N. Beaver, F.W Spillers, and M.J. Hazelrigg, Jr., U.S. Patent 4,497,112 (1985).Google Scholar
  80. 80.
    V. DeNora, Chem-Ing.-Tech. 47, 141 (1975).CrossRefGoogle Scholar
  81. 81.
    Brochure from PPG Industries, Glanor V Type 1144 Electrolyzer (1976).Google Scholar
  82. 82.
    T.C. Jeffery and R.J. Scott, The Glanor® Electrolyzer-The New Look in Chlorine Production. In Diaphragm Cells for Chlorine Production, Proceedings. Symposium at The City University, London, Society of Chemical Industry (1977), p. 67.Google Scholar
  83. 83.
    Chlorine Institute, North American Chlor-Alkali Plants, Pamphlet #10; Chlor-Alkali Producers Outside North America, Pamphlet # 16, New York (1976).Google Scholar
  84. 84.
    K. Hass, Chem.-Ing-Tech. 47, 121 (1975).CrossRefGoogle Scholar
  85. 85.
    L.C. Curlin, T.V. Bommaraju, and C.B. Hansson, Chlorine and Sodium Hydroxide. In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, vol. 1, John Wiley & Sons, Inc., New York (1991), p. 938.Google Scholar
  86. 86.
    R. Romine and R. Matousek, New and Improved Diaphragm Cell Hardware Designs. Electrode Corporation Chlorine/Chlorate Seminar, ELTECH Systems Corporation, Chardon, OH (1998).Google Scholar
  87. 87.
    E.S. Kazimir, Monopolar Cathode Design Improvements and Other Diaphragm Cell Component Advances. Electrode Corporation Chlorine/Chlorate Seminar, ELTECH Systems Corporation, Chardon, OH (1999).Google Scholar
  88. 88.
    T. Florkiewicz, Diaphragm Cell Improvements, 44th Chlorine Institute Plant Managers Seminar, New Orleans (2001).Google Scholar
  89. 89.
    E. Pearson, Criteria for the Selection of Membrane Cell Technology. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 177.Google Scholar
  90. 90.
    H. Shiroki, Y. Noaki, M. Katayose, and A. Kashiwada, Improvement of Electrolyzer and Ion Exchange Membrane for High Efficiency Chlorine and Caustic Soda Production. In R.W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, The Royal Society of Chemistry, Cambridge (1995), p. 222.Google Scholar
  91. 91.
    Y Noaki and S. Okamoto, U.S. Patent 5,225,060 (1993).Google Scholar
  92. 92.
    M. Yoshida and Y Tamura, U.S.Patent 4,557,816 (1985).Google Scholar
  93. 93.
    M. Seko, S. Ogawa, N. Ajiki, and M. Yoshida, U.S. Patent 4,111,789 (1978).Google Scholar
  94. 94.
    CME Chlorine Engineers Membrane Electrolyzer, Chlorine Engineers Corp. Ltd., Tokyo, Japan (1989).Google Scholar
  95. 95.
    A. Hironaga, M. Okura, S. Katayama, and Y Take, Development of the Advanced Bipolar Membrane Electrolyzer (BiTACTM), In R.W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, The Royal Society of Chemistry, Cambridge (1995), p. 205.Google Scholar
  96. 96.
    S. Katayama and Y Take, US. Patent 5,314,591 (1994).Google Scholar
  97. 97.
    S. Katayama, US. Patent 5,484,514 (1996).Google Scholar
  98. 98.
    Brochure on ExL and Dense Pak Cells, OxyTech Systems Inc, Chardon, OH (1998).Google Scholar
  99. 99.
    CD. Schulz, ELTECH Systems Corp., Chardon, Personal Communication (2003).Google Scholar
  100. 100.
    FM-2I SP Series Membrane Electrolyzer, ICI PLC, Northwich, Cheshire, (1989).Google Scholar
  101. 101.
    S. Collings, Chlor-Alkali Membrane Electrolyzer. InJ. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Chap. 18, Society of Chemical Industry, London (2001), p. 225.CrossRefGoogle Scholar
  102. 102.
    INEOS Chlor brochure, Chlor-Alkali Electrolyzer Technology (2003).Google Scholar
  103. 103.
    M.A. Cook, INEOS Chlor Ltd., Personal Communication (2003).Google Scholar
  104. 104.
    Alkaline Chloride Electrolysis by the Membrane Process, Krupp Uhde GmbH, Dortmund, Germany (2001).Google Scholar
  105. 105.
    M. Hartmann, D. Bergner, and K. Hannessen, U.S. Patent 5,194,132 (1993).Google Scholar
  106. 106.
    T. Borucinski and K. Schneiders, A New Generation of the Krupp Uhde Single-Element Design. In S. Sealy (ed.), Modern Chlor-Alkali Technology, vol. 7, The Royal Society of Chemistry, Cambridge, UK (1998), p. 105.Google Scholar
  107. 107.
    R. Beckmann and B. Lüke, Know-How and Technology-Improving the Return on Investment for Conversions, Expansions and New Chlorine Plants. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, Society of Chemical Industry, London (2001), p. 196.CrossRefGoogle Scholar
  108. 108.
    G. Dammann, Krupp Uhde GmbH, Dortmund, Germany, Personal Communication (2003).Google Scholar
  109. 109.
    H.S. Burney, Past, Present, and Future of the Chlor-Alkali Industry. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Memorial Symposium, Proc. vol. 99–21, The Electrochemical Society Inc., Pennington, NJ (1999), p. 105.Google Scholar
  110. 110.
    Soda Handbook, Japan Soda Industry Association, Tokyo (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  • Thomas F. O’Brien
    • 1
  • Tilak V. Bommaraju
    • 2
  • Fumio Hine
    • 3
  1. 1.Independent Consultant MediaUSA
  2. 2.Independent Consultant Grand IslandNew YorkUSA
  3. 3.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations