Skip to main content

Chemistry and Electrochemistry of the Chlor-Alkali Process

  • Chapter

Abstract

Thermodynamics is a powerful tool for the study of chemical reactions and is intimately related to the atomic and molecular description of the species participating in these reactions. The transformation of energy involved in the reactions depends on the thermodynamic conditions of the reaction, and can be expressed in terms of various thermodynamic functions. One such function is the Gibbs free energy [14], expressed by Eq.(l):

$$G = H - TS$$
(1)

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   429.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Kortüm and J.O’M. Bockris, Text Book of Electrochemistry, Vol. 1, Elsevier Publishing Company, New York (1951).

    Google Scholar 

  2. J.O’M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Vols. 1 and 2, Plenum Press, New York (1970).

    Book  Google Scholar 

  3. G.M. Barrow, Physical Chemistry, 4th Edition, McGraw-Hill Book Company, New York (1979).

    Google Scholar 

  4. R. Parsons, Equilibrium Properties of Electrified Interfaces. In J.O’M. Bockris and B.E. Conway (eds), Modern Aspects of Electrochemistry, Butterworths Scientific Publications, London (1954), p. 103.

    Google Scholar 

  5. W.W. Smith, Chapter 2, Chlorine. In Supplement to Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry, Vol. 2, Supplement 1, Longmans, London (1965), p. 262.

    Google Scholar 

  6. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford (1966).

    Google Scholar 

  7. A.J. Downs and C.J. Adams. Chlorine, Bromine, Iodine, and Astatine. In A.ET. Dickerson (ed.) Comprehensive Inorganic Chemistry, Vol. 2, Pergamon Press, Oxford (1970), p. 107.

    Google Scholar 

  8. W.M. Latimer, The Oxidation Potentials of the Elements and Their Potentials in Aqueous Solutions, Prentice-Hall, Englewood Cliffs (1961).

    Google Scholar 

  9. A.J. deBethune and N.A.S. Loud, Standard Aqueous Electrode Potentials and Temperature Coefficients at 25°C, Clifford A. Hampel, Skokie, IL (1964).

    Google Scholar 

  10. T. Mussini and G. Faita, Chlorine. In A.J. Bard (ed.), Encyclopedia of Electrochemistry of the Elements, Vol. 1, Marcel Dekker, New York (1973). p. 1.

    Google Scholar 

  11. T. Mussini and P. Longhi, Chlorine. In, A.J. Bard, R. Parsons, and J. Jordan (eds), Standard Potentials in Aqueous Solutions, Marcel Decker, New York (1985), p. 70.

    Google Scholar 

  12. G. Faita, P. Longhi, and T. Mussini, J. Electrochem. Soc. 114, 340 (1967).

    Article  CAS  Google Scholar 

  13. F. Hine, Boshoku Gijutsu (Corrosion Engineering) 19, 513 (1970).

    CAS  Google Scholar 

  14. R.F. Scarr, Alkali Metals. In A.J. Bard (ed.), Encyclopedia of Electrochemistry of the Elements, Vol. 9B, Marcel Dekker, New York (1986), p. 2.

    Google Scholar 

  15. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 26.

    Book  Google Scholar 

  16. I. Barin and O. Knacke, Thermochemical Properties of Inorganic Substances, Springer-Verlag, Berlin (1973).

    Google Scholar 

  17. A.J. deBethune, T.S. Licht, and N. Swendeman, J. Electrochem. Soc. 106, 616 (1959).

    Article  CAS  Google Scholar 

  18. J. Balej, Collection Czechoslov. Chem. Commun. 40, 2257 (1975).

    Article  CAS  Google Scholar 

  19. J. Balej, Chem. Zvesti. 22(6), 767 (1975).

    Google Scholar 

  20. J. Balej, Electrochim. Acta 21, 953 (1976).

    Article  CAS  Google Scholar 

  21. J. Balej, Electrochim. Acta 22, 1105 (1977).

    Article  CAS  Google Scholar 

  22. J. Balej, F.P. Dousek, and J. Jansta, Collection Czechoslov. Chem. Commun. 42, 2737 (1977).

    Article  CAS  Google Scholar 

  23. J. Balej and J. Biross, Collection Czechoslov. Chem. Commun. 43, 2834 (1978).

    Article  CAS  Google Scholar 

  24. J. Balej, J. Electroanal. Chem. 94, 13 (1978).

    Article  CAS  Google Scholar 

  25. J. Balej, F.P. Dousek, and J. Jansta, Collection Czechoslov. Chem. Commun. 43, 3123 (1978).

    Article  CAS  Google Scholar 

  26. J. Balej, Chem. Zvesti. 33(5), 585 (1979).

    CAS  Google Scholar 

  27. J. Balej, Electrochim. Acta 26, 719 (1981).

    Article  CAS  Google Scholar 

  28. D.V.G. Ives and G.J. Janz, Reference Electrodes, Academic Press, New York (1961).

    Google Scholar 

References

  1. S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Co., New York (1941).

    Google Scholar 

  2. FR. Cruickshank, J. Hyde, and D. Pugh, Ji Chem. Educ. 54, 289 (1977).

    Google Scholar 

  3. R.D. Levine and R.B. Bernstein, Molecular Reaction Dynamics, Oxford University Press, New York (1974).

    Google Scholar 

  4. A.A. Frost and R.G. Pearson, Kinetics and Mechanism: A Study of Homogeneous Chemical Reactions, 2nd Edition, John Wiley & Sons, New York (1961).

    Google Scholar 

  5. G.M. Barrow, Physical Chemistry, McGraw-Hill Book Co., New York (1979).

    Google Scholar 

  6. J.O’M. Bockris and S.U.M. Khan, Quantum Electrochemistry, Plenum Press, New York (1979).

    Book  Google Scholar 

  7. B.E. Conway, Theory and Principles of Electrode Processes, Ronald Press, New York (1964).

    Google Scholar 

  8. J.O’M. Bockris and A.K.N. Reddy, Vols. 1 and 2, Modern Electrochemistry, Plenum Press, New York (1970).

    Book  Google Scholar 

  9. J. Albery, Electrode Kinetics, Clarendon Press, Oxford (1975).

    Google Scholar 

  10. K. Vetter, Electrochemical Kinetics:Theoretical Aspects, Academic Press, New York (1967).

    Google Scholar 

  11. B.E. Conway, Electrochemical Supercapacitors: Scientific Principles and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).

    Book  Google Scholar 

  12. B.E. Conway and E. Gileadi, Trans. Faraday Soc. 58, 2493 (1962).

    Article  CAS  Google Scholar 

  13. B.V. Tilak and C.P. Chen, J. Appl. Electrochem. 23, 631 (1993).

    Article  CAS  Google Scholar 

  14. B.V. Tilak, S. Venkatesh, and S.K. Rangaragan, J Electrochem. Soc. 136, 1977 (1989).

    Article  CAS  Google Scholar 

  15. B.E. Conway, The Temperature and Potential Dependence of Electrochemical Reaction Rates, and the Real Form of the Tafel Equation, In B.E. Conway, R.E. White, J.O’M. Bockris (eds), Modern Aspects of Electrochemistry, Vol. 16, Plenum Publishing Corp, New York (1985), p. 103.

    Google Scholar 

  16. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 59.

    Book  Google Scholar 

  17. A.J. Appleby, H. Kita, M. Chemla, and G. Bronöel, Hydrogen, In A.J. Bard (ed.), Encyclopedia of Electrochemistry of the Elements, Vol. IX, Part A, Marcel Dekker, New York (1982), p. 384.

    Google Scholar 

  18. A.J. Appleby, Electrocatalysis, In B.E. Conway, J.O’M. Bockris, E. Yeager, S.U.M. Khan, and R.E. White (eds), Comprehensive Treatise of Electrochemistry, Vol. 7, Plenum Press, New York (1983), p. 173.

    Chapter  Google Scholar 

  19. J.O’M. Bockris, A.K.N. Reddy, and M, Gamboa-Aldeco, Modern Electrochemistry 2A: Fundamentals of Electrodics, 2nd Edition, Kluwer Academic/Plenum Publishers, New York (2000).

    Google Scholar 

  20. B.E. Conway and G. Jerkiewicz, Electrochim. Acta 45, 4075 (2000).

    Article  CAS  Google Scholar 

  21. R. Parsons, Trans. Faraday Soc. 34, 1053 (1958).

    Article  Google Scholar 

  22. R. Parsons, Surface Science 18, 28(1969).

    Article  CAS  Google Scholar 

  23. Reference Electrodes, D.J. Ives and G.I. Janz (eds), Ch. II, Academic Press, New York (1961), p. 111.

    Google Scholar 

  24. J. Mussini and G. Faita, Chlorine, In A.J. Bard (ed.), Encyclopedia of Electrochemistry of the Elements, Ch. 1, Tables 1.2.1, 1.2.4, Marcel Dekker, New York (1973).

    Google Scholar 

  25. H.S. Harned and M.A. Cook, J. Am. Chemi. Soc. 59, 1290. 1903 (1973).

    Article  Google Scholar 

  26. E. Yeager, Oxygen Electrodes for Industrial Electrolysis and Electrochemical Power Generation. In U. Landau, E. Yeager, and D. Kortan (eds), Electrochemistry in Industry, Plenum Press, New York (1982), p, 29.

    Chapter  Google Scholar 

  27. M.R. Tarasevich, A. Sadkowski, and E. Yeager, Oxygen Electrochemistry. In B.E. Conway, J.O’M. Bockris, E. Yeager, S.U.M. Khan, and R.E. White (eds), Comprehensive Treatise of Electrochemistry. Vol. 7, Plenum Press, New York (1983), p. 301.

    Chapter  Google Scholar 

  28. E. Yeager, Oxygen Cathodes for Energy Conversion and Storage, Annual Report from Oct. 1, 1977 Sept. 30, 1978, DOE Contract # DE-AC02-77ET25502 (1980).

    Google Scholar 

  29. J.O’M. Bpckris and S. Srinivasan, Fuel Cells: Their Electrochemistry, McGraw-Hill Book Co., New York (1969).

    Google Scholar 

  30. K. Kinpshita, Electrochemical Oxygen Technology, John Wiley & Sons, New York (1992).

    Google Scholar 

  31. A.J. Appleby, Electrocatalysis, In B.E. Conway and J.Ò.M. Bockris (eds), Modern Aspects of Electrochemistry Vol 9, Plenum Press, New York (1974), p. 369.

    Chapter  Google Scholar 

  32. B.V. Tilak, S. Sarangapani, and N.L. Weinberg, Electrode Materials, In N.L. Weinberg and B.V. Tilak (eds), Techniques of Chemistry, Vol. V,. Part III; Techniques of Electroorganic Synthesis-Scale-Up and Engineering Aspects, John. Wiley, & Sons, New York (1982), p. 195.

    Google Scholar 

  33. A. Damjanovie and V: Brusic, Electrochim. Acta 12, 615 (1967).

    Article  Google Scholar 

  34. A. Damjanovic, A. Dey, and J.O’M. Bockris, J. Electrochem. Soc. 113, 739 (1966).

    Article  CAS  Google Scholar 

  35. A. Damjanovic and V. Brusic, Electrochim. Acta, 12, 1171 (1967).

    Article  CAS  Google Scholar 

  36. W.M. Vogel and J.T. Lundquist, J. Electrochem. Soc 117 1512 (1970).

    Article  CAS  Google Scholar 

  37. E. Yeager, EPRI Report No: EPRI-EM-505; Research Project 634-1, June, 1977.

    Google Scholar 

  38. E. Yeager, EPRI Report EM-505, June, 1979.

    Google Scholar 

  39. P.N. Ross. EPRI Report No: EPRI-EM-1553, Project 1200-5, Sept., 1980.

    Google Scholar 

  40. R.W. Zurilla, R.K. Sen, and E. Yeager, J. Electrochem. Soc. 125, 1103 (1978).

    Article  CAS  Google Scholar 

  41. P. Biadra and E. Yeager, O2 Reduction on Electrodeposited Pt Crystallites in Sodium Hydroxide Solution, Abstract # 28, Extended Abstracts, Electrochemical Society Meeting, Vol. 79-1, Boston, MA (1979).

    Google Scholar 

References

  1. A.J. Bard and L.R. Faulkner, Electrochemical Methods, John Wiley & Sons Inc., New York (1980).

    Google Scholar 

  2. D.T. Sawyer and J.L. Roberts, Experimental Electrochemistry for Chemists, John Wiley & Sons Inc., New York (1974).

    Google Scholar 

  3. P.A. Christensen and A. Hammet, Techniques and Mechanisms in Electrochemistry, Blackie Academic & Professional, New York (1994).

    Google Scholar 

  4. E. Gileadi, E. Kirowa-Eisner, and J. Penciner, Interfacial Electrochemistry: An Experimental Approach, Addison-Wesley, New York (1975).

    Google Scholar 

  5. B.E. Conway, Theory and Principles of Electrode Processes, Ronald Press, New York (1965).

    Google Scholar 

  6. P. Delahay, New Instrumental Methods in Electrochemistry, Wiley-Interscience, New York (1954).

    Google Scholar 

  7. Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry, Ellis Horwood, Chichester,UK (1985).

    Google Scholar 

  8. Comprehensive Treatise of Electrochemistry, Vol. 9, Electrodics: Experimental Techniques, E. Yeager, J.O’M. Bockris, B.E. Conway, and S. Sarangapani (eds), Plenum Press, New York (1984).

    Google Scholar 

  9. Comprehensive Treatise of Electrochemistry, Vol. 8, Experimental Methods in Electrochemistry, R.E. White, J.O’M. Bockris, B.E. Conway, and E. Yeager (eds), Plenum Press, New York (1984).

    Google Scholar 

  10. K. Vetter, Electrochemical Kinetics, Academic Press, New York (1967), p. 219.

    Google Scholar 

  11. H.R. Thirsk and J.A. Harrison, A Guide to the Study of Electrode Kinetics, Academic Press, New York (1972), pp. 61–62.

    Google Scholar 

  12. J. Headridge, Electrochemical Techniques for Inorganic Chemists, Academic Press, London (1969), p. 42.

    Google Scholar 

  13. Kagaku Binran (Handbook of Chemistry), Edited by the Chemical Society of Japan, Maruzen Publ., Tokyo (1958), p. 640.

    Google Scholar 

  14. D.J.G. Ives and G.J. Janz, The Calomel Electrode and Other Mercury-Mercurous Salt Electrodes. In D.J.G. Ives and G.J. Janz (eds), Reference Electrodes, Academic Press, New York (1961), p. 127.

    Google Scholar 

  15. N.A. Shumiluva and G.V. Zhutaeva, Silver. In A.J. Bard (ed.) Encyclopedia of Electrochemistry of the Elements, Vol. 8, Marcel Dekker. New York (1978), p. 1.

    Google Scholar 

  16. F. Hine, Fushoku Kogaku no Gaiyo (Outline of Corrosion Engineering), Kagaku Dojin, Kyoto (1981), p. 63.

    Google Scholar 

  17. D.J.G. Ives and G.J. Janz, Reference Electrodes, Academic Press, New York (1961).

    Google Scholar 

  18. W.M. Latimer, Oxidation Potentials, Prentice Hall, Englewood Cliffs, NJ (1961).

    Google Scholar 

  19. A.J. deBethune and N.A.S. Loud, Standard Aqueous Electrode Potentials and Temperature Coefficients at 25°C, Clifford A. Hampel, Skokie, IL (1964).

    Google Scholar 

  20. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford (1966).

    Google Scholar 

  21. Encyclopedia of Electrochemistry of the Elements, Vols. 1-15, A.J. Bard (ed.), Marcel Dekker, New York (1973-1984).

    Google Scholar 

  22. Standard Potentials in Aqueous Solutions, A.J. Bard, R. Parsons, and J. Jordan, Marcel Dekker, New York (1985).

    Google Scholar 

  23. G.J. Hills, Reference Electrodes in Non-Aqueous Solutions. In D.J.G. Ives and G.J. Janz (eds), Reference Electrodes, Academic Press, New York (1961), p. 433.

    Google Scholar 

  24. R.W. Laity, Electrodes in Fused Salt Systems. In D.J.G. Ives and G.J. Janz (eds), Reference Electrodes, Academic Press, New York (1961), p. 524.

    Google Scholar 

  25. Kiso Denki-Kagaku Sokutei-ho (Basic Method of Electrochemical Measurements), Electrochemical Society, Japan (1988).

    Google Scholar 

  26. Zoku Kiso-Kagaku Sokutei-ho (Method of Electrochemical Measurements, Supplemental), Electrochemical Society, Japan (1996).

    Google Scholar 

  27. K. Izutsu and T. Nakamura, Reference Electrodes in Non-Aqueous Solutions. In Kiso Denki-Kagaku Sokutei-ho (Basic Method of Electrochemical Measurements), Electrochemical Society, Japan (1988), p. 7.

    Google Scholar 

  28. K. Niki, Reference Electrodes in Fused Salts. In Zoku Kiso-Kagaku Sokutei-ho (Method of Electrochemical Measurements, Supplemental), Electrochemical Society, Japan (1996), p. 147.

    Google Scholar 

  29. J. Mizusaki, Reference Electrodes Used in Solid Electrolyte. In Zoku Kiso-Kagaku Sokutei-ho (Method of Electrochemical Measurements, Supplemental), Electrochemical Society, Japan (1996), p. 150.

    Google Scholar 

  30. T. Yamada, Reference Electrodes in Soils and Seawater. In Zoku Kiso-Kagaku Sokutei-ho (Method of Electrochemical Measurements, Supplemental), Electrochemical Society, Japan (1996), p. 156.

    Google Scholar 

  31. P.E. Morris, New Electrochemical Techniques for High Temperature Aqueous Environments. In R. Baboian (ed.), Electrochemical Techniques for Corrosion, National Association of Corrosion Engineers, Houston (1977), p. 66.

    Google Scholar 

  32. T. Fujii, Reference Electrodes Under High Temperature and High Pressure Environments. In Kiso Denki-Kagaku Sokutei-ho (Basic Method of Electrochemical Measurements), Electrochemical Society, Japan (1988), p. 13.

    Google Scholar 

  33. F. Hine, Denki Kagaku (Journal of Electrochemistry Society of Japan) 26, 139 (1958).

    Google Scholar 

  34. R. Piontelli, G. Bianchi, and R. Aletti, Zeit. Elektrochem. 56, 86 (1952).

    CAS  Google Scholar 

  35. R. Piontelli, G. Bianchi, U. Bertocci, C. Guerci, and B. Rivoltai, Zeit Elektrochem. 58, 54 (1954).

    CAS  Google Scholar 

  36. R. Piontelli, G. Bianchi, U. Bertocci, C. Guerci, and G. Poli, Zeit Elektrochem. 58, 86 (1954).

    CAS  Google Scholar 

  37. S. Barnett, J. Electrochem. Soc. 108, 102 (1961).

    Article  Google Scholar 

  38. F. Hine, S. Yoshizawa, and S. Okada, Denki Kagaku (Journal of Electrochemistry Society of Japan) 24, 370 (1956).

    CAS  Google Scholar 

  39. S. Okada, S. Yoshizawa, F. Hine, and Z. Takehara, Denki Kagaku (Journal of Electrochemistry Society of Japan 26, 165, 211 (1958).

    Google Scholar 

  40. S. Yoshizawa, F. Hine, Z. Takehara, and M. Yamashita, Denki Kagaku (Journal of Electrochemistry Society of Japan) 28, 205 (1960).

    Google Scholar 

  41. E. Yeager and F. Hovorka, J. Electrochem. Soc. 98, 69 (1951).

    Article  Google Scholar 

  42. J.O’M. Bockris and E.C. Potter, J. Electmchem. Soc. 99, 169 (1952).

    Article  CAS  Google Scholar 

  43. B.E. Conway and B.V. Tilak, Behavior and Characterization of Kinetically Involved Chemisorbed Intermediates in Electrocatalysis of Gas Evolution Reactions, In D.D. Eley, H. Pines, and P.B. Weisz (eds), Advances in Catalysis, vol. 38, Academic Press, Inc., New York (1992), p. 1.

    Google Scholar 

  44. F. Hine, S. Matsuura, and S. Yoshizawa, Electmchem. Technol. 5, 251 (1967).

    CAS  Google Scholar 

  45. F. Hine and M. Yasuda, J. Electmchem. Soc. 121, 1289 (1974).

    Article  CAS  Google Scholar 

  46. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 51.

    Book  Google Scholar 

  47. F. Hine, Fushoku Kogaku no Gaiyo (Outline of Corrosion Engineering), Kagaku Dojin, Kyoto (1981), p. 86.

    Google Scholar 

  48. V.I. Levich, Physicochemical Hydrodynamics, Prentice-Hall, Englewood Cliffs, NJ (1962).

    Google Scholar 

  49. Y.V. Pleskov and V.Y Filinovskii, The Rotating Disc Electrode, Consultants Bureau, New York (1976).

    Book  Google Scholar 

  50. V.Y. Filinovskii and Y.V. Pleskov, Rotating disk and Ring-Disk electrodes, In E. Yeager, J.O’M. Bockris, B.E. Conway, and S. Sarangapani (eds), Comprehensive Treatise of Electrochemistry, Vol. 9, Electrodics: Experimental Techniques, Plenum Press, New York (1984), Chapter 5, p. 293.

    Google Scholar 

  51. D.T. Chin, Theory and Experimental Aspects of the Rotating Hemispherical Electrode, In H. Gerischer and C.W. Tobias (eds), Advances in Electrochemical Science and Engineering, Vol. 1, VCH Publishers, New York (1990), p. 171.

    Chapter  Google Scholar 

  52. D.R. Gabe, J. Appl. Electmchem. 4, 91 (1974).

    Article  CAS  Google Scholar 

  53. D.R. Gabe and F.C. Walsh, J. Appl. Electmchem. 13, 3 (1983).

    Article  CAS  Google Scholar 

  54. G. Karlsberg and G. Wranglen, Proceedings of the 7th Scandinavian Corrosion Congress, Trondheim, (1975), p. 154.

    Google Scholar 

  55. Pine Instrument Company, 101 Industrial Drive, Grove City, PA (2003).

    Google Scholar 

  56. E. Yeager and J. Kuda, Techniques for the Study of Electrode Processes, In H. Eyring, D. Henderson, and W. Jost (eds), Physical Chemistry, Vol. 9A, Academic Press, New York (1970), p. 345.

    Google Scholar 

  57. J. Kuta and E. Yeager, Overpotential Measurements, In E. Yeager and A.J. Salkind (eds), Techniques of Electrochemistry, Vol. 1, Wiley Interscience, New York (1972), p. 141.

    Google Scholar 

  58. S.K. Rangarajan, J. Electroanal. Chem. 41, 459(1973).

    Article  CAS  Google Scholar 

  59. I. Epelboin, C. Gabrielli, and M. Keddam, Non-Steady State Techniques. In E. Yeager, J.O’M. Bockris, B.E. Conway, and S. Sarangapani (eds), Comprehensive Treatise of Electrochemistry, Vol. 9, Electrodics: Experimental Techniques, Plenum Press, New York (1984).

    Google Scholar 

  60. V.D. Parker, Linear Sweep and Cyclic Voltammetry. In C.H. Banford and R.G. Compton (eds), Chemical Kinetics, Elsevier, Amsterdam (1986), p. 145.

    Google Scholar 

  61. J.O’M. Bockris and S.U.M. Khan, Surface Electrochemistry, Plenum Press, New York (1993), p. 223.

    Book  Google Scholar 

  62. H.A. Kozlowska, B.E. Conway, and W.B.A. Sharp, J. Electroanal Chem. 43, 9 (1973).

    Article  Google Scholar 

  63. E. Gileadi and S. Srinivasan, Electrochim. Acta 11, 321 (1966).

    Article  Google Scholar 

  64. E. Gileadi and B.E. Conway, J. Chem. Phys. 39, 3420 (1963); B.E. Conway and E. Gileadi, Electrochim. Acta 4, 325(1961).

    Article  CAS  Google Scholar 

  65. B.E. Conway, Electrochemical Capacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publishers, New York (1999).

    Google Scholar 

  66. B.V. Tilak, C.-P. Chen, and S.K. Rangarajan, J. Electroanal. Chem. 324, 405 (1992).

    Article  CAS  Google Scholar 

  67. C. Gabrielli, Identification of Electrochemical Processes by Frequency Response Analysis, The Solatron Electronic Group Ltd., Farnborough, Hampshire, UK (1980).

    Google Scholar 

  68. I. Epelboin, C. Gabrielli, and M. Keddam, Non-steady State Techniques, In E. Yeager, J.O’M. Bockris, B.E. Conway, and S. Sarangapani (eds), Comprehensive Treatise of Electrochemistry, Vol. 9, Electrodics: Experimental Techniques, Plenum Press, New York (1984), p. 62.

    Google Scholar 

  69. M. Sluyters-Rehbach and J.H. Sluyters, A.C. Techniques, In E. Yeager, J.O’M. Bockris, B.E. Conway, and S. Sarangapani (eds), Comprehensive Treatise of Electmchemistry, Vol. 9, Electrodics: Experimental Techniques, Plenum Press, New York (1984), p. 177.

    Google Scholar 

  70. J.R. McDonald, Electrochim. Acta 35, 1483 (1990).

    Article  Google Scholar 

  71. D.P. Woodruff and T.A. Delchar, Modern Techniques of Surface Science, Cambridge University Press, Cambridge (1986).

    Google Scholar 

  72. M. Lobrengel and K. Kluger, Soviet Electmchem. 29, 117 (1998).

    Google Scholar 

  73. Charles Evans Labs, Brochure entitled Analytical Services (2000).

    Google Scholar 

  74. K. Ogaki and K. Itaya, Electrochim. Acta 40, 1249 (1995).

    Article  CAS  Google Scholar 

  75. D.O. Wipf and A.J. Bard, J. Electmchem. Soc. 138, 14 (1991).

    Article  Google Scholar 

  76. C. Wei and A.J. Bard, J. Electmchem. Soc. 142, 2523 (1995).

    Article  CAS  Google Scholar 

  77. C.E. Vallet, B.V. Tilak, R.A. Zuhr and C.-R Chen, A study of the Failure Mechanism of Chlorine Anodes, In J.B. Talbot, B.E. Conway, J.M. Fenton, and B.V. Tilak (eds), Proceedings of the Symposia on Fundamentals Electrochemical Process Design: A Tutorial and Anodic Processes: Fundamental and Applied Aspects, Proc. Vol. 95-11, The Electrochemical Society Inc., Pennington, NJ (1995); C.E. Vallet, Appl. Phys. A65, 387 (1997).

    Google Scholar 

  78. Handbook of Chemistry and Physics, CD. Hodgman (ed.) 36th edition, Chemical Rubber Publishing Co., Cleveland (1954).

    Google Scholar 

  79. K.B. Keating, Electrode Selection for Electrochemical Processes, Paper #40A, Presented at the 78th National AIChE Meeting, Salt Lake City, Utah (1974).

    Google Scholar 

  80. V.B. Lazarev and I.S. Shaplygin, Russ. J. Inorg. Chem. 23, 163 (1978).

    Google Scholar 

  81. C.N.R. Rao and G.V. Subba Rao, Phys. Stat. Sol A, 1, 597 (1970).

    Article  CAS  Google Scholar 

  82. G.V. Samsonov, The Oxide Handbook, Plenum Press, New York (1973).

    Book  Google Scholar 

  83. R.W. Vest and J.M. Honig, Highly Conducting Ceramics and The Conductor-Insulator Transition, In N.M. Tallan (ed.), Electrical Conduction in Ceramics and Glass, part B, Marcel Dekker, New York (1974), p. 343.

    Google Scholar 

  84. T.A. Davis, J.D. Genders, and D. Pletcher, A First Course in Ion-Permeable Membranes, Alresford Press Ltd., Alresford, Hants, UK (1977).

    Google Scholar 

  85. R.P. Buck, Electrochim. Acta 35, 1609 (1990).

    Article  CAS  Google Scholar 

  86. Y. Sone, P. Ekdunge, and D. Simonsson, J. Electrochem. Sol 143, 1254 (1996).

    Article  CAS  Google Scholar 

References

  1. L.C. Curlin, T.V. Bommaraju, and C.B. Hansson, Chlorine and Sodium Hydroxide, In Kirk-Othmer Encyclopedia of Chemical Technology, Vol. 1, John Wiley & Sons, Inc., New York (1991), p. 938.

    Google Scholar 

  2. C-P. Chen, B.V. Tilak, and J.W. Quigley, J. Appl. Electrochem. 25, 95 (1995).

    Article  CAS  Google Scholar 

  3. J.E. Currey and G.G. Pumplin, Chlorine, In J.J. McKetta and W.A. Cunningham (eds), Encyclopedia of Chemical Processing and Design, vol. 7, Marcel Dekker, New York (1978), p. 305.

    Google Scholar 

  4. D.L. Caldwell, Production of Chlorine, In J.O’M. Bockris, B.E. Conway, E.A. Yeager, and R.E. White (eds), Comprehensive Treatise of Electrochemistry, vol. 2, chapter 2, Plenum Press, New York, (1981).

    Google Scholar 

  5. HSC Chemistry Software, Versions 3 and 4, Outokumpu Research Oy (1999).

    Google Scholar 

  6. H.S. Burney, Membrane Chlor-Alkali Process, In R.E. White, B.E. Conway, and J.O’M. Bockris (eds), Modern Aspects of Electrochemistry, vol. 24, Plenum Press, New York, (1993), p. 393.

    Chapter  Google Scholar 

  7. B.V. Tilak, S.R. Fitzgerald, and C.L. Hoover, J. Appl Electrochem. 18, 699 (1988).

    Article  CAS  Google Scholar 

  8. G.W. Cowell, A.D. Martin, and B.K. Revill, A New Improved Method for the Determination of Sodium Hydroxide Efficiency in Membrane Cells. In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Applied Science, New York (1992), p. 143.

    Chapter  Google Scholar 

  9. D. Bergner, M. Hartmann, and F. Wergel, Dechema Monographien, VCH-Verlaggesellschaft, Weinhein, 125, 121 (1992).

    Google Scholar 

  10. N. Masuko and M. Takahashi, Soda to Enso. 41, 185 (1990).

    Google Scholar 

  11. C-P. Chen and B.V. Tilak, J. Appl Electrochem. 26, 235 (1996).

    Article  CAS  Google Scholar 

  12. DuPont Technical Bulletins 92-2, 88-1, and 84-3.

    Google Scholar 

  13. B.V. Tilak and S.D. Fritts, J. Appl Electrochem. 22, 675 (1992).

    Article  Google Scholar 

  14. J.T. Keating, Electrochemical Engineering in the Chlor-Alkali and Chlorate Industries, The Electrochemical Society, Pennington, NJ, PV 88-2 (1988), pp. 311–328: DuPont Technical Information Bulletin, 91-08 (1991).

    Google Scholar 

  15. C-P Chen and B.V. Tilak, J. Appl. Electrochem. 27, 1300 (1997).

    Article  CAS  Google Scholar 

  16. N. Yokota, Kagaku Kogaku (J. Chem. Eng.) 22, 476 (1958).

    Article  CAS  Google Scholar 

  17. B.V. Tilak, K. Tari, and C.L. Hoover, J. Electrochem. Soc. 135, 1386 (1988).

    Article  CAS  Google Scholar 

  18. C-P. Chen and B.V. Tilak, Unpublished Results (2001).

    Google Scholar 

  19. M. Takahashi and N. Masuko, Soda to Enso 7, 232 (1990).

    Google Scholar 

  20. M.W Lister, Can. J. Chem. 30, 879 (1952).

    Article  CAS  Google Scholar 

  21. M.W Lister and R.C. Peterson, Can. J. Chem. 40, 729 (1962).

    Article  CAS  Google Scholar 

  22. R.C. Carlson, The Effect of Brine Impurities on DSA® Electrodes, 14th Annual Chlorine/Chlorate Seminar, ELTECH Systems Corp., Cleveland, OH (1998).

    Google Scholar 

  23. J.E. Colman and B.V. Tilak, Sodium Chlorate, Encyclopedia of Chemical Processing and Design, vol. 51, Marcel Dekker, New York (1995), p. 126.

    Google Scholar 

  24. F. Hine, Muki Kogyo Kagaku (Industrial Inorganic Chemistry) Asakura, Tokyo (1967), p. 21.

    Google Scholar 

  25. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York, (1985).

    Book  Google Scholar 

  26. F. Hine, B.V. Tilak, and K. Viswanathan, Chemistry and Chemical Engineering in the Chlor-Alkali Industry, In R.E. White, J.O’M. Bockris and B.E. Conway (eds), Modern Aspects of Electrochemistry, vol. 18, Plenum Press, New York (1986), p. 249.

    Chapter  Google Scholar 

  27. G. Angel and T. Lunden, J. Electrochem. Soc. 99, 432, 435 (1952); 100, 39 (1953); 102, 124 (1955); and 104, 167 (1957).

    Article  Google Scholar 

  28. WE. Cowley, B. Lott, and J.H. Entwisle, Trans. Inst. Chem. Eng. 41, 372 (1963).

    CAS  Google Scholar 

  29. K. Hass, Electrochem. Technol. 5, 246 (1967).

    CAS  Google Scholar 

  30. F. Hine, S. Matsuura, and S. Yoshizawa, Electrochem. Technol. 5, 251 (1967).

    CAS  Google Scholar 

  31. F. Hine, M. Yasuda, F. Wang, and K. Yamakawa, Electrochim. Acta 16, 1519 (1971).

    Article  CAS  Google Scholar 

  32. R.B. MacMullin, Chlorine, ACS Monograph 154, J.S. Sconce (ed.), Reinhold Publishing Co., New York (1962), p. 151.

    Google Scholar 

  33. G. Angel, T. Lunden, and R. Brännland, J. Electrochem. Soc. 100, 39 (1953).

    Article  CAS  Google Scholar 

  34. G. Angel, T. Lunden, S. Dahlems, and R. Brännland, J. Electrochem. Soc. 102, 124 (1955); 102, 246 (1955).

    Article  CAS  Google Scholar 

  35. G. Angel, R. Brännland, and S. Dahlems, J. Electrochem. Soc. 104, 167 (1957).

    Article  CAS  Google Scholar 

  36. A.J. deBethune and N.A.S. Loud, Standard Aqueous Electrode Potentials and Temperature Coefficients at 25°C, Clifford A. Hampel, Skokie, IL (1964).

    Google Scholar 

  37. R.B. MacMullin, J. Electrochem. Soc. 116, 416 (1969).

    Article  CAS  Google Scholar 

  38. T. Sugino and K. Aoki, J. Electrochem. Soc. Japan 27(1-3), E17 (1959).

    Google Scholar 

  39. B.V. Tilak, Unpublished Results.

    Google Scholar 

  40. B.V. Tilak, A.C.R. Murty, and B.E. Conway, Proc. Indian Acad. Sci. (Chem. Sci.) 97, 359 (1986).

    CAS  Google Scholar 

  41. R.M. LaRue and C.W. Tobias, J. Electrochem. Soc. 106, 827 (1959).

    Article  Google Scholar 

  42. I. Rousar, V. Cezner, M. Vender, M. Kroutil, and J. Vachuda, Chemicky Prumysl. 17/42, 466 (1967).

    Google Scholar 

  43. R.B. MacMullin and G.A. Muccini, AIChE J. 2, 393 (1956).

    Article  CAS  Google Scholar 

  44. D. Bergner, M. Hartmann, and H. Kirsch, Voltage-Current Curves: Application to Membrane Cells. In N.M. Prout and J.S. Moorhouse (eds), Modern Chlor-Alkali Technology, vol. 4, Elsevier Applied Science, London (1900), p. 158.

    Google Scholar 

  45. K.L. Hardee, A Simple Procedure for Evaluation of Membrane Electrolyzer Performance. In R.W. Curry(ed.), Modern Chlor-Alkali Technology, vol. 6, The Royal Society of Chemistry, London (1995), p. 234.

    Google Scholar 

References

  1. V. Englehardt, Handbuch der Technischen Electrochemie, Vol. 2,(1), Leipzig Academische Verlagsgesellschaft (1993).

    Google Scholar 

  2. J. Billiter, Die Technische Elektrolyse der Nichtmetalle, Springer-Verlag, Wien (1954), p. 358.

    Book  Google Scholar 

  3. F. Jeitner, Chem. Ing. Tech. 34, 353 (1962).

    Article  Google Scholar 

  4. A.T. Kuhn, Industrial Electrochemical Processes, Elsevier Publishing Co., New York (1971).

    Google Scholar 

  5. S. Puschaver, Chem. Ind. 15, 236.

    Google Scholar 

  6. R.H. Stevens, U.S. Patent 1,077,894 (1913).

    Google Scholar 

  7. J.B. Cotton, E.C. Wiliams, and A.H. Barber, British Patent 877,901 (1961).

    Google Scholar 

  8. H.B. Beer, Neth. Pat. Appl 216, 199 (1957); 3,236,756 (1966).

    Google Scholar 

  9. O. DeNora, Chem. Ing. Tech. 42, 222 (1970); 43, 182 (1971).

    Article  CAS  Google Scholar 

  10. K.J. O’Leary, U.S. Patent 3,776,834 (1973).

    Google Scholar 

  11. H.B. Beer, U.S. Patent 3,573,100 (1971).

    Google Scholar 

  12. V. DeNora, L. Meyer, and A. Barbato, U.S. Patent 3,684,543 (1972).

    Google Scholar 

  13. F.I.L. Vovich and V.V. Avksent’yev, Abroad 69-71, 469–551 (1973).

    Google Scholar 

  14. Yen-chin Yin, Reports No. 61, 61 A, 6IB, Process Economics Program, SRI International, Menlo Park, CA(1978).

    Google Scholar 

  15. H.V.K. Udupa, R. Thangappan, B.R. Yadav, and P. Subbiah, Chem. Age. India, 23, 545 (1975).

    Google Scholar 

  16. J.A.M. LeDuc, International Electrochemistry Institute, Milburn, NJ, 3 (1976); 6 (1977).

    Google Scholar 

  17. E.N. Balko, Studies in Inorganic Chemistry 11, 267 (1991).

    Article  CAS  Google Scholar 

  18. Electrodes of Conductive Metallic Oxides, Parts A and B, S. Trasatti (ed.), Elsevier Publishing Co., New York (1980).

    Google Scholar 

  19. D.M. Novak, B.V. Tilak, and B.E. Conway. Anodic Chlorine Production: Fundamental and Applied Aspects, In J.O’M. Bockris, B.E. Conway and R.E. White (eds), Modern Aspects of Electrochemistry, vol. 14, Plenum Publishing Corp., New York (1982), p. 249.

    Google Scholar 

  20. B.V. Tilak, K. Tari, and C.L. Hoover, / Electrochem. Soc. 135, 1386 (1988).

    Article  CAS  Google Scholar 

  21. Yu.E. Roginskaya, B.Sh. Galyamov, V.M. Lebedev, I.D. Belova, and Yu.N. Venetsev, Zh. Neorg. Khim. 22, 499 (1977).

    CAS  Google Scholar 

  22. V.M. Lebedev, Yu.E. Roginskaya, N.L. Klimasenko, V.I. Bystrov, and Yu.N. Venetsev, Russ. J. Inorg. Chem. 21, 1380 (1976).

    Google Scholar 

  23. U.E. Roginskaya, V.I. Bystrov, and D.M. Shub, Russ. J Inorg. Chem. 22, 110 (1977).

    Google Scholar 

  24. K.J. O’Leary and T.J. Navin, Morphology of Dimensionally Stable Anodes, In Chlorine Bicentennial Symposium, T.C. Jeffrey, P.A. Danna and H.S. Holden (eds), The Electrochemical Society, Princeton, NJ (1974), p. 174.

    Google Scholar 

  25. J. Augustynski, L. Balsene, and J. Hinden, J Electrochem. Soc. 125, 1093 (1978).

    Article  CAS  Google Scholar 

  26. F. Hine, M. Yasuda, and T. Yoshida, J. Electrochem. Soc. 124, 500 (1977).

    Article  CAS  Google Scholar 

  27. W.A. Gerrard and B.C.H. Steele, J. Appl. Electrochem. 8, 417 (1978).

    Article  CAS  Google Scholar 

  28. P.H. Duvigneaud and A. Coussment, J Solid State Chem. 52, 22 (1984).

    Article  CAS  Google Scholar 

  29. E.K. Spasskaya, Yu.B. Makarychev, A.A. Yakovleva, and L.M. Yakimenko, Electrokhimiya 13, 327 (1977).

    CAS  Google Scholar 

  30. CE. Vallet, D.E. Heatherly, and C.W. White, J. Electrochem. Soc. 137, 579 (1990).

    Article  CAS  Google Scholar 

  31. CE. Vallet, /. Electrochem. Soc. 138, 1234 (1991).

    Article  CAS  Google Scholar 

  32. P.P. Edwards, T.V. Ramakrishnan and CN.R. Rao, J. Phys. Chem. 99, 5228 (1995).

    Article  CAS  Google Scholar 

  33. B.Sh. Galyamov, Yu.E. Roginskaya, R.M. Lazorenko-Manevich, K.B. Kozhevnikov, M.I. Yanovskaya, and Ya.M. Kolotyrkim, Mater. Chem. Phys. 11, 525 (1984).

    Article  CAS  Google Scholar 

  34. N.C. Haider, Electrocomp. Sci. Technol. 11, 21 (1983).

    Article  Google Scholar 

  35. J.V. Biggers, J.R. McKelvey, and W.A. Schultze, Commun. Am. Ceram. Soc. C13 (1982).

    Google Scholar 

  36. R. Kötz. Photoelectron Spectroscopy of Practical Electrode Materials, In H. Gerischer and C.W. Tobias (eds), Advances in Electrochemical Science and Engineering vol. 1, VCH Publishers, New York (1990), p. 75.

    Chapter  Google Scholar 

  37. A. DeBattisti, G. Lodi, M. Cappadonia, G.Battaglin, and R. Kötz, J. Electrochem. Soc. 136, 2596(1989).

    Article  CAS  Google Scholar 

  38. V.V. Gorodetskii, P.N. Zorin, M.M. Pecherskii, V.B. Busse-Machukas, V.L. Kubasov, and Yu.Ya. Tomashpolskii, Soviet Electrochem. 17, 66 (1981).

    Google Scholar 

  39. C. Angelinetta, S. Trasatti, L.J.D. Atanasoska, Z.S. Minovski, and R.T. Atanasoski, Mater. Chem. Phys. 22, 231(1989).

    Article  CAS  Google Scholar 

  40. C. Angelinetta, S. Trasatti, L.J.D. Atanasoska, and R.T. Atanasoski, J Electroanal. Chem. 214, 535 (1986)

    Article  CAS  Google Scholar 

  41. R. Hutchings, K. Müller, R. Kötz and S. Stucki, J. Mater. Sci. 19, 3987 (1984).

    Article  CAS  Google Scholar 

  42. R. Kötz and S. Stucki, Electrochim. Acta 31, 1311 (1986).

    Article  Google Scholar 

  43. B.V. Tilak, Unpublished investigations.

    Google Scholar 

  44. T. Mussini and G. Faita. Chlorine, In A.J. Bard (ed.), Encyclopedia of Electrochemistry of Elements, Chapter 1, Table 1.2.1, Marcel Dekker, New York (1973).

    Google Scholar 

  45. S. Trasatti and G. Lodi, Oxygen and Chlorine Evolution at Conductive Metallic Oxide Anodes, Chapter 10 in ref. 19, Part B.

    Google Scholar 

  46. S. Trasatti and W.E. O’Grady, Properties and Applications of RuO2-Based Electrodes, In H. Gerischer and C.W. Tobias (Eds), Advances in Electrochemistry and Electrochemical Engineering, vol. 12 (1981), p. 177.

    Google Scholar 

  47. E.J.M. O’Sullivan and E.J. Calvo, Comphr, Chem. Kinetics. 27, 247 (1987).

    Article  Google Scholar 

  48. S. Trasatti, Electrvchim. Acta 32, 369(1987).

    Google Scholar 

  49. B.E. Conway and B.V. Tilak, Behavior and Characterization of Kinetically Involved Chemisorbed Intermediates in Electrocatalysis of Gas Evolution Reactions, In D.D. Eley, H. Pines, and PB. Weisz (eds), Advances in Catalysis, vol. 38, Academic Press, New York (1992).

    Google Scholar 

  50. J.G.D. Haenen, W. Visscher, and E. Barendrecht, J. Appl. Electrochem. 15, 29 (1985).

    Article  CAS  Google Scholar 

  51. G. Lodi, E. Sivieri, A. DeBattisti, and S. Trasatti, J. Appl. Electrochem. 8, 135 (1978).

    Article  CAS  Google Scholar 

  52. B.V. Tilak and CP-Chen, Unpublished investigations.

    Google Scholar 

  53. S. Trasatti and G. Buzzanca, J. Electroanal. Chem. 29, App. 1 (1971).

    Google Scholar 

  54. W.E. O’Grady, C. Iwakura, J. Huang, and E. Yeager, Ruthenium Oxide Catalysis for the Oxygen Electrode, In Electrocatalysis, The Electrochemical Society Inc. Princeton, NJ (1974), p. 286.

    Google Scholar 

  55. I.R. Burrows, J.H. Entwisle, and J.A. Harrison, J. Electroanal. Chem. 27, 21(1977).

    Article  Google Scholar 

  56. D. Galizziole, F. Tantardini, and S. Trasatti, J. Appl. Electrochem. 4, 57 (1974); 5, 203 (1975).

    Article  Google Scholar 

  57. S. Ardizzone, G. Fregnora, and S. Trasatti, Electrochim. Acta 35, 263 (1990).

    Article  CAS  Google Scholar 

  58. T. Arikado, C Iwakura, and H. Tamura, Electrochim. Acta 22, 513 (1977).

    Article  CAS  Google Scholar 

  59. L.D. Burke, O.J. Murphy, J.F. O’Neill, and S. Venkatesan, J Chem., Soc, Faraday Trans 1. 73, 1659 (1977).

    Google Scholar 

  60. K. Döblhofer, M. Metikos, Z. Ogumi, and H. Gerischer, Ber. Bunsenges. Phys. Chem. 82, 1046 (1978).

    Article  Google Scholar 

  61. B.E. Conway, Electrochemical Supercapacitors, Kluwer Academic/Plenum Publishers, New York (1999).

    Book  Google Scholar 

  62. B.V. Tilak, V.I. Birss, and S.K. Rangarajan, Deactivation of Thermally Formed Ru/Ti oxide Electrodes: An a.c Impedance Characterization Study, In H.S. Burney, N. Furuya, F. Hine, and K-I. Ota (eds), ChlorAlkali and Chlorate Technology: R.B. MacMullin Symposium, Proc. vol. 99-121, The Electrochemical Society Inc., Pennington, NJ (1999), p. 58.

    Google Scholar 

  63. B.V. Tilak, C.-R Chen, V.I. Birss, and J. Wang, Can J. Chem. 75, 1773 (1997).

    Article  CAS  Google Scholar 

  64. R.G. Erenburg, L.I. Khristalik, and I.P. Yaroskevskaya, Soviet Electrochem. 11, 989 (1975).

    Google Scholar 

  65. D.A. Denton, J.A. Harrison, and R.I. Knowles, Electrochim. Acta 24, 521 (1979).

    Article  CAS  Google Scholar 

  66. R.G. Erenburg, Soviet Electrochem. 20, 1481 (1984).

    Google Scholar 

  67. M.D. Spasojevic, N.V. Krstajic, and M.M. Jaksic, J. Res. Inst. Catalysis, Hokkaido Univ. 31, 77 (1984).

    CAS  Google Scholar 

  68. P. Schmittinger, L.C. Curlin, T. Asawa, S. Kotowski, H.B. Beer, A.M. Greenberg, E. Zelfel, and R. Breitstadt, Chlorine, In Ullmann’s Encyclopedia of Industrial Chemistry, vol. A6 (1986), p. 399.

    Google Scholar 

  69. B.V. Tilak and C.-P. Chen, J. Appl. Electrochem. 23, 631 (1993).

    Article  CAS  Google Scholar 

  70. L.C. Curlin, T.V. Bommaraju, and C.B. Hansson, Chlorine and Sodium hydroxide in Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 1, John Wiley & Sons, New York (1991), p. 938.

    Google Scholar 

  71. R.C. Carlson, The Effect of Brine Impurities on DSA® Electrodes, Paper presented at the 7th Annual Chlorine/Chlorate Seminar, Cleveland (1991).

    Google Scholar 

  72. M. Pourbaix, I. Van Moylder, and N. dezoubov, Platinum Metals Review #3. (1959); p. 100. G. Barrai, J.P. Diard, and C. Montella, Electrochim. Acta 31, 277 (1986).

    Google Scholar 

  73. F. Hine, Electrode Processes and Electrochemical Engineering, Chapter 12, Plenum Press, New York (1985).

    Book  Google Scholar 

  74. S.V. Evdokimov and K.A. Mishenina, Electrokhimiya 25, 1439 (1989).

    Google Scholar 

  75. V.V. Gorodetskii, M.M. Pecherskii, V.B. Yanke, D.M. Shub, and V.V. Losev, Soviet Electrochem. 15, 471 (1979).

    Google Scholar 

  76. V.I. Eberil, N.V. Zhinkin, V.P. Archakov, R.I. Izosenkov, V.B. Busse-Machukas, and A.F. Mazanko, Soviet Electrochem. 22, 428 (1986).

    Google Scholar 

  77. S. Manli and C. Yanxi. The Mechanism of the Activity Loss of RuO2 — TiO2 Anodes in Saturated Nacl solution, In N.M. Prout and J.S. Moorhouse (eds), Modern Chlor-Alkali Technology, vol. 4, Elsevier Appl., Sci., New York (1990), p. 149.

    Chapter  Google Scholar 

  78. B.V. Tilak, C.-P. Chen, and S.K. Rangarajan, J. Electroanal. Chem. 324, 405 (1992); 356, 319 (1993).

    Article  CAS  Google Scholar 

  79. M.M. Pecherskii, V.V. Gorodetskii, N.Ya. Bune, and V.V. Losev, Soviet Electrochem. 18, 367 (1982).

    Google Scholar 

  80. A.I. Onuchukwu and S. Trasatti, J. Appl. Electrochem. 21, 858 (1991).

    Article  CAS  Google Scholar 

  81. S. Trasatti, Transition Metal Oxides: Versatile Meterials for Electrocatalysis, In J. Lipkowski and P.N. Ross (eds), The Electrochemistry of Novel Materials, VCH Publishers, New York (1994), p. 207.

    Google Scholar 

  82. B.E. Conway and B.V. Tilak. Involvement of Oxide Films and their Surfaces in Anodic Faradaic Reactions: A Review, In J.B. Talbot, B.E. Conway, J.M. Fenton, and B.V. Tilak (eds), Proc. Symp. Fundamentals of Electrochemical Process Design: A Tutorial and Anodic Processes: Fundamental and Applied Aspects, vol. 95-111, The Electrochemical Society Inc., Pennington, NJ (1995), p. 319.

    Google Scholar 

  83. Yu.B. Makarychev, E.K. Spassakaya, S.D. Khodkevich, and L.M. Yakimenko, Soviet Electrochem. 12, 921 (1976).

    Google Scholar 

  84. T. Loucka, J. Appl. Electrochem. 7, 211 (1977).

    Article  CAS  Google Scholar 

  85. A.A. Uzbekov, V.G. Lambrev, I.F. Yazikov, N.N. Rodin, L.M. Zabrodskaya, VS. Klement’eva, and Yu.M. Vlodov, Soviet Electrochem. 14, 997 (1978).

    Google Scholar 

  86. F. Hine, M. Yasuda, T. Noda, T. Yoshida, and J. Okuda, J. Electrochem. Soc. 126, 1439 (1979).

    Article  CAS  Google Scholar 

  87. C. Iwakura, M. Inai, M. Manabe, and T. Tamura, Denki Kagaku. 48, 91 (1980).

    CAS  Google Scholar 

  88. T. Loucka, J. Appl. Electrochem. 11, 143 (1981).

    Article  CAS  Google Scholar 

  89. V.V. Gorodetskii, M.M. Pecherskii, V.B. Yanke, N.Ya. Bun’e, V.B. Busse-Machukas, V.L. Kubasov, and V.V Losev, Soviet Electrochem. 17, 421 (1981).

    Google Scholar 

  90. A.A. Uzbekov and VS. Klement’eva, Soviet Electrochem. 21, 698 (1985).

    Google Scholar 

  91. C. Iwakura and K. Sakamoto, J. Electrochem. Soc. 132, 2420 (1985).

    Article  CAS  Google Scholar 

  92. VS. Klement’eva and A.A. Uzbekov, Soviet Electrochem. 21, 736 (1985).

    Google Scholar 

  93. M.M. Pecherskii, V.V. Gorodotskii, N.Ya. Bun’e, and V.V. Losev, Soviet Electrochem. 22, 615 (1986).

    Google Scholar 

  94. N.V. Zhinkin, E.A. Novikov, N.S. Fedotova, V.I. Eberil, and V.B. Busse-Macukas, Soviet Electrochem. 25, 980(1989).

    Google Scholar 

  95. S.V. Evdokimov and K.A. Mishenina, Soviet Electrochem. 25, 1439 (1989).

    Google Scholar 

  96. E.A. Novikov, N.V. Zhinkin, V.I. Eberil, and V Busse-Makukas, Soviet Electrochem. 26, 228 (1990).

    Google Scholar 

  97. E.V. Novikov and V Busse-Macukas, Soviet Electrochem. 27, 108 (1991).

    Google Scholar 

  98. A.S. Pilla, E.O. Cobo, M.M.E. Duarte, and D.R. Salinas, J. Appl. Electrochem. 27, 1283 (1997).

    Article  CAS  Google Scholar 

  99. C.E. Vallet, B.V Tilak, R.A. Zuhr, and C.-P. Chen, J. Electrochem. Soc. 144, 1289 (1997).

    Article  CAS  Google Scholar 

  100. K.L. Hardee and R.A. Kus. Evidence for the Passivation of the Coating/Substrate Interface in Chlorine Evolving Anodes, In S. Sealey (ed.) Modern Chlor-Alkali Technology, Vol. 7, Royal Society of Chemistry, Cambridge, (1998), p. 43.

    Google Scholar 

  101. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, NACE, Houston (1974).

    Google Scholar 

  102. C.-P. Chen and T.V. Bommaraju, U.S. Patent 5,948,222 (1999); 6,156,185 (2000).

    Google Scholar 

  103. T.V. Bommaraju, C.-P. Chen, and VI. Birss. Deactivation of Thermally formed RuO2 + TiO2 Coatings During Chlorine Evolution: Mechanisms and Reactivation Measures, In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, Vol. 8, Chapter 5 Society for Chemical Industry, London (2001), p. 57.

    Chapter  Google Scholar 

  104. B.V. Tilak, V.I. Birss, J. Wang, C.-P. Chen, and S.K. Rangarajan, / Electrochem. Soc. 148, Dl 12 (2001); 148, L10 (2001).

    Google Scholar 

  105. S. Kotowski and B. Busse. Titanium Anodes for Steel Strip Electrogalvanizing, In F. Hine, B.V. Tilak, J.M. Denton, J.D. Lisius (eds), Performances of Electrodes for Industrial Electrochemical Processes, The Electrochemical Society Inc., Pennington, NJ, 245 (1989).

    Google Scholar 

  106. T.A. Liederbach, Metal Anodes, in Kirk—Othmer Encyclopedia of Chemical Technology, 4th ed., Vol. 16, John Wiley & Sons, New York (1995), p. 244.

    Google Scholar 

  107. A. Pellegri, Oronzio DeNora Impianti Elettrochimici, S.P.A., British Patent 2,051,131 (1980).

    Google Scholar 

  108. H.S. Holden and J.M. Kolb, Metal Anodes, in Kirk-Othmer Encyclopedia of Chemical Technology, 3rd ed., Vol. 15, John Wiley & Sons, New York (1981), p. 172.

    Google Scholar 

  109. H. Schmitt, H. Schurig and W. Strewe, German Patent 3,219,704 (1982).

    Google Scholar 

  110. S. Saito. Development of a New Anode for Chlor-Alkali Production, In M.O. Coulter (ed.), Modern Chlor-Alkali Technology, Ellis Horwood, Chichester (1980), p. 137.

    Google Scholar 

  111. M. Saraiya, Chemapol Industries, India, Private Communication (1995).

    Google Scholar 

  112. R.C. Carlson, Effects of Brine Impurities on Dimensionally Stable Anodes, in 14th Annual Chlorine-Chlorate Seminar, Eltech Systems Corporation, Chardon, OH (1998).

    Google Scholar 

  113. C.H. Angell and M.G. Deriaz, British Patent 885,891 (1961); 984,973 (1965).

    Google Scholar 

  114. C.H. Angell, S. Coldfield, and M.G. Deniaz, U.S. Patent 3,177,131 (1965).

    Google Scholar 

  115. D.L. Caldwell and R.J. Fuchs, U.S. Patent 3,977,958 (1976).

    Google Scholar 

  116. D.L. Caldwell and M.J. Hazelrigg, U.S. Patent 4,142,005 (1979).

    Google Scholar 

  117. M.J. Hazelrigg and D.L. Caldwell, US. Patent 4,061,549 (1977).

    Google Scholar 

  118. G. Thiele, D. Zöllner, and K. Koziol, German Patent 1,813,944 (1968).

    Google Scholar 

  119. K. Koziol, K.-H. Sieberer, and H.C. Rathjen, German Patent 2,255,690 (1972).

    Google Scholar 

  120. R. Kötz and S. Stucki, Electrochim. Acta 31, 1311 (1986).

    Article  Google Scholar 

  121. T. Morimoto, T. Matsubara, and S. Ohashi, Denki Kagaku. 60, 649 (1992).

    CAS  Google Scholar 

References

  1. T. Ohta, J.E. Funk, J.D. Porter, and B.V. Tilak, Int. J. Hydrogen Energy 10, 571 (1985).

    Article  Google Scholar 

  2. B.V. Tilak, P.W.T. Lu, J.E. Colman, and S. Srinivasan. Electrolytic Production of Hydrogen, In J.O’M. Bockis, B.E. Conway, E. Yeager, and R.E. White (eds), Comprehensive Treatise of Electrochemistry, Vol. 2, Plenum Press, New York (1981), p. 1.

    Google Scholar 

  3. M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, Oxford (1960), p. 312.

    Google Scholar 

  4. B.E. Conway and B.V. Tilak, Adv. Catalysis 38, 1 (1992).

    CAS  Google Scholar 

  5. J.O’M. Bockris and P.K. Subramanyan, Electrochim. Acta 16, 2169 (1971).

    Article  CAS  Google Scholar 

  6. B.V. Tilak and C.P. Chen, J. Appl. Electrochem. 23, 631 (1993).

    Article  CAS  Google Scholar 

  7. H.F. Flitt and J.O’M. Bockris, Int. J. Hydrogen Energy 7, 411 (1982).

    Article  CAS  Google Scholar 

  8. H. Kita, J. Electrochem. Soc. 113, 1095 (1966).

    Article  CAS  Google Scholar 

  9. A.T. Kuhn. Surveying Electrocatalysis, In H. Bloom and F. Gutmann (eds), Electrochemistry—The Past Thirty and the Next Thirty Years, Plenum Press, New York (1977).

    Google Scholar 

  10. B.V. Tilak, A.C.R. Murty, and B.E. Conway, Proc. Indian Acad. Sci. 97, 359 (1986). U.R. Parsons, Surface Science 18, 28 (1969).

    CAS  Google Scholar 

  11. B.V. Tilak, K. Tari, and C.L. Hoover, J. Electrochem. Soc. 135, 1386 (1988).

    Article  CAS  Google Scholar 

  12. S. Trasatti. Electrocatalysis of Hydrogen Evolution: Progress in Cathode Activation, In H. Genscher and C.W. Tobias (eds), Advances in Electrochemical Science and Engineering, Vol. 2, VCH Publishers, New York (1992), p. 1.

    Google Scholar 

  13. Heany Industries Brochure (1999).

    Google Scholar 

  14. C. Welch, C.N. Hughes, R.A. Crawford, and D.W. DuBois, Electroarc-Produced Raney Nickel Alloy-Coated Cathodes for Chlor-Alkali cells, In M.M. Silver and E.M. Spore (eds), Proceedings of Symposium on Advances in the Chlor-Alkali and Chlorate Industry, Vol. 84–111, In The Electrochemical Society Inc., Princeton, NJ (1984), p. 192.

    Google Scholar 

  15. F. Hine, M. Yasuda and M. Watanabe, Denki Kagaku. J. Electrochem. Soc. Japan. 47, 401 (1979).

    CAS  Google Scholar 

  16. L.E. Hetherton and M.L. Holt, J. Electrochem. Soc. 98, 106 (1951).

    Article  Google Scholar 

  17. L.Komnikov, Metal Finishing 62, 49 (1964).

    Google Scholar 

  18. N.W. Hovey, A. Krohn, and G.M. Hanneken Jr., J. Electrochem. Soc. 110, 362 (1963).

    Article  CAS  Google Scholar 

  19. J.Z.O. Stachurski, D. Pouli, J. Ripa, and G.F. Pokrzyk, U.S. Patent 4,354,915 (1982).

    Google Scholar 

  20. J.E. Bennett and H.G. Tompkins, J. Electrochem. Soc. 123, 999 (1976).

    Article  CAS  Google Scholar 

  21. M.A. Riley and PJ. Moran, J. Electrochem. Soc. 133, 760 (1988).

    Article  Google Scholar 

  22. J.Y. Huot and L. Bossard, Surf. Coat. Tech. 34, 373 (1988); Int. J. Hydrogen Energy 12, 821 (1987); 14, 229 (1989); J. Appl. Electrochem. 18, 815 (1988).

    Article  CAS  Google Scholar 

  23. Ger. Offen, 2, 818,306 (1978).

    Google Scholar 

  24. E. Justi, W. Scheibe, and A. Winsel, German Patent DPB 1 101 3611954.

    Google Scholar 

  25. N.V. Korovin, V.N. Savel’eva, Yu.I. Shishkov, and E.I. Mingulina, Soviet Electrochem. 8, 533 (1972).

    Google Scholar 

  26. J. Balej, Int. J. Hydrogen Energy 10, 89 (1985).

    Article  CAS  Google Scholar 

  27. T. Kenjo, Electrochim. Acta 33, 41 (1988).

    Article  CAS  Google Scholar 

  28. U.S.Patent 4,248,679 (1981).

    Google Scholar 

  29. U.S. Patent 4,251,478 (1981).

    Google Scholar 

  30. U.S.Patent 4,323,595 (1982); U.S.Patent 4,396,473 (1983).

    Google Scholar 

  31. M. Hansen, Constitution of Binary Alloys, McGraw-Hill Book Company, New York (1958), p. 119.

    Google Scholar 

  32. K. Subramanian, V. Arumugan, K. Asokan, P. Subbiah, and S. Krishnamurthy, Bull. Electrochem. 7, 271 (1991).

    CAS  Google Scholar 

  33. A.T. Skiarov, F.V. Kupovich, V. Busse-Macukus, and A.F. Mazanko, Soviet Electrochem. 27, 1405 (1991).

    Google Scholar 

  34. P. Los, A. Rami, and A. Lasia, J. Appl. Electrochem:23, 135 (1993).

    Article  CAS  Google Scholar 

  35. L. Chen and A. Lasia, J. Electrochem. 140, 246 (1993).

    Google Scholar 

  36. H. Kronberger, Ch. Farian, and G. Frithum, Int. J. Hydrogen Energy 16, 219 (1991).

    Article  CAS  Google Scholar 

  37. A. Kayser, V. Borck, M. von Bradke, R. Henne, WA. Kaysser, and G. Schiller, Zeit. Metallkd. 83, 565 (1992).

    CAS  Google Scholar 

  38. U.S. Patent 4,024,044 (1997).

    Google Scholar 

  39. British Patent 1,533,758 (1978).

    Google Scholar 

  40. Y. Choquette, H. Menard, and L. Brossard, Int. J. Hydrogen Energy 15, 21 (1990).

    Article  CAS  Google Scholar 

  41. A. Dang, A. Capuano, J.M. Chapuzel, and J. Lassard, Int. J. Hydrogen Energy 18, 41 (1993).

    Article  Google Scholar 

  42. R.W. Brennecke and H.H. Ewe, Energy Commercial Manage. 31, 85 (1991).

    Google Scholar 

  43. N. Korovin and E. Udris, Int. J. Hydrogen Energy 17, 929 (1992).

    Article  CAS  Google Scholar 

  44. H. Wendt, H. Hofmann, and V. Plzak, Mat. Chem. Phys. 22, 27 (1989).

    Article  CAS  Google Scholar 

  45. K. Lohrberg and P. Kohl, Electrochim. Acta 29, 1557 (1984).

    Article  CAS  Google Scholar 

  46. L. Brossard, Int. J. Hydrogen Energy 13, 315 (1988).

    Article  CAS  Google Scholar 

  47. Y. Choquette, H. Menard, and L. Brossard, Int. J. Hydrogen Energy 14, 637 (1989); Y. Choquette, L. Brossard, and H. Menard, J. Appl. Electrochem. 20, 855 (1990).

    Article  CAS  Google Scholar 

  48. S. Pushpavanam, M. Pushpavanam, S.R. Natarajan, K.C. Narasimham, and S. Chinnasamy, Int. J. Hydrogen Energy 18, 277 (1993).

    Article  CAS  Google Scholar 

  49. A.G. Pshenichnikov, Int. J. Hydrogen Energy 7, 51 (1982).

    Article  CAS  Google Scholar 

  50. A.G. Pshenichnikov, Mat. Chem. Phys. 22, 121 (1989).

    Article  CAS  Google Scholar 

  51. J. Divisek, J. Mergel, and H. Schmitz, Int. J. Hydrogen Energy 7, 695 (1982).

    Article  CAS  Google Scholar 

  52. K. Schultze and H. Bartelt, Int. J. Hydrogen Energy 17, 711 (1992).

    Article  CAS  Google Scholar 

  53. H. Bode, K. Dehmelt, and J. Witte, Electrochim. Acta 11, 1079 (1966).

    Article  CAS  Google Scholar 

  54. J. Huot and L. Brossard, Int. J. Hydrogen Energy 12, 821 (1987).

    Article  CAS  Google Scholar 

  55. N.V. Korovin, J. Udris, and M. Yu. Khodos, Soviet Electrochem. 29, 631 (1993).

    Google Scholar 

  56. M. Hansen, Constitution of Binary Alloys, McGraw-Hill Book Company, New York (1958), p. 1059.

    Google Scholar 

  57. L. Domnikov, Metal Finishing, p. 49, August 1963.

    Google Scholar 

  58. L. Domnikov, Metal Finishing, p. 63, March 1965.

    Google Scholar 

  59. A. Knodler and S. Gmund, Metalloberflach. 21, 321 (1967).

    Google Scholar 

  60. K.N. Rao, M.I.A. Siddiqi, and C.V. Suryanarayana, Electrochim. Acta 10, 577 (1965).

    Google Scholar 

  61. J.W. Dini and H.R. Johnson, Metal Finishing, (August 1979), p. 31.

    Google Scholar 

  62. J.W. Dini, H.R. Johnson, and J.A. Brooks, Metal Finishing (Feb. 1979), p. 99.

    Google Scholar 

  63. M. Yunus, C. Capel-Boute, and C. Decroly, Electrochim. Acta 10, 885 (1965).

    Article  CAS  Google Scholar 

  64. J. Mindowicz, C. Capel-Boute, and C. Decroly, Electrochim. Acta 10, 901 (1965).

    Article  CAS  Google Scholar 

  65. T.A. Liederbach, A.M. Greenberg, and V.H. Thomas. Commercial Application of Cathode Coatings in Electrolytic Chlorine Cells, Commercial Application of Cathode Coatings in Electrolytic Chlorine Cells, In M.O. Coulter (ed.), Modern Chlor-Alkali Technology, Ellis Horwood, Chichester, (1980), p. 145.

    Google Scholar 

  66. U.S.Patent 4,104,133 (1978).

    Google Scholar 

  67. R.Ku. Burshstein, V.E. Kazarinov, A.G. Pshenichnikov, I.E. Barbasheva, G.A. Gafarova, and I.V. Obrushnikova, Soviet Electrochem. 23, 674 (1987).

    Google Scholar 

  68. M.J. DeGiz, S.a.S. Machado, L.A. Avaca, and E.R. Gonzalez, J. Appl. Electrochem. 22, 973 (1992).

    Article  CAS  Google Scholar 

  69. M.J. DeGiz, G. Tremiilliosi-Filho, and E.R. Gonzalez, Electrochim. Acta 39, 1775 (1994).

    Article  CAS  Google Scholar 

  70. L. Chen and A. Lasia, J. Electrochem. Soc. 138, 3321 (1991).

    Article  CAS  Google Scholar 

  71. L. Chen and A. Lasia, J. Electrochem. Soc. 139, 3214 (1992).

    Article  CAS  Google Scholar 

  72. A. Rami and A. Lasia, J. Appl. Electrochem. 22, 376 (1992).

    Article  CAS  Google Scholar 

  73. M. Okido, J.K. Depo, and G.A. Capuano, J. Electrochem. Soc. 140, 127 (1993).

    Article  CAS  Google Scholar 

  74. H. Wendt and V. Plzak, Electrochim. Acta 28, 27 (1983).

    Article  CAS  Google Scholar 

  75. P. Ekdunge, K. Juttner, and G. Kresya, J. Electrochem. Soc. 138, 2660 (1991).

    Article  CAS  Google Scholar 

  76. S.F. Chenyshov, Yu.I. Kryukov, and A.G. Pschenichnikov, Soviet Electrochem. 28, 317 (1992).

    Google Scholar 

  77. M.M. Jaksic and I.M. Csonka, Electrochem. Technol. 4, 49 (1966).

    CAS  Google Scholar 

  78. G. Imarisio, Int. J. Hydrogen Energy 2, 53 (1977).

    Google Scholar 

  79. C. Baileux, A. Damien, and A. Montet, Int. J. Hydrogen Energy 8, 529 (1983).

    Article  Google Scholar 

  80. I.A. Raj and V.K. Venkatesan, Int. J. Hydrogen Energy 13, 215 (1988).

    Article  CAS  Google Scholar 

  81. M. Bonner, T. Botts, J. McBreen, A. Mezzina, F. Salzano, and C. Yang, Int. J. Hydrogen Energy 9, 269 (1984).

    Article  Google Scholar 

  82. M.V. Ananth and N.V. Parthasarathy, Int. J. Hydrogen Energy 15, 193 (1990).

    Article  CAS  Google Scholar 

  83. I.A. Raj, R. Pattabiraman, S. Dheenadayalan, R. Chandrasakaran, and V.K. Venkatesan, Bull. Electrochem. 2, 477(1986).

    CAS  Google Scholar 

  84. I.A. Raj and K.I. Vasu, J. Appl. Electrochem. 20, 32 (1990).

    Article  CAS  Google Scholar 

  85. A. Nidola, Int. J. Hydrogen Energy 9, 367 (1984).

    Article  CAS  Google Scholar 

  86. V. Arumugan, K. Subramanian, and K.I. Vasu, Bull Electrochem. 4, 965 (1988).

    Google Scholar 

  87. J.Y. Huot, M.I. Trudeau, and R. Schultz, J Electrochem. Soc. 138, 1316 (1991).

    Article  CAS  Google Scholar 

  88. C. Fan, D.L. Piron, and M. Roias, Int. J. Hydrogen Energy 19, 29 (1994).

    Article  CAS  Google Scholar 

  89. C. Fan, D.L. Piron, A. Sleb, and P. Paradis, J. Electrochem. Soc. 141, 382 (1994).

    Article  CAS  Google Scholar 

  90. S. Anderson, D.E. Brown, S.M. Hall, M.M. Mahmood, M.C.M. Man, A.K. Turner, and D. Wood, An Electrocatalyst for Hydrogen Electrodes, Electrochem. Soc. Meeting, Extended Abstracts, Vol. 81-101 (1981), p. 1254.

    Google Scholar 

  91. J. Divisek, H. Schitz, and J. Balej, J. Appl. Electrochem. 19, 519 (1989).

    Article  CAS  Google Scholar 

  92. I.A. Raj, Int. J. Hydrogen Energy 17, 413 (1992); J. Mater. Sci. 28,4375 (1993); I.A. Raj and K.I. Vasu, J. Appl Electrochem. 22, 471 (1992).

    CAS  Google Scholar 

  93. B.E. Conway and L. Bai, Int. J. Hydrogen Energy 11, 533 (1986).

    Article  CAS  Google Scholar 

  94. B.E. Conway, H.A. Kozlowska, M.A. Sattar, and B.V. Tilak, J. Electrochem. Soc. 130, 1825 (1983).

    Article  CAS  Google Scholar 

  95. R. Simpraga, L. Bai, and B.E. Conway, J. Electrochem. Soc. 25, 628 (1995).

    CAS  Google Scholar 

  96. J. DeCarvalho, G.T. Filho, and E.R. Gonzalez, Int. J. Hydrogen Energy 14, 161 (1989).

    Article  CAS  Google Scholar 

  97. H.J. Miao and D.L. Piron, Electrochim. Acta 38, 1079 (1993).

    Article  CAS  Google Scholar 

  98. L. Brossard, Int. J. Hydrogen Energy 16, 13 (1991).

    Article  CAS  Google Scholar 

  99. M.F.B. Santos, E.P. deSilva, R. Andrade, Jr., and J.A.F. Dias, Electrochim. Acta 37, 29 (1992).

    Article  CAS  Google Scholar 

  100. M.V. Ananth and N.V Parthasaradhy, Bull Electrochem. 6, 40 (1990).

    Google Scholar 

  101. J.J. Podesta, R.C.V. Piatti, A.J. Arvia, P. Ekdunge, K. Juttner, and G. Kresya, Int. J. Hydrogen Energy 17, 9(1992).

    Article  CAS  Google Scholar 

  102. S.P. Jiang, Y.Z. Chen, J.K. You, T.X. Chen, and A.C. C. Tsueng, J. Electrochem. Soc. 137, 3374 (1990).

    Article  CAS  Google Scholar 

  103. S.P. Jiang, and A.C.C. Tsueng, J. Electrochem. Soc. 137, 3381 (1990).

    Article  CAS  Google Scholar 

  104. S.P. Jiang, and A.C.C. Tsueng, J. Electrochem. Soc. 137, 3387 (1990).

    Article  CAS  Google Scholar 

  105. S.P. Jiang, and A.C.C. Tsueng, J. Electrochem. Soc. 138, 1216 (1991).

    Article  CAS  Google Scholar 

  106. S.P. Jiang, C.Q. Cui, and A.C.C. Tsueng, J. Electrochem. Soc. 138, 3599 (1991).

    Article  CAS  Google Scholar 

  107. C.Q. Cui, S.P. Jiang, and A.C.C. Tsueng, J. Electrochem. Soc. 139, 60 (1991).

    Article  Google Scholar 

  108. C.Q. Cui, S.P. Jiang, and A.C.C. Tsueng, J. Electrochem. Soc. 139, 1276 (1992).

    Article  CAS  Google Scholar 

  109. C.Q. Cui, S.P. Jiang, and A.C.C. Tsueng, J. Electrochem. Soc. 139, 1535 (1992).

    Article  CAS  Google Scholar 

  110. M. Rojas, C.L. Fan, H.J. Maio, and D.L. Piron, J. Appl. Electrochem. 22, 1135 (1992).

    Article  CAS  Google Scholar 

  111. C.L. Fan, D.L. Piron, H.J. Maio, and M. Rojas, J. Appl Electrochem. 23, 985 (1993).

    Article  CAS  Google Scholar 

  112. C.L. Fan, D.L. Piron, M. Meilleur, and L.R Marin, Can. J. Chem. Engg. 71, 570 (1993).

    Article  CAS  Google Scholar 

  113. K. Lian, D.W. Kirk, and S.J. Thorpe, Electmchim. Acta 36, 537 (1991).

    Article  CAS  Google Scholar 

  114. L.J. Vracar and B.E. Conway, Int. J. Hydrogen Energy 15, 701 (1990).

    Article  CAS  Google Scholar 

  115. E. Potvin, H. Menard, and J.M. Lalancette, J. Appl. Electrochem. 20, 252 (1990).

    Article  CAS  Google Scholar 

  116. E. Potvin, H. Menard, L. Brossard, and J.M. Lalancette, Int. J. Hydrogen Energy 15, 843 (1990).

    Article  CAS  Google Scholar 

  117. E. Potvin, A. Lasia, H. Menard, and L. Brossard, J. Electrochem. Soc. 138, 900 (1991).

    Article  CAS  Google Scholar 

  118. H. Dumont, P. Los, L. Brossard, A. Lasia, and H. Menard, J Electrochem. Soc. 139, 2143 (1992).

    Article  CAS  Google Scholar 

  119. H. Dumont, P. Los, A. Lasia, H. Menard, and L. Brossard, J. Appl. Electrochem. 23, 684 (1993).

    Article  CAS  Google Scholar 

  120. H. Dumont, P. Los, L. Brossard, and H. Menard, J. Electrochem. Soc. 141, 1225 (1994).

    Article  CAS  Google Scholar 

  121. H. Dumont, P. Los, H. Menard, L. Brossard, B. Salvato, and O. Vittori, Int. J. Hydrogen Energy 18, 719 (1993).

    Article  CAS  Google Scholar 

  122. P. Los, A. Lasia, H. Menard, and L. Brossard, J. Electroanal. Chem. 360, 101 (1993).

    Article  CAS  Google Scholar 

  123. A. Anani, Z. Mao, S. Srinivasan, and A.J. Appleby, J. Appl. Electrochem. 21, 683 (1991).

    Article  CAS  Google Scholar 

  124. P.R. Vassie and A.C.C. Tseung, Electmchim. Acta 20, 759 (1975).

    Article  CAS  Google Scholar 

  125. P.R. Vassie and A.C.C. Tseung, Electrochim. Acta 20, 763 (1975).

    Article  CAS  Google Scholar 

  126. A.C.C. Tseung and PR. Vassie, Electrochim. Acta 21, 763 (1976).

    Article  Google Scholar 

  127. J.J. Borodzinski and A. Lasia, Int. J. Hydrogen Energy 18, 985 (1993).

    Article  CAS  Google Scholar 

  128. A.C. Chialvo and M.R.G. deChialvo, J. Appl. Electrochem. 21, 440 (1991).

    Article  CAS  Google Scholar 

  129. D.E. Hall, J.M. Sarver, and D.O. Gothard, Hydrogen Evolution with AB5-Catalyzed Coatings, In F. Hine, R.E. White, W.B. Darlington, and R.D. Varjian (eds), Proceedings on Electrochemical Engineering in the Chlor-Alkali and Chlorate Industries, Vol. 88-92, The Electrochemical Society Inc., Princeton, NJ (1988), p. 184.

    Google Scholar 

  130. O.A. Petrii, K.N. Semenenko, I.I. Korobov, S. Ya. Vasima, I.V. Kovrigina, and V.V. Burnasheva, J. Less. Common Mat. 136, 121 (1987).

    Article  CAS  Google Scholar 

  131. O. Savadogo and C. Alard, J. Appl. Electrochem. 21, 71 (1991).

    Google Scholar 

  132. O. Savadogo and S. Levesque, J. Appl. Electrochem. 21, 457 (1991).

    Article  CAS  Google Scholar 

  133. O. Savadogo, Electrochim. Acta 37, 1457 (1992).

    Article  CAS  Google Scholar 

  134. O. Savadogo and F. Carrier, J. Appl. Electrochem. 22, 437 (1992).

    Article  CAS  Google Scholar 

  135. K. Amuzgare and O. Savadogo, J. Appl Electrochem. 21, 519 (1992).

    Google Scholar 

  136. O. Savadogo and G. Bartolacci, Int. J. Hydrogen Energy 17, 109 (1992).

    Article  CAS  Google Scholar 

  137. O. Savadogo and H. Lavoie, Int. J. Hydrogen Energy 17, 473 (1992).

    Article  CAS  Google Scholar 

  138. E. Nuzebei and O. Savadogo, Int. J. Hydrogen Energy 17, 751 (1992).

    Article  Google Scholar 

  139. O. Savadogo and E. Nuzebei, J. Appl. Electrochem. 22, 915 (1992).

    Article  Google Scholar 

  140. O. Savadogo, F. Carrier, and E. Forget, Int. J. Hydrogen Energy 19, 429 (1994).

    Article  CAS  Google Scholar 

  141. E. Nuzebei and O. Savadogo, Int. J. Hydrogen Energy 19, 687(1994).

    Article  Google Scholar 

  142. M.M. Jaksic, Electrochim. Acta 29, 1539 (1984).

    Article  CAS  Google Scholar 

  143. M.M. Jaksic, Int. J. Hydrogen Energy 11, 519 (1986).

    Article  CAS  Google Scholar 

  144. M.M. Jaksic, High Temperature Sci. 30, 19 (1990).

    CAS  Google Scholar 

  145. G. Barnel, J.P. Diard, and C. Montella, Electrochim. Acta 31, 277 (1986).

    Article  Google Scholar 

  146. E.R. Kotz and S. Stucki, J. Appl Electrochem. 17, 1190 (1987).

    Article  Google Scholar 

  147. Y.C. Lang, Z.D. Zhang, K. Dwight, and A. Wold, Mat. Res. Bull. 23, 631 (1988).

    Article  Google Scholar 

  148. D. Galizzioli, F. Tantardini, and S. Trasatti, J. Appl. Electrochem. 5, 203 (1975).

    Article  CAS  Google Scholar 

  149. G.W. Jang and K. Rajehwar, J, Electrochem. Soc. 134, 1830 (1987).

    Article  CAS  Google Scholar 

  150. J.F.C. Boodts and S. Trasatti, J. Appl Electrochem. 19, 255 (1989).

    Article  CAS  Google Scholar 

  151. J.F.C. Boodts, G. Fregonara, and S. Trasatti. Hydrogen Evolution on Oxide Cathodes, In F. Hine, B.V. Tilak, M. Fenton, and J.D. Lisius (eds), Symposium on Performance of Electrodes for Industrial Electrochemical Processes, The Electrochemical Society Inc., Princeton, NJ (1989), p. 135.

    Google Scholar 

  152. S. Trasatti, Hydrogen Evolution on Oxide Electrodes, In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, Vol. 5, Elsevier, London, (1992), p. 281.

    Chapter  Google Scholar 

  153. C. Iwakura, N. Furukawa, and M. Tanaka, Electrochim. Acta 37, 757 (1992).

    Article  CAS  Google Scholar 

  154. A. Cornell and D. Simonson, J. Electrochem. Soc. 140, 3123 (1993).

    Article  CAS  Google Scholar 

  155. H. Chen and S. Trasatti, J. Appl Electrochem. 23, 559 (1993).

    Article  CAS  Google Scholar 

  156. I.M. Kodintsev and S. Trasatti, Electrochim. Acta 39, 1803 (1994).

    Article  CAS  Google Scholar 

  157. M. Jaccaud, F. Leroux, and J.C. Millet, Mat. Chem. Phys. 22, 105 (1989).

    Article  CAS  Google Scholar 

  158. W.B. Darlington, Activated Cathodes for Reduced Power Consumption in Electrolytic Cells, In O. DeNora (ed.), Proceedings of the DeNora Symposium on Chlorine Technology., Venice, (1979), p. 30.

    Google Scholar 

  159. E. Nicholas, Fr. Appl. 7917441(1979).

    Google Scholar 

  160. A.S. Ivanova, V.A. Dzisko, E.M. Moroz, and S.P. Noskova, Kinet. Katal. 26, 1193 (1985); 27, 428 (1986).

    CAS  Google Scholar 

  161. E. Veggetti and S. Trasatti, Unpublished results (ref. 483 in ref. 13).

    Google Scholar 

  162. P.M. Spaziante, Ing. Chim. Ital. 11, 155 (1975).

    CAS  Google Scholar 

  163. Industrial Water Electrolysis. S. Srinivasan, EJ. Salzano, and A.R. Landgrebe (eds), The Electrochemical Society Inc., Princeton, NJ (1977).

    Google Scholar 

  164. H. Vandenborre, Ph. Vermeiren, and R. Laysen, Electrochim. Acta 29, 297 (1984).

    Article  CAS  Google Scholar 

  165. H. Vandenborre, R. Laysen, H. Nackaerts, and Ph. van Asbroeck, Int. J. Hydrogen Energy 9, 277 (1984).

    Article  CAS  Google Scholar 

  166. K. Yamakawa, H. Tubakino, K. Akiyoshi, H. Inoue, and K. Yoshimoto. Ni-S Amorphous Alloy as Cathode Material in Chlorine Cell, In F. Hine, R.E. White, WB. Burlington, and R.D. Varjian (eds), Electrochemical Engineering in the Chlor-Alkali Industry, The Electrochemical Society Inc., Princeton, NJ (1988), p. 174.

    Google Scholar 

  167. A. Nidola and R. Schira, Int. J. Hydrogen Energy 11, 449 (1986).

    Article  CAS  Google Scholar 

  168. A.C.C. Tseung, J.A.A. Antonian, and D.B. Hibbert, Chem. Ind. 2, 54 (1984).

    Google Scholar 

  169. R. Kh. Burshtein, V.E. Kazarinov, O.A. Gafarova, I.E. Barbasheva, Ya.S. Lapin, and N.P. Kuznetsova, Soviet Electrochem. 24, 1335 (1988).

    Google Scholar 

  170. A. Nidola and A. Schira. In T.N. Veziroglu and J.B. Taylor (eds), Hydrogen Energy Progress V, Vol. 2, Pergamon Press, New York, (1984), p. 909.

    Google Scholar 

  171. A.J. Onuchukwu, Electrochim. Acta 27, 529 (1982).

    Article  CAS  Google Scholar 

  172. R. Sabela and I. Paseka, J. Appl. Electrochem. 29, 500 (1990).

    Article  Google Scholar 

  173. T.C. Wen, S.M. Lin, and J.M. Tsai, J. Appl. Electrochem. 24, 233 (1994).

    CAS  Google Scholar 

  174. E.R. Gonzalez, L.A. Avaca, G. Tremiliosi-Filho, S.A.S. Machado, and M. Ferreira, Int. J. Hydrogen Energy 19, 17 (1994).

    Article  CAS  Google Scholar 

  175. P. Gallone, G. Modica, and S. Trasatti, J. Electroanal. Chem. 180, 421 (1984).

    Article  CAS  Google Scholar 

  176. J. Dukovic and C.W Tobias, J. Electrochem. Soc. 134, 331 (1987).

    Article  CAS  Google Scholar 

  177. J.Y. Huot, J. Appl. Electrochem. 19, 453 (1989).

    Article  CAS  Google Scholar 

  178. A.A. Kuznetsov and Yu.V. Federov, Soviet Electrochem. 18, 738 (1982).

    Google Scholar 

  179. A.E. Avrushchhenko, B.N. Yanchuk, N.V. Korovin, and L.G. Ganichenko, Soviet Electrochem. 22, 1186 (1986).

    Google Scholar 

  180. C. Bailleux, A. Damien, and A. Montet, Int. J. Hydrogen Energy 8, 529 (1983).

    Article  CAS  Google Scholar 

  181. A. Nidola and R. Schira. Deactivation of Low Hydrogen Overvoltage Cathodes in Chlor-Alkali Membrane Cell Technology by Metallic Impurities, In M.M. Silver and E.M. Spore (eds), Advances in the Chlor-Alkali and Chlorate Industry, The Electrochemical Society Inc., Princeton, NJ (1984), p. 206.

    Google Scholar 

  182. A. Nidola. In P. Vincenzini (ed.), High Tech Ceramics, Elsevier, Amsterdam (1987), p. 2191.

    Google Scholar 

  183. E.R. Kotz and S. Stucki, J Appl. Electrochem. 17, 1190 (1987).

    Article  Google Scholar 

  184. S. Ardrizzone, A. Carugati, G. Lodi, and S. Trasatti, J. Electrochem. Soc. 129, 1689 (1982).

    Article  Google Scholar 

  185. S. Ardrizzone, G. Fregonara, and S. Trasatti, Electrochim. Acta 35, 263 (1990).

    Article  Google Scholar 

  186. B.E. Conway. The Temperature and Potential Dependence of Electrochemical Reaction Rates, and the Real Form of the Tafel Equation, In B.E. Conway, R.E. White, and J.O’ M. Bockris (eds), Modern Aspects of Electrochemistry, Vol. 16, Plenum Press, New York (1985), p. 103.

    Google Scholar 

  187. B.V Tilak, S. Venkatesh, and S.K. Rangarajan, J. Electrochem. Soc. 136, 1977 (1989).

    Article  CAS  Google Scholar 

  188. J.C.F. Boodts and S. Trasatti, J. Appl. Electrochem. 19, 255 (1989).

    Article  CAS  Google Scholar 

  189. K. Suetsugu, T. Sakaki, K. Yoshimitsu, K. Yamaguchi, A. Kawashima, and K. Hashimoto, Ni-Fe Alloy Cathodes for Chlor-Alkali Electrolysis, In Proc. Vol. 99–21, The Electrochemical Society Inc., Princeton, NJ (1999), p. 169.

    Google Scholar 

  190. H. Houda, Y. Naoki, and H. Obanawa, Characteristics of Plasma-Sprayed NiO Cathode and Mechanism of Hydrogen Evolution Reaction at its surface, In Proc. Vol. 98–10, The Electrochemical Society Inc. (1998), p. 329.

    Google Scholar 

  191. J.F. Cairns, M.R. Cook, P.M. Hayes, D.R. Hodgson, P.A. Izzard, M.J. Mockford, E. Paul, and F. Rourke, Advances In ICI’s Activated Cathode Technology for Chlor-Alkali Production, In Proc. Vol. 98–10, The Electrochemical Society Inc., Princeton, NJ (1998), p. 289.

    Google Scholar 

  192. Yu-Min Tsou, Novel High performance Hydrogen Cathode Coating, In Proc. Vol. 99–21, The Electrochemical Society Inc., Princeton, NJ (1999), p. 160.

    Google Scholar 

  193. Y. Yamakawa, H. Tubakino, K. Akiyoshi, H. Inoue, and K. Yoshimoto, Proc. Vol. 88–2, The Electrochemical Society Inc., Princeton, NJ (1988), p. 174.

    Google Scholar 

  194. H. Yamashita, T. Yamamura, and K. Yoshimoto, J. Electrochem. Soc. 140, 2238 (1993).

    Article  CAS  Google Scholar 

  195. H. Yamashita, T. Yamamura, and K. Yoshimoto, Denki Kagaku (J. Electrochem. Soc. Japan). 62, 48 (1994).

    CAS  Google Scholar 

  196. M. Fukouka, H. Yamashita, and K. Yoshimoto, Ni-Sn Alloy Activated Cathodes for Chlor-Alkali Process, In Proc. Vol. 98–10, The Electrochemical Society Inc., Princeton, NJ (1989), p. 305.

    Google Scholar 

  197. K. Yamaguchi, A. Senda, and A. Sakata, J. Electrochem. Soc. 137, 1419 (1990).

    Article  CAS  Google Scholar 

  198. A. Senda and K. Yamaguchi, Development of TWAC Activated Cathode, In Proc. Vol. 89–10, The Electrochemical Society Inc., Princeton, NJ (1989), p. 111.

    Google Scholar 

  199. K. Hayashi and K. Yamaguchi, Additional Effect of Antimony Trioxide to the TWAC Activated Cathode, In Proc. Vol. 89-10, The Electrochemical Society Inc., Princeton, NJ (1989), p. 341.

    Google Scholar 

  200. E. Endoh, H. Otouma, T. Morimoto, and Y Oda, Int. J. Hydrogen Energy 12, 473 (1987).

    Article  CAS  Google Scholar 

  201. E. Endoh, H. Otouma, and T. Morimoto, Int. J. Hydrogen Energy 13, 207 (1988).

    Article  CAS  Google Scholar 

  202. N. Yoshida, M. Yoshitake, E. Endoh, and T. Morimoto, Int. J. Hydrogen Energy 14, 137 (1989).

    Article  CAS  Google Scholar 

  203. E. Endoh, M. Nakao, and Y. Takechi, Raney Nickel Dispersion-plated Low Hydrogen Overvoltage Cathode, In Proc. Vol. 99–21, The Electrochemical Society Inc., Princeton, NJ (1999), p. 245.

    Google Scholar 

  204. E. Endoh, Development and performance of the Raney Nickel Dispersion-plated Cathodes for Chlor-Alkali Process, In Proc. Vol. 98–10, The Electrochemical Society Inc., Princeton, NJ (1998), p. 317.

    Google Scholar 

  205. N. Yoshida, M. Yoshitake, E. Endoh, and T. Morimoto, Development of Highly Durable Low Hydrogen Overvoltage Cathode in Chlor-Alkali Cells, In Proc. Vol. 98–10, The Electrochemical Society Inc., Princeton, NJ (1998) p. 125.

    Google Scholar 

  206. ELTECH Systems Corporation Brochure (2000).

    Google Scholar 

References

  1. CL. Mantell, Industrial Electrochemistry, 2nd Edition, McGraw-Hill Book Co., New York (1940), p. 332.

    Google Scholar 

  2. C.L. Mantell, Electrochemical Engineering, 4th Edition, McGraw-Hill Book Co., New York, (1960), p. 277.

    Google Scholar 

  3. M.S. Kircher, Electrolysis of Brines in Diaphragm Cells. In J.S. Sconce Chlorine—Its Manufacture, Properties, and Uses, ACS Monograph 154 (ed.), Reinhold Publishing Co., New York (1962), p. 81.

    Google Scholar 

  4. D. W.F. Hardie, Electrolytic Manufacture of Chemicals From Salt, W.W. Smith (ed.), The Chlorine Institute, New York (1975), p. 75.

    Google Scholar 

  5. J.E. Currey and G.G. Pumplin, Chlor-Alkali. In Encyclopedia of Chemical Processing and Design, Vol. 7, Marcel Dekker, New York (1978), p. 305.

    Google Scholar 

  6. L. Michaels, and S.S. Chissick (eds.), Asbestos: Properties, Applications, and Hazards, Vol. 1, John Wiley & Sons, Inc., New York (1979).

    Google Scholar 

  7. R.J. Levine, M.D. Gidley, M. Feuerstein, M. Chesney, and P.M. Giever, Asbestos-Related Diseases Part 5: The prevention of Asbestos-Related Diseases, in Ref. 6, p. 485.

    Google Scholar 

  8. J.A. Moore, Proceedings of the NBS Workshop on Asbestos: Definitions and Measurement Methods, Gaithersburg, MD (1977).

    Google Scholar 

  9. T.F. Gates, L.B. Sand, and J.F. Mink, Science 111, 512 (1950).

    Article  Google Scholar 

  10. B. Nagy and T.F. Bates, Am. Mineralogist 37, 1055 (1952).

    CAS  Google Scholar 

  11. E.J.W. Whittaker, Acta Cryst. 6, 747 (1953).

    Article  CAS  Google Scholar 

  12. A.C. Zettlemoyer, GJ. Young, J.J. Chessick, and F.H. Healey, J. Phys. Chem. 57, 647 (1952).

    Google Scholar 

  13. GJ. Young and F.H. Healey, J. Phys. Chem. 58, 881 (1954).

    Article  CAS  Google Scholar 

  14. F.L. Pundsack, J. Phys. Chem. 59, 892 (1955); 60, 361 (1956).

    Article  CAS  Google Scholar 

  15. F.L. Pundsack and G. Reimschussel, J. Phys. Chem. 60, 1218 (1956).

    Article  CAS  Google Scholar 

  16. S.G. Clark and P.F. Holt, Nature 185, 237 (1960).

    Article  CAS  Google Scholar 

  17. E. Martinez and G.L. Zucker, J. Phys.Chem. 64, 924 (1960).

    Article  CAS  Google Scholar 

  18. I. Choi and R.W. Smith, J. Colloid and Interface Sci. 10, 253 (1972).

    Article  Google Scholar 

  19. T. Otouma and S. Take, J. Chem. Soc. Japan 10, 1897 (1974).

    Google Scholar 

  20. J.H. Perry, Chemical Engineers’ Handbook, 4th Edition, McGraw-Hill Book Co., New York (1960), pp. 19–55.

    Google Scholar 

  21. S. Kamei, Kagaku Kikai no Riron to Keisan (Theory and Calculation of Chemical Process Equipment), Sangyo Tosho, Tokyo (1959).

    Google Scholar 

  22. P.C. Carman, Trans. Inst. Chem. Eng. (London) 23, 150 (1937).

    Google Scholar 

  23. R.B. MacMullin and G.A. Muccini, AIChE J. 2, 393 (1956).

    Article  CAS  Google Scholar 

  24. R.E. De La Rue and C.W. Tobias, J. Electrochem. Soc. 106, 827 (1959).

    Article  Google Scholar 

  25. M. Yasuda, Soda to Enso (Soda and Chlorine) 25, 225 (1974).

    CAS  Google Scholar 

  26. F.A.L. Dullien, AIChEJ. 21, 820 (1975).

    Article  CAS  Google Scholar 

  27. K.S. Spiegler, J. Electrochem. Soc. 113, 161 (1966).

    Article  CAS  Google Scholar 

  28. T. Matsuno, Kogyo Butsuri-Kagaku (Industrial Physical Chemistry), Vol. 2, Corona Publ., Tokyo (1948), p. 107.

    Google Scholar 

  29. Yu.C. Chirkov, Soviet Electrochem. 7, 1462, 1622 (1971); 8, 549, 723 (1972).

    Google Scholar 

  30. Yu.C. Chirkov, Soviet Electrochem. 8, 1042, 1156 (1972).

    Google Scholar 

  31. V.N. Zhuravleva, V.S. Markin, A.G. Pshenichhnikov, and Yu.C. Chirkov, Soviet Electrochem. 13, 135 (1977).

    Google Scholar 

  32. H. Kaden and A. Pohl, Chem. Techn. 30, 25 (1978).

    CAS  Google Scholar 

  33. Yu.L. Golin, V.E. Karynkin, B.S. Pospelov, and V.I. Seredkin, Soviet Electrochem. 28, 87 (1992).

    Google Scholar 

  34. F. Hine, M. Yasuda, and T. Tanaka, Electrochim. Acta 22, 429 (1977).

    Article  CAS  Google Scholar 

  35. R.B. MacMullin, Private Communication (1990).

    Google Scholar 

  36. F. Hine and M. Yasuda, J Electrochem. Soc. 118, 166 (1971).

    Article  CAS  Google Scholar 

  37. G. van derHeiden, Diaphragm Cells for Chlorine Production, Proc. Symp. held at the City University, London (976), Society of Chemical Industry, London (1977), p. 33; J. Appl. Electrochem. 19, 571 (1989).

    Google Scholar 

  38. T. Mukaibo, Denki Kagaku (J. Electrochem. Soc. Japan) 20, 482 (1952).

    CAS  Google Scholar 

  39. V.V. Stender, O.S. Ksenzhek, and V.N. Lazarev, Zh. Prikl Khim. 40, 293 (1967).

    Google Scholar 

  40. P. Gallone and E. Rubino, Annali di Chimica. 66, 103 (1976).

    CAS  Google Scholar 

  41. L.I. Kheifets and A.B. Goldberg, Soviet Electrochem. 12, 525 (1976).

    Google Scholar 

  42. A.B. Goldberg and L.I. Kheifets, Soviet Electrochem. 12, 555 (1976).

    Google Scholar 

  43. A.B. Goldberg and L.I. Kheifets, Soviet Electrochem. 13, 123 (1977).

    Google Scholar 

  44. V.L. Kubasov, Soviet Electrochem. 12, 72 (1976).

    Google Scholar 

  45. O.S. Ksenzhek and V.M. Serebriskii, Soviet Electrochem. 4, 294 (1968).

    Google Scholar 

  46. V.M. Serebriskii and O.S. Ksenzhek, Soviet Electrochem. 7, 592 (1971).

    Google Scholar 

  47. G. Matic, P.M. Robertson, and N. Ibl, Electrochim. Acta 25, 487 (1980).

    Article  CAS  Google Scholar 

  48. P.M. Robertson, R. Cherlin, and N. Ibl, Electrochim. Acta 26, 941 (1981).

    Article  CAS  Google Scholar 

  49. R.R. Chandran, D.T. Chin, and K. Viswanathan, J. Applied Electrochem. 14, 511 (1984).

    Article  CAS  Google Scholar 

  50. R.E. White, J.S. Beckerdite, and J. Van Zee, A Simple Model of a Diaphragm-Type Chlorine Cell. In R.E. White (ed.), Plenum Press, Electrochemical Cell Design, New York (1984) p. 28.

    Google Scholar 

  51. J. Van Zee and R.E. White, J. Electrochem. Soc. 132, 818 (1985).

    Article  Google Scholar 

  52. J. Van Zee, R.E. White, and A.T. Watson, J. Electrochem. Soc. 133, 501 (1986).

    Article  Google Scholar 

  53. J. Van Zee and R.E. White, J. Electrochem. Soc. 133, 508 (1989).

    Google Scholar 

  54. J. Van Zee and T.H. Teng, The Effect of Acidic Brine on the Dynamic Behavior of Chlorine/Caustic Diaphragm-Type Electrolyzers. In U. Landau, R.E. White, and R.D. Varjian (eds), Engineering of Industrial Electrolytic Processes, PV 86-88, Electrochem. Society, Princeton, NJ, (1986), p. 219.

    Google Scholar 

  55. J. Van Zee and B. Tamtasna, Nonlinear Potential Gradients in Chlorine/Caustic Diaphragm-Type Electrolyzers. In J. Van Zee, R.E. White, K. Kinoshita and H.B. Burney (eds), Diaphragms, Separators, and Ion Exchange Membranes, PV 86-113, Electrochem. Society, Princeton, NJ (1986), p. 60.

    Google Scholar 

  56. S.A. McCluney and J. van Zee, J. Electrochem. Soc. 136, 2556 (1989).

    Article  CAS  Google Scholar 

  57. D.L. Caldwell, K.A. Poush, J.W. Van Zee, and R.E. White, Mathematical Model of the Chlorine Cell Diaphragm. In R.C. Alkire, T.R. Beck, and R.D. Varjian (eds), Electrochemical Process and Plant Design PV 83-86, Electrochem. Society, Princeton, NJ (1983), p. 216.

    Google Scholar 

  58. F. Hine and K. Murakami, 7. Electrochem. Soc. 127, 292 (1980).

    Article  CAS  Google Scholar 

  59. F. Hine and M. Yasuda, J. Electrochem. Soc. 118, 171 (1971).

    Google Scholar 

  60. F. Hine and M. Yasuda, J. Electrochem. Soc. 118, 183 (1971).

    Google Scholar 

  61. J.S. Newman, Electrochemical Systems, Prentice Hall, Englewood Cliffs, NJ (1973), p. 3.

    Google Scholar 

  62. G. Angel, Electrolysis of Alkali Metal Salts in Diaphragm-Equipped Baths (Russian Translation), ONTI Khinteoret, Moscow (1935), p. 7.

    Google Scholar 

  63. V.B. Vorob’eva, V.L. Kubasov, and L.I. Yurkov, Soviet Electrochem. 14, 812 (1978).

    Google Scholar 

  64. V.L. Kubasov, Soviet Electrochem. 9(12), 1680 (1973).

    Google Scholar 

  65. U.S. Patents 3,928,166 (1975); 3,980,613 (1976); 4,260,453 (1981); 4,189,369 (1980); 4,187,390 (1970); 4,031,041 (1977); 3,853,721 (1974); 3,945,910 (1976); French Patent, 2,300,145 (1976); British Patents, 1,410,313 (1975); 1,473,963 (1977); Japanese Kokai, 52-142695 (1977); 52-23870 (1978); 52-23900 (1978).

    Google Scholar 

  66. U.S. Patents 4,410,411 (1983); 4,489,025 (1984); 4,701,250 (1987).

    Google Scholar 

  67. U.S. Patent 3,928,166 (1975).

    Google Scholar 

  68. U.S. Patent 4,444,640 (1984).

    Google Scholar 

  69. U.S.Patents 4,447,566 (1984); 4,563,260 (1986); 4,665,120 (1987).

    Google Scholar 

  70. J.V. Winings and D.H. Porter, Evolutionary Developments in Hooker Diaphragm Cells. In M.O. Coulter (ed.), Modern Chlor-Alkali Technology, Society of Chemical Industry, London (1980), p. 27.

    Google Scholar 

  71. A. Bruce Robertson, Appl. Polymer Symposium, 21, 89 (1973).

    Google Scholar 

  72. R. Romine, ELTECH Systems Corporation, Private Communication, 2000.

    Google Scholar 

  73. J. Faravarque, A New Life for the Diaphragm Process, Info Chemie, March 1999.

    Google Scholar 

  74. T.F. Florkiewicz, Long-Life Diaphragm Cell. In S. Sealey (ed.), Modern Chlor-Alkali Technology, Vol. 7, Society of Chemical Industry, London, Special Publication, #121 (1998), p. 171.

    Google Scholar 

  75. J.E. Currey and W. Strewe, Chem. Ing. Techn. 47, 145 (1975).

    Article  Google Scholar 

  76. French Patent 2,324,781 (1977).

    Google Scholar 

  77. U.S.Patent 4,003,818 (1977).

    Google Scholar 

  78. Japanese Kokai 51-80699 (1976).

    Google Scholar 

  79. British Patent 1,482,749 (1977).

    Google Scholar 

  80. Japanese Kokai 53-23900 (1978).

    Google Scholar 

  81. Japanese Kokai 50-40473 (1975).

    Google Scholar 

  82. T.F. Florkiewicz and R.C. Matousek, Polyramix®: A Depositable Replacement for Asbestos Diaphragms in Chlorine Institute 31st Plant Manager’s Seminar, New Orleans, LA, 1988.

    Google Scholar 

  83. L.C. Curlin, T.F. Florkiewicz, and R.C. Matousek, Polyramix®: A Depositable Replacement for Asbestos Diaphragms, In N.M. Prout and J.S. Moorhouse (eds), Modern Chlor-Alkali Technology, Vol. 4, Elsevier, London (1990), p. 333.

    Chapter  Google Scholar 

  84. T.F. Florkiewicz and L.C. Curlin, Polyramix®: A Commercial Reality. In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, Vol. 5, Elsevier, London (1992), p. 209.

    Chapter  Google Scholar 

  85. P.C. Foller, D.W. DuBois, and J. Hutchins, PPG’s Tephram® Diaphragm, The Actaptable Non-Asbestos Diaphragm. In S. Sealey (ed.), Modern Chlor-Alkali Technology, Vol. 7, Royal Society of Chemistry, Cambridge, UK (1988), p. 162.

    Google Scholar 

  86. F. Kuntzburger, D. Horbez, J.G. LeHelloco, and J.M. Perineau, New Developments in Built-in Precathode Diaphragm Technology. In Modern Chlor-Alkali Technology, Vol. 7, Society of Chemical Industry, London (1998), p. 181.

    Google Scholar 

  87. L.C. Curlin and E.S. Kazimir, Diaphragm Depositing and Cell Renewal Fundamentals, in Electrode Corporation’s 12th Annual Chlorine/Chlorate Seminar, 1966, Cleveland, Ohio.

    Google Scholar 

  88. R. Gritte, Optimizing Diaphragms to Match Plant Objectives, in Electrode Corporation’s 14th Annual Chlorine/Chlorate Seminar, 1998, Cleveland, Ohio.

    Google Scholar 

References

  1. L.C. Curlin, T.V. Bommaraju, and C.B. Hansson, Chlorine and Sodium Hydroxide, In Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Vol. 1, John Wiley & Sons, New York (1991), p. 938.

    Google Scholar 

  2. F. Hine, B.V. Tilak, and K. Viswanathan, Chemistry and Chemical Engineering in the Chlor-Alkali Industry, In R.E. White, J.O’M. Bockris and B.E. Conway (eds), Modern Aspects of Electrochemistry, Vol. 18, Plenum Publishing Corp., NewYork (1986), p. 249.

    Chapter  Google Scholar 

  3. W.G. Grot, Chem. Ing. Techn. 44, 167 (1972).

    Article  CAS  Google Scholar 

  4. W.G. Grot, Chem. Ing. Techn. 50, 299 (1978).

    Article  CAS  Google Scholar 

  5. W.G. Grot, Chem. Ind. (London), (1980), p. 647.

    Google Scholar 

  6. W.G. Grot, V. Mehra, G.E. Munn, and J.C. Solenberger, Nafion® Electrolytic Separators, Abstract # 344, Electrochemical Society Meeting, Toronto, (1975).

    Google Scholar 

  7. W.G. Grot, Chem. Ing. Techn. 47, 617 (1975).

    Article  CAS  Google Scholar 

  8. O.D. Bonner and L.L. Smith, J Phys. Chem. 61, 326 (1957).

    Article  CAS  Google Scholar 

  9. O.D. Bonner, W.L. Argensinger, and A.W. Davidson, J. Am.Chem. Soc. 74, 1044 (1952).

    Article  CAS  Google Scholar 

  10. DJ. Vaughan, Dupont Innovation 4(3), 10 (1973).

    CAS  Google Scholar 

  11. W.G. Grot, Discovery and Development of Nafion Perfluorinated Membranes: The SCI. Castner Medal Lecture. In K. Wall (ed.), Modern Chlor-Alkali Technology, Ellis Horwood Ltd, Chichester, Vol. 3, (1986), p. 122.

    Google Scholar 

  12. D.E. Maloney, Fluorocarbon Membranes for Chlor-Alkali Industry. In M.O. Coulter (ed.) Modern ChlorAlkali Technology, Ellis Horwood Ltd, Chichester, Vol. 1 (1980), p. 173.

    Google Scholar 

  13. M. Seko, Ion Exchange Membranes for the Chlor-Alkali Electrolysis, Abstract # 417, Electrochemical Society Meeting, Minneapolis, MN, May 1981.

    Google Scholar 

  14. M. Seko, S. Ogawa, and K. Kimoto, Perfluorocarboxylic Acid Membranes and Membrane Chlor-Alkali Process Developed by Asahi Chemical Industry. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series 180, American Chemical Society (1982), p. 365.

    Google Scholar 

  15. M. Seko, New Development of the Asahi Chemical Membrane Chlor-Alkali Process. In Proceedings of the Oronzio DeNora Symposium: Chlorine Technology, Venice (1979), p. 141.

    Google Scholar 

  16. M. Seko, Ion-Exchange Membrane for the Chlor-Alkali process, ACS Polymer Division Workshop on Perfluorinated Ionomer Membranes, American Chemical Society, Lake Buena Vista, Florida, Feb 1982.

    Google Scholar 

  17. H. Ukihashi and M. Yamabe, Perfluorocarboxylate Polymer Membranes. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series 180, American Chemical Society (1982), p. 427.

    Google Scholar 

  18. Y. Ogata, T. Kojima, S. Uchida, M. Yasuda, and F. Hine, J. Electrochem. Soc. 136, 91 (1989).

    Article  CAS  Google Scholar 

  19. U.S. Patent 4,138,373 (1979).

    Google Scholar 

  20. Japanese Patent 116,790 (1977); 81,485; 76,282.

    Google Scholar 

  21. British Patent 1,522,877; 1,523, 047

    Google Scholar 

  22. H. Ukihashi, Chem. Tech. Feb 1980.

    Google Scholar 

  23. T.D. Gierke and W.Y. Hsu, The Cluster Network Model of Ion Clustering in Perfluorosulfonated Membranes. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series 180, American Chemical Society (1982), p. 283.

    Google Scholar 

  24. W.Y. Hsu and T.D. Gierke, J. Membrane Sci. 13, 307 (1983).

    Article  CAS  Google Scholar 

  25. M. Falk, Infrared Spectra of Perfluorinated Polymers and of Water. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series 180, American Chemical Society (1982), p. 139.

    Google Scholar 

  26. S.J. Sondheimer, N.J. Bunce, and C.A. Fyfe, Rev. Macromol Chem. Phys. C26, 353 (1986).

    Article  Google Scholar 

  27. M. Pineri, R. Duplessix, and F. Volino, Neutron Studies of Perfluorinated Polymer Structure. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series, 180, American Chemical Society (1982), p. 249.

    Google Scholar 

  28. R.A. Komoroski and K.A. Mauritz, Nuclear Magnetic Resonance Studies and the Theory of Ion Pairing. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series, 180, American Chemical Society (1982), p. 113.

    Google Scholar 

  29. T. Kyu and A. Eisenberg, Mechanical Relaxations in Perfluorosulfonate Ionomer Membranes. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series, 180, American Chemical Society (1982), p. 79.

    Google Scholar 

  30. A.J. Hopfinger and K.A. Mauritz, Theory of Structures of Ionomeric Membranes. In J.O’M. Bockris, B.E. Conway, E. Yeager, and R.E. White (eds), Comprehensive Treatise of Electrochemistry, Vol. 2, Plenum Press, New York (1981), p. 521.

    Chapter  Google Scholar 

  31. K.A. Mauritz and A.J. Hopfinger, Structural Properties of Membrane Ionomers. In J.O’M. Bockris, B.E. Conway, and R.E. White (eds), Modern Aspects of Electrochemistry, Vol. 14, Plenum Press, New York (1982), p. 425.

    Chapter  Google Scholar 

  32. K.A. Mauritz, C.J. Hora, and A.J. Hopfinger, Theoretical Model for the Structures of Ionomers. In U. Landau, E. Yeager, and D. Kortan (eds), Electrochemistry in Industry, Plenum Press, New York (1982), p. 89.

    Chapter  Google Scholar 

  33. A.J. Hopfinger, C.J. Hora, and K.A. Mauritz, Prediction of the Molecular Structure of Nafion® under Different Physicochemical Conditions, Abstract # 439, Electrochemical Society Meeting, Atlanta, Oct. 1977.

    Google Scholar 

  34. T.D. Gierke, Ionic Clustering in Nafion® Perfluorosulfonic Acid Membranes and its Relationship to Hydroxyl Rejection and Chlor-Alkali Current Efficiency, Abstract # 438, Electrochemical Society Meeting, Atlanta, GA (1977).

    Google Scholar 

  35. T.D. Gierke, G.E. Munn, and F.C. Wilson, Morphology of Perfluorosulfonated Membrane Products. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series 180, American Chemical Society (1982), p. 195.

    Google Scholar 

  36. M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules 14, 1309 (1981); 15, 136 (1982).

    Article  CAS  Google Scholar 

  37. G.G. Sherer and P.P. Fluger. ESCA Investigation of Nafion Membranes. In J.W. VanZee, R.E. White, K. Kinoshita and H.S. Burney (eds), Diaphragms, Separators and Ion-Exchange Membranes, PV 86–113, The Electrochemical Society, Pennington, NJ (1986), p. 52.

    Google Scholar 

  38. M.V. Verbrugge and R.F. Hill, J. Electrochem. Soc. 137, 886, 893 (1990).

    Article  CAS  Google Scholar 

  39. E.H. Cwirko and R.B. Carbonell, J. Membrane Sci. 67, 211, 227 (1992).

    Article  CAS  Google Scholar 

  40. T.D. Gierke, G.E. Munn, and F.C. Wilson, J. Polym. Sci. Phys. Edu. 19, 1987 (1980).

    Google Scholar 

  41. W.G. Grot, G.E. Munn, and P.N. Walmsley, Perfluorinated Ion Exchange Membranes (XR membranes), Abstract # 154 Electrochemical Society Meeting, Houston, TX (1972).

    Google Scholar 

  42. M. Seko, S. Ogawa, and K. Kimito, Perfluorocarboxylic Acid Membrane and Membrane Chlor-Alkali Process Developed by Asahi Chemical Industry, In A. Eisenberg and H.L. Yeager (eds), Polyfluorinated Ionomer Membranes, ACS Symposium Series # 180 (1982), p. 365.

    Google Scholar 

  43. R.S. Yeo, Intrinsic Conductivity of Perfluorosulfonic Acid Membranes and its Implication to the Solid Polymer Electrolyte (SPE) Technology, In R.S. Yeo, T. Katan, and D.T. Chin (eds), Transport Processes in Electrochemical Systems, Electrochemical Society, Pennington, NJ (1982), p. 178.

    Google Scholar 

  44. R.S. Yeo, Polymer 21, 432 (1980).

    Article  CAS  Google Scholar 

  45. T.A. Davis, J.D. Genders, and D. Fletcher, A First Course in Ion Permeable Membranes, The Electrochemical Consultancy, Alresford, Hants, U.K. (1977).

    Google Scholar 

  46. R.S. Yeo and A. Eisenberg, J. Appl. Polym. Sci. 21, 875 (1977).

    Article  CAS  Google Scholar 

  47. E.J. Roche, M. Pineri, and R. Duplessix, J. Polym. Sci. Phys. Ed. 20, 101 (1982).

    Article  Google Scholar 

  48. M. Falk, Can. J. Chem. 58, 1495 (1980).

    Article  CAS  Google Scholar 

  49. H. Yoshida and Y. Miura, J. Membrane Sci. 68, 1 (1992).

    Article  CAS  Google Scholar 

  50. R.S. Yeo, J. Electrochem. Soc. 130, 533 (1983).

    Article  CAS  Google Scholar 

  51. H. Ukihashi, M. Yamabe, and H. Miyake, Prog. Polym. Sci. 12, 229 (1986).

    Article  CAS  Google Scholar 

  52. T. Hanai, Maku to Ion (Membranes and Ions), Kagaku Dojin, Kyoto (1978), p. 161.

    Google Scholar 

  53. F.G. Donnan and E.A. Guggenheim, Z Phys. Chem. A162, 346 (1932).

    CAS  Google Scholar 

  54. K. Kimito, J. Electrochem. Soc. 130, 334 (1983).

    Article  Google Scholar 

  55. H. Riess and I.C. Bassigana, J. Membrane Sci. 11, 219 (1982).

    Article  Google Scholar 

  56. W.Y. Hsu, J.R. Barkley, and P. Meakin, Macromolecules 13, 198 (1980).

    Article  CAS  Google Scholar 

  57. C. Gavach, G. Pamboutzoglou, M. Nedyalkov, and G. Pourcelly, J. Membrane Sci. 45, 37 (1989).

    Article  CAS  Google Scholar 

  58. P.C. Rieke and N. Vanderborgh, J. Membrane Sci. 32, 313 (1987).

    Article  CAS  Google Scholar 

  59. T.A. Zawardowski, T.E. Springer, J. Davey, R. Jestel, C. Lopez, J. Valerio, and S. Gottesfeld, J. Electrochem. Soc. 140, 1981 (1993).

    Article  Google Scholar 

  60. N.I. Menshakava, V.L. Kubasov, and L.I. Khristalik, Soviet Electrochemistry 17, 228 (1981).

    Google Scholar 

  61. B. Rodmacq, J.M. Coey, M. Escoubes, E. Roche, R. Duplessix, A. Eisenberg, and M. Pineri, Water Absorption in Neutralized Nafion Membranes, In S.P. Powland (ed.), Water in Polymers, ACS Symposium Series, 127 (1980), p. 487.

    Google Scholar 

  62. R.S. Yeo, J. McBreen, G. Kissel, F. Kulesa, and S. Srinivasan, J. Appl Electrochem. 10, 741 (1980).

    Article  CAS  Google Scholar 

  63. R.L. Coalson and W.G. Grot, U.S. Patent 3,684,747 (1972).

    Google Scholar 

  64. T. Zwardowski, H.L. Yeager, and B. O’Dell, J. Electrochem. Soc. 129, 328 (1982).

    Article  Google Scholar 

  65. H.L. Yeager, Sodium Ion Diffusion and Migration in Perfluorinated Ionomer Membranes, In E.B. Yeager, B. Schumm, Jr., K. Mauritz, K. Abbey, D. Blankenship, and J. Akridge (eds.) Membranes and Ionic and Electronic Conducting Polymers, PV 83-93, The Electrochemical Society, Pennington, NJ (1982), p. 134.

    Google Scholar 

  66. A.B. LaConti, A.R. Fragale, and J.R. Boyack, Solid Polymer Electrolyte Electrochemical Cells: Electrode and Other Materials Considerations, In J.D.E. McIntyre, S. Srinivasan, and F.G. Will (eds), Electrode Materials and Processes for Energy Conservation, PV 77-86, The Electrochemical Society, Pennington, NJ (1977), p. 354.

    Google Scholar 

  67. R.S. Yeo and J. McBreen, J. Electrochem. Soc. 126, 1682 (1979).

    Article  CAS  Google Scholar 

  68. F.N. Buchi, M. Wakizoe, and S. Srinivasan, J. Electrochem. Soc. 143, 927 (1996).

    Article  Google Scholar 

  69. Z. Ogumi, Z. Takehara, and S. Yoshizawa, J. Electrochem. Soc. 131, 769 (1984).

    Article  CAS  Google Scholar 

  70. YT. Lee, K. Iwamoto, and M. Seno, J. Membrane. Sci. 49, 85 (1990).

    Article  CAS  Google Scholar 

  71. T. Sakai, H. Takenaka, and E. Torikai, J. Electrochem. Soc. 133, 88 (1986).

    Article  CAS  Google Scholar 

  72. H.L. Yeager and A.A. Gronowski, Factors Which Influence the Permselectivity of High Performance Chlor-Alkali Membranes, In T.C. Welligton (ed.), Modern Chlor-Alkali Technology, Vol. 5, Society of Chemical Industry, London (1992), p. 81.

    Chapter  Google Scholar 

  73. T. Sata, K. Motani, and Y. Ohashi. Perfluorinated ion Exchange Membrane. Neosepta-F and its properties. In D.S. Flett (ed.), Ion Exchange Membranes, Society of Chemical Industry, London (1983), p. 137.

    Google Scholar 

  74. E.J. Hora and D.E. Maloney, Chemically Modified Nafion® Perfluorosulfonic Acid Membranes as Separators in Chlor-Alkali Cells, Abstract #441, Electrochemical Society Meeting, Atlanta, GA (1977).

    Google Scholar 

  75. M. Seko, U.S.Patent 4,178,218 (1979).

    Google Scholar 

  76. C.J. Molnar, E.H. Price, and T. Gunjima, U.S. Patent 4,176,215 (1977).

    Google Scholar 

  77. T. Asawa, Y. Oda, and T. Gunjima, Japanese Patent Appl. 52-36589 (1977).

    Google Scholar 

  78. M. Seko, Y. Yamakoshi, H. Miyauchi, M. Fukomoto, K. Kimoto, I. Watanabe, T. Hane, and S. Tsushima, U.S.Patent 4,151,053 (1979).

    Google Scholar 

  79. W.G. Grot, C.J. Molnar, and P.R. Resnick, Belgian Patent 866122 (1978).

    Google Scholar 

  80. T. Sata, A. Nakahara, and J. Ito, Japanese Patent Appl. 53-137888 (1978).

    Google Scholar 

  81. K.A. Mauritz and A.J. Hopfinger, Structural Properties of Membrane Ionomers. In J.O’M. Bockris, B.E. Conway, and R.E. White (eds), Modem Aspects of Electrochemistry, Vol. 14, Plenum Press, New York (1982), p. 425.

    Chapter  Google Scholar 

  82. D.N. Bennion, Experimental Measurement and Theoretical Interpretation of Membrane Transport of Concentrated Electrolytic Solutions, In E.B. Yeager, B. Schuum, K. Mauritz, K. Abbey, D. Blankenship, and J. Akridge (eds), Proceedings Symposium on Membranes and Ionic and Electronic Conducting Polymers, PV 83-93, The Electrochemical Society Inc. (1983), p. 78.

    Google Scholar 

  83. A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series, 180, American Chemical Society, Washington, D.C (1982).

    Google Scholar 

  84. E. Riande, Transport Phenomena in Ion-Exchange Membranes, In H. Jean (ed.), Physical Electrolytes, Academic Press, New York (1972), p. 401.

    Google Scholar 

  85. H.P. Gregor, Pure and Appl. Chem. 16(2–3), 329 (1968).

    CAS  Google Scholar 

  86. Y Mizutani, J. Membrane Sci. 49, 121 (1990).

    Article  CAS  Google Scholar 

  87. M.W. Verbrugge and P.N. Pintauro, Transport Models for Ion-Exchange Membranes, In B.E. Conway, J.O’.M. Bockris and R.E. White (eds), Modern Aspects of Electrochemistry, vol 19, Plenum Press, New York (1989), p. 1.

    Google Scholar 

  88. C.A. Kruissink, J. Membrane Sci. 14, 331 (1983).

    Article  CAS  Google Scholar 

  89. R.L. Dotson, R.W. Lynch, and G.E. Hillard, Transport of Water Molecules and Sodium Ions Through Nafion® Ion Exchange Membranes, In R.S. Yeo and R.P. Buck (eds), Ion-Exchange: Transport and Interfacial Properties, PV 81–82, The Electrochemcial Society, Pennington, NJ, (1981), p. 268.

    Google Scholar 

  90. R.L. Dotson and K.E. Woodard, Electrosynthesis with Perfluorinated Ionomer Membranes in Chlor-Alkali Cells. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series, 180, American Chemical Society, Washington, D.C (1982), p. 311.

    Google Scholar 

  91. R.A. Komoroski. In A.E. Eisenberg (ed.), Ions in Polymers, ACS Advances in Chemistry Series, 187 (1980), p. 155.

    Google Scholar 

  92. H.L. Yeager, B. O’Dell, and T. Zwardwoski, J. Electrochem. Soc. 129, 85 (1982).

    Article  CAS  Google Scholar 

  93. H.L. Yeager, Transport Properties of Perfluorosulfonate Polymer Membranes. In A. Eisenberg and H.L. Yeager (eds), Perfluorinated Ionomer Membranes, ACS Symposium Series, 180, American Chemical Society, Washington, D.C (1982), p. 41.

    Chapter  Google Scholar 

  94. C. Fabriani, S. Scuppa, L. Bimbi, and M. deFrancesco, J Electrochem. Soc. 130, 583 (1982).

    Article  Google Scholar 

  95. C.P. Chen and B.V. Tilak, J. Appl. Electrochem. 26, 235 (1996).

    Article  CAS  Google Scholar 

  96. DuPont Technical Bulletin, 84–183 (1984); 88–1 (1989); 92–2 (1992).

    Google Scholar 

  97. J.T. Keating, Understanding Membrane Operating Conditions. In T.C. Wellington (ed.) Modern Chlor-Alkali Technology, Vol. 5, Elsevier Applied Science, London, (1992), p. 69.

    Chapter  Google Scholar 

  98. M. Seko, J. Omura, and M. Yoshida, Recent Developments in Ion Exchange Membranes for Chlor-Alkali Electrolysis. In K. Wall (ed.) Modern Chlor-Alkali Technology, Vol. 3, Ellis Horwood, Chichester, (1986), p. 178.

    Google Scholar 

  99. H. Miyake, N. Sugaya, and M. Yamabe, Reports Res. Lab. Asahi Glass Co. Ltd. 37, 241 (1987).

    CAS  Google Scholar 

  100. A. Herrara and H.L. Yeager, J. Electrochem. Soc. 134, 2446 (1987).

    Article  Google Scholar 

  101. H. Ukihashi, M. Yamabe, and H. Miyake, Prog. Polym. Sci. 12, 229 (1986).

    Article  CAS  Google Scholar 

  102. J.T. Keating, Personal Communication (1995).

    Google Scholar 

  103. Y. Ogata, S. Uchiyama, M. Hayashi, M. Yasuda, and F. Hine, J. Appl. Electrochem. 20, 555 (1990).

    Article  CAS  Google Scholar 

  104. H. Obanawa, H. Naoki, H. Takei, and H. Hoda, Simulation of Ion Behavior in Ion Exchange Membranes. In S. Sealy (ed.) Modern Chlor-Alkali Technology, Vol. 7, Royal Society of Chemistry, Cambridge(1998), p. 113.

    Google Scholar 

  105. S. Banerjee, Understanding Membrane Operating Conditions, In ELTECH Chlorine/Chlorate Seminar, ELTECH Systems Corp., Cleveland, OH, Sept. 1999.

    Google Scholar 

  106. W.F. Linke, Solubilities, originated by A. Seidell, 4th Edition, Vol. 1, p. 379; Vol. 2, p. 1513, American Chemical Society, Washington, D.C 1958 and 1965.

    Google Scholar 

  107. D.D. Wagman, W.H. Evans, V.B. Parker, R.H. Schumm, I. Halow, S.M. Barriley, K.L. Churney, and R.L. Nuttall, J. Phys.Chem. Ref. Data 11, suppl. 2 (1982).

    Google Scholar 

  108. G.N. Lewis and M. Randall, Thermodynamics, 2nd Edition, Revised by K.S. Pitzer and L. Brewer, McGraw-Hill Book Co., New York (1961).

    Google Scholar 

  109. J.H.G. Van der Stegen and P. Breuning, The Formation of Precipitates of Iron Ions Inside Perfluorinated Membranes During Chlor-Alkali Electrolysis. In S. Sealy (ed.) Modern Chlor-Alkali Technology, vol. 7, Royal. Soc. Chem. Cambridge (1995), p. 123.

    Google Scholar 

  110. Supplement to Mellor’s Comprehensive Treatise on Inorganic and Theoretical Chemistry, vol. 2, Supplement 2, The Alkali Metals, Part 1, Longmans, London (1964), p. 1018.

    Google Scholar 

  111. W.F. Linke (ed.) Solubilities—Inorganic and Metal Organic Compounds, vol. 2, 4th ed, American Chemical Society, Washington, D.C (1965), p. 1130.

    Google Scholar 

  112. J.T. Keating, Sulfate Deposition and Current Distribution in Membranes for Chlor-Alkali Cells. In F. Hine, W.B. Darlington, R.E. White, and R.D. Varjian (eds), Electrochemical Engineering in the Chlor-Alkali and Chlorate Industries, PV 88-92, The Electrochemical Society Pennington, NJ (1988), p. 311.

    Google Scholar 

  113. T.C. Bissot, Sulfate Ion Transport Through Perfluorinated Chlor-Alkali Membranes. In U. Landau, R.E. White, and R.D. Varjian (eds), Engineering of Industrial Electrolytic Processes, PV 86-88, The Electrochemical Society, Pennington, NJ (1986), p. 194.

    Google Scholar 

  114. E.A. Zezina, Yu.M. Popkov and S.F. Timashev, Russian J. Electrochem. 34, 946 (1998).

    CAS  Google Scholar 

  115. D.C. Brandt, The Economics of Producing High-Strength Caustic Soda in Membrane Cells, 32 nd Chlorine Institute Plant Managers Seminar, Washington, D.C (1989).

    Google Scholar 

  116. T.C. Bissot, Mechanism of Silica Damage to Chlor-Alkali Membranes, Abstact # 439, Electrochemical Society Meeting, Boston, MA, May 1986.

    Google Scholar 

  117. T.C. Bissot, Mechanism of Silicate Damage to Chlor-Alkali Membranes. In J.W. Van Zee, R.F. White, K. Kinoshita, and H.S. Burney (eds), Diaphragms, Separators and Ion Exchange Membranes, PV86-113, Electrochemical Society Pennington, NJ (1986), p. 42.

    Google Scholar 

  118. D.L. Liczwek, Impurity Damage to Chlor-Alkali Membranes. In F. Hine, W.B. Darlington, R.E. White, and R.D. Varjian (eds), Chlor-Alkali and Chlorate Industries, PV 88–92, The Electrochemical Society, Pennington, NJ(1988), p. 284.

    Google Scholar 

  119. J.T. Keating and K.J. Behling, Brine Impurities and Membrane Cell Performance. In N.M. Prout and J.S. Moorhouse (eds) Modern Chlor-Alkali Technology, Vol. 4, Elsevier Applied Science, London (1990), p. 125.

    Chapter  Google Scholar 

  120. F. Hine, T. Ohtsuka, M. Hayashi, K. Suzuki, and Y. Ogata, J. Appl. Electrochem. 21, 781 (1991).

    Article  CAS  Google Scholar 

  121. E.G. Rochow, Silicon. In J.C. Bailar, H.J. Emeleus, R. Nyholm, and A.F. Trotman-Dickerson (eds) Comprehensive Inorganic Chemistry, Vol. 1, Pergamon Press, Oxford (1973), p. 1323.

    Google Scholar 

  122. H. Shiroki, T. Hiyoshi, and T. Ohta, Recent Development and Operation Dynamics of New Ion Exchange Series Aciplex®-F from Asahi Chemical. In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, Vol. 5, Elsevier Applied Science, London (1992), p. 117.

    Chapter  Google Scholar 

  123. Nafion® Technical Bulletin, 91–109, DuPont Co (2000).

    Google Scholar 

  124. Nafion® Technical Bulletin, 88–106, DuPont Co (1988).

    Google Scholar 

  125. K. Yamaguchi, T. Ichisaka, and I. Kumagai, The Control of Brine Impurities in the Membrane Process in the Chlor-Alkali Industry. In Chlorine Institute’s 29th Plant Operation Seminar, Tampa, FL (1986).

    Google Scholar 

  126. Nafion ® Technical Bulletin, 91–108, DuPont Co. (1991).

    Google Scholar 

  127. H. Obanawa, Effect of Brine Impurities and Blisters and Membrane Service Life. In ELTECH’s 16th Annual Chlorine/Chlorate Seminar, ELTECH Systems Corporation, Cleveland, OH (2000).

    Google Scholar 

  128. H.M.B. Gerner and R.D. Theobald, Global Operating Experience With Ion-Exchange Membranes, in Modern Chlor-Alkali Technologies. In R.W. Curry (ed.), Modern Chlor-Alkali Technology, Vol. 6, Royal. Society of Chemistry, Cambridge (1995), p. 173.

    Google Scholar 

  129. D.L. Peet, Membrane Durability in Chlor-Alkali Plants, In F. Hine, W.B. Darlington, R.E. White, and R.D. Varjian (eds), Electrochemical Engineering in Chlor-Alkali and Chlorate Industries, PV 88-92, Electrochemical Society (1988), p. 329.

    Google Scholar 

  130. J.T. Keating and H.M.B. Gerner, High Current Density Operation—The Behavior of Ion Exchange Membranes in Chlor-Alkali Electrolyzers. In S. Sealy (ed.), Modern Chlor-Alkali Technology, Vol. 7, Royal. Society of Chemistry, Cambridge (1995), p. 135.

    Google Scholar 

  131. J.H. Austin, Nafion® Perfluorinated Membranes Operation in Chlor-Alkali Plants. In K. Wall (ed.) Modern Chlor-Alkali Technology, Vol. 3, llis Horwood, Chichester (1986), p. 131.

    Google Scholar 

  132. D. Bergner and M. Hartmann, J. Appl Electrochem. 24, 1201 (1994).

    Article  CAS  Google Scholar 

  133. M. Seko, J. Omura, and M. Yoshida, Recent Developments in Ion Exchange Membranes for Chlor-Alkali Electrolysis. In K. Wall, (ed.), Modern Chlor-Alkali Technology, Vol. 3, Ellis Horwood Ltd, Chichester (1986), p. 178.

    Google Scholar 

  134. M. Nagamura, H. Ukihashi, and O. Shiragami, Chlor-Alkali Process with Flemion®. In M.O. Coulter, (ed.), Modern Chlor-Alkali Technology, Ellis Horwood Ltd, Chichester (1980), p. 195.

    Google Scholar 

  135. M. Nagamura, H. Ukihashi, and O. Shiragami, AZEC System—New Ion Exchange Membrane Chlor-Alkali Process. In C. Jackson, (ed.), Modern Chlor-Alkali Technology, Vol. 2, Emlis Horwood Ltd, Chichester (1983), p. 61.

    Google Scholar 

  136. T. Yamashita, Y. Sajima, and H. Ukihashi, The Design and Operating Experiences of AZEC Electrolyzers and Recent Development of Flemion Membranes. In N.M. Prout and J.S. Moorhouse (eds) Modern Chlor-Alkali Technology, Vol. 4, Elsevier Applied Science, London (1990), p. 109.

    Chapter  Google Scholar 

  137. H. Miyake, The Design and Development of Flemion Membranes. In T.C. Wellington (ed.) Modern Chlor-Alkali Technology, Vol. 5, Elsevier Applied Science, London (1992), p. 59.

    Chapter  Google Scholar 

  138. Y. Sajima, M. Nakao, T. Shimohira, and H. Miyake, Advances in Flemion Membranes for Chlor-Alkali Production/In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, Vol. 5, Elsevier Applied Science, London (1992), p. 159.

    Chapter  Google Scholar 

  139. M. Nakao and H. Miyake, Advanced Cell Operations with Flemion Membranes. In R.W. Curry (ed.), Modern Chlor-Alkali Technology, Vol. 6, Royal Society of Chemistry, Cambridge (1994), p. 185.

    Google Scholar 

  140. N. Nakao, T. Shimohira, and Y. Takechi, High Performance Operation with Flemion Membranes and the AZEC Electrolyzer. In S. Sealey (ed.), Modern Chlor-Alkali Technology, Vol. 7, Royal Society Chemistry, Cambridge (1998).

    Google Scholar 

  141. T. Shimohira, T. Kimura, T. Uchibori, and H. Takeda, Advanced Cell Technology with Flemion® Membranes and the AZEC® Bipolar Electrolyzer. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, Vol. 8, Society of Chemical Industry, Blackwell Science, Oxford (2001), p. 237.

    Chapter  Google Scholar 

  142. DuPont Bulletin # 97-01, Rev. 10/13/00 (2000).

    Google Scholar 

  143. P. Sedor, DuPont Presentation, Membrane development review to customers (2001).

    Google Scholar 

  144. C. Bricker, DuPont Presentation, Membrane development review to customers (2001).

    Google Scholar 

  145. M. Seko, H. Miyauchi, and O. Shiragami, New Development of the Asahi Chemical Membrane Chlor-Alkali Process. In M.O. Coulter (ed.), Modern Chlor-Alkali Technology, Ellis Horwood, Chichester (1980), p. 195.

    Google Scholar 

  146. Y. Sajima, M. Nakao, T. Shimohira, and H. Miyake, Advances in Flemion Membranes for Chlor-Alkali Production. In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, Vol. 5, Elsevier Applied Science, London (1992), p. 159.

    Chapter  Google Scholar 

  147. K.-J. Behling and D.L. Peet, Influence of System Design and Operation Parameters on Membrane Performance. In N.M. Prout and J.S. Moorhouse (eds), Modern Chlor-Alkali Technology, Vol. 4, Elsevier Applied Science, London (1990), p. 63.

    Chapter  Google Scholar 

  148. T. Shimohira, Y. Saito, K. Saito, and H. Miyake, Reports Res. Lab. Asahi Glass Co. Ltd. 43(2), 119(1993).

    CAS  Google Scholar 

References

  1. F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 143.

    Book  Google Scholar 

  2. F. Hine, Electrochem. Technol. 2, 79 (1964).

    CAS  Google Scholar 

  3. T.H. Chilton & A.P. Colburn, Ind. Eng. Chem. 27, 255 (1935).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc

About this chapter

Cite this chapter

O’Brien, T.F., Bommaraju, T.V., Hine, F. (2005). Chemistry and Electrochemistry of the Chlor-Alkali Process. In: Handbook of Chlor-Alkali Technology. Springer, Boston, MA. https://doi.org/10.1007/0-306-48624-5_4

Download citation

Publish with us

Policies and ethics