Advertisement

Future Developments

  • Thomas F. O’Brien
  • Tilak V. Bommaraju
  • Fumio Hine

Abstract

Chapter 2 recounts some of the history of chlor-alkali technology and production. While very important industrially, the process is an old one and, as one of the few examples of large-scale electrochemical production, somewhat outside the mainstream of chemical research and development. The industry is part of the commodity chemical business and has often faced difficult economic problems. All this seems a recipe for technological stagnation. However, the past few decades have seen two major developments that have had profound effects on the technology and economics of production. These are the introduction of metal anodes and the partial substitution of membrane technology for the older diaphragm and mercury technologies. The first of these was made possible by the development of durable, low-voltage coatings that could be applied to titanium. Metal anodes offered many advantages over graphite. Furthermore, direct replacement of graphite by metal anodes of essentially the same dimensions was also rather a simple matter. The changeout therefore was rapid. Membrane technology, on the other hand, required extensive changes in the process. Except for the “membrane-bag” cells, which were a compromise approach, these changes included new electrolyzers. This is quite an expensive proposition, and the energy economy of the membrane cell has not in itself justified wholesale conversion. When a producer has the opportunity to expand conversion, new facilities are easier to justify, but the economic state of the industry has, for the most part, been only fair or poor. The conversion to membrane technology has therefore been slow, and only very recently has the membrane process approached the total installed capacities of the other technologies.

Keywords

Fuel Cell Oxygen Reduction Reaction Hydrogen Evolution Reaction Membrane Technology Standard Hydrogen Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Keller, Economic Optimization of Industrial Electrochemical Processes. In R. Alkire and T. Beck (eds.), Tutorial Lectures in Electrochemical Engineering and Technology, AIChE Symposium Series 204, vol. 7, American Institute of Chemical Engineers (1981), p. 15.Google Scholar
  2. 2.
    J.H. Collins and J.H. Entwisle, Development and Operation of High-Current Density Mercury Cells. In M.O. Coulter (ed.), Modern Chlor-Alkali Technology, Ellis Horwood, Chichester (1980).Google Scholar
  3. 3.
    J.P. Hoare, The Electrochemistry of Oxygen, Interscience Publishers, New York (1968).Google Scholar
  4. 4.
    M.R. Tarasevich, A. Sadkowski, and E. Yeager, Oxygen Electrochemistry. In B.E. Conway, J.O’M. Bockris, E. Yeager, S.U.M. Khan, and R.E. White (eds.), Comprehensive Treatise on Electrochemistry, vol. 7, Plenum Press, New York (1983), p. 301.CrossRefGoogle Scholar
  5. 5.
    E. Yeager, Oxygen Electrodes for Industrial Electrolysis and Electrochemical Power Generation. In U. Landau, E. Yeager, and D. Kortan (eds.), Electrochemistry in Industry, Plenum Press, New York (1980), p. 29.Google Scholar
  6. 6.
    A.B. LaConti, Introduction to SPE Cell Technology, Proceedings, Oronzio DeNora Symposium: Chlorine Technology, Venice (1979), p. 94.Google Scholar
  7. 7.
    T.G. Coker, SPE Brine Electrolyzers, Proceedings, Oronzio DeNora Symposium: Chlorine Technology, Venice (1979), p. 128.Google Scholar
  8. 8.
    E. Yeager, Presentation to Japan Soda Industry Association (translation), Soda to Enso Soda and Chlorine) 31, 147 (1980).Google Scholar
  9. 9.
    VH. Thomas and E.J. Rudd, Energy Savings Advances in the Chlor-Alkali Industry. In C. Jackson (ed.), Modern Chlor-Alkali Technology, vol. 2, Ellis Horwood, Chichester (1983), p. 159.Google Scholar
  10. 10.
    E.N. Balko, SPE Hydrochloric Acid Electrolysis Cells: Performance, Cell Configuration, Proceedings Oronzio DeNora Symposium: Chlorine Technology, Venice (1979), p. 204.Google Scholar
  11. 11.
    H.H. Aikawa, Soda to Enso (Soda and Chlorine) 45, 85 (1994).Google Scholar
  12. 12.
    A. Sakata, M. Kato, K. Hayashi, H. Aikawa, and K. Saiki, Long Term Performance of Gas Diffusion Electrodes in Laboratory Cells. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Symposium, Proc. vol. 99–21, The Electrochemical Society, Pennington, NJ (1999), p. 223.Google Scholar
  13. 13.
    A. Uchimura, H. Aikawa, K. Saiki, A. Sakata, and N. Furuya, Gas Diffusion Electrode Using Porous Nickel. In J. W. Van Zee, P.C. Foller, T.F. Fuller, and F. Hine (eds.), Advances in Mathematical Modelling and Simulation of Electrochemical Processes and Oxygen Depolarized Cathodes and Activated Cathodes for Chlor-Alkali and Chlorate Processes, Proc. vol. 98–10, The Electrochemical Society, Pennington, NJ (1998), p. 220.Google Scholar
  14. 14.
    N. Furuya, H. Syojaku, H. Aikawa, and O. Ichinose, Ag Based Oxygen Cathodes for Chlor-Alkali Membrane Cells. In J.W. Van Zee, P.C. Foller, T.F. Fuller, and F. Hine (eds.), Advances in Mathematical Modelling and Simulation of Electrochemical Processes and Oxygen Depolarized Cathodes and Activated Cathodes for Chlor-Alkali and Chlorate Processes, Proc. vol. 98–10, The Electrochemical Society, Pennington, NJ (1998), p. 243.Google Scholar
  15. 15.
    N. Furuya and H. Aikawa, A Study of the Gas Diffusion Electrodes for Chlor-Alkali Membrane Cells. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Symposium, Proc. vol. 99–21, The Electrochemical Society, Pennington, NJ (1999), p. 180.Google Scholar
  16. 16.
    O. Ichinose, H. Aikawa, T. Watanabe, and A. Uchimura, Pilot Cell Scale Manufacture of the Gas Diffusion Electrode. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Symposium, Proc. vol. 99–21, The Electrochemical Society, Pennington, NJ (1999),p. 216.Google Scholar
  17. 17.
    H. Aikawa, Chlor-Alkali Technology Seminar, Japan Soda Industry Association, Tokyo (1999).Google Scholar
  18. 18.
    K. Saiki, A. Sakata, H. Aikawa, and N. Furuya, Reduction in Power Consumption of Chlor-Alkali Membrane Cell Using Oxygen Depolarized Cathode. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Symposium, Proc. vol. 99–21, The Electrochemical Society, Pennington, NJ (1999), p. 188.Google Scholar
  19. 19.
    S. Nakamatsu, N. Furuya, K. Saiki, H. Aikawa, and A. Sakata, Liquid-Permeable Gas Diffusion Electrode for Chlor-Alkali Membrane Cell. In H.S. Burney, N. Furuya, F. Hine, and K.-I. Ota (eds.), Chlor-Alkali and Chlorate Technology: R.B. MacMullin Symposium, Proc. vol. 99–21, The Electrochemical Society, Pennington, NJ (1999), p. 196.Google Scholar
  20. 20.
    F. Gestermann and A. Ottaviani, Chlorine Production with Oxygen-Depolarized Cathodes on an Industrial Scale. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 49.CrossRefGoogle Scholar
  21. 21.
    F. Federico, G.N. Martelli, and D. Pinter, Gas-Diffusion Electrodes for Chlorine-Related (Production) Technologies. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 114.CrossRefGoogle Scholar
  22. 22.
    K. Schneiders, A. Zimmermann, and G. Henßen, Membranelektrolyse-Innovation für die chlor-alkali Industrie, Forum Thyssen-Krupp, Dortmund (2001).Google Scholar
  23. 23.
    German Patents EP-PA0150017 (1984); EP0150018 (1985).Google Scholar
  24. 24.
    K.-H. Tetzlaff and W. Wendel, Chem. Ing. Tech. 60, 563 (1988).CrossRefGoogle Scholar
  25. 25.
    German Patent DE 19715429 AI (1998).Google Scholar
  26. 26.
    Chemical Week, 10 March 2004, p. 22.Google Scholar
  27. 27.
    C. Iamy, J.-M. Leger, and S. Srinivasan, Direct Methanol Fuel Cells: From Electrochemist’s Dream to a Twenty-First Century Emerging Technology. In J.O’M. Bockris, B.E. Conway, and R.E. White (eds.), Modern Electrochemistry, vol. 34, Plenum Publishers, New York (2001), p. 53.Google Scholar
  28. 28.
    S. Srinivasan, L. Krishnan, A.B. Bocarsly, K.-L. Hsueh, C.-C. Lai, and A. Peng, Fuel Cells vs Competing Technologies, First International Fuel Cell Science, Engineering and Technology Conference, Rochester, NY (2003).Google Scholar
  29. 29.
    Japan Hydrogen and Fuel Cell Demonstration Project, http://www.jhfc.jp (2004).
  30. 30.
    A.J. Appleby and F.R. Foulkes, Fuel Cell Handbook, Van Nostrand Reinhold, New York (1989).Google Scholar
  31. 31.
    EG&G Services, Parsons Inc., Fuel Cell Handbook, 5th ed., U.S. Department of Fossil Energy, Washington, DC (2000).Google Scholar
  32. 32.
    Fuel Cell Technology Handbook, G. Hoogers (ed.), CRC Press, Boca Raton, FL (2003).Google Scholar
  33. 33.
    D.C. Brandt, The Economics of Producing High-Strength Caustic Soda in Membrane Cells, 32nd Chlorine Institute Plant Managers Seminar, Washington, DC (1989).Google Scholar
  34. 34.
    T. Shimohira, T. Kimura, T. Uchibori, and H. Takeda, Advanced Cell Technology with Flemion® Membranes and the Azec® Bipolar Electrolyzer. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 237.CrossRefGoogle Scholar
  35. 35.
    H. Obanawa, Effects of Brine Impurities and Blisters on Membrane Service Life, Sixteenth Annual Electrode Corporation Chlorine/Chlorate Seminar, Cleveland, OH (2000).Google Scholar
  36. 36.
    C. Bricker, Membrane Development Review, DuPont presentation to customers (2001).Google Scholar
  37. 37.
    M.J. Raimer, Back-Pulse Filtration using Gore-Tex® Filter Cloths. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 272.CrossRefGoogle Scholar
  38. 38.
    P.H. Sears, Chlorine Solutions LLC, Personal Communication (2003).Google Scholar
  39. 39.
    P. Buddingh and S. Hagemoen, New Life for Old Power Rectifiers, 44th Chlorine Institute Plant Managers Seminar, New Orleans, LA (2001).Google Scholar
  40. 40.
    A.S. Popp and M. Tomas, Comparison of Thyristor vs Chopper Rectifiers in a Common Application, IEEE Paper #PCIC-2000-13, Petroleum and Chemical Industry Technical Conference, San Antonio, TX (2000).Google Scholar
  41. 41.
    I.F. White and R.L. Sandel, Ethylene Dichloride-Part of the Chlor-Alkali Plant? In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 260.CrossRefGoogle Scholar
  42. 42.
    K. Ahmed, Technological Development and Pollution Abatement. A Study of How Enterprises Are Finding Alternatives to Chlorofluorocarbons, Technical Paper No. 271, World Bank, Washington, DC (1995).CrossRefGoogle Scholar
  43. 43.
    M.M. Silver, Chlorine Tail Gas and Snift Disposal Systems, 25th Chlorine Institute Plant Managers Seminar, Atlanta, GA (1982).Google Scholar
  44. 44.
    R.W. Baker, J. Kaschemekat, and J.G. Wijmans, CHEMTECH 26, 36 (1996).Google Scholar
  45. 45.
    K.A. Lokhandwala, S. Segelke, P. Nguyen, R.W. Baker, T.T. Su, and I. A. Pinnau, Ind. Eng. Chem. Res. 38, 3606(1999).CrossRefGoogle Scholar
  46. 46.
    T.F. O’Brien, Chlorine Processing Beyond the Millennium-The Use of Gas-Separation Membranes. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 90.CrossRefGoogle Scholar
  47. 47.
    S. Sarangapani and T.V. Bommaraju, U.S. Patent 6,203,692Bl (2001).Google Scholar
  48. 48.
    S. Sarangapani, D. Gage, and T.V. Bommaraju, Electrochemical Purification of Chlorine from ChlorAlkali Tail Gas, 2002 NSF Design Service and Manufacturing Grantees and Research Conference, San Juan, PR (2002).Google Scholar
  49. 49.
    R.B. MacMullin, Electrolysis of Brines in Mercury Cells. In J.W. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntingto, NY (1972), p. 163.Google Scholar
  50. 50.
    R.M. De La Rue and C.W. Tobias, J. Electrochem. Soc. 106, 827 (1959).CrossRefGoogle Scholar
  51. 51.
    S. Okada, S. Yoshizawa, F. Hine, and Z. Takehara, J. Electrochem. Soc. Jpn 26, 165 (1958).Google Scholar
  52. 52.
    P.C. Westen, The Safe Use of Steel and Titanium in Chlorine. In R.W. Curry (ed.), Modern Chlor-Alkali Technology, vol. 6, Royal Society of Chemistry, Cambridge (1995), p. 62.Google Scholar
  53. 53.
    T.G. Hart, U.S. Patent 4,086,393 (1978).Google Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  • Thomas F. O’Brien
    • 1
  • Tilak V. Bommaraju
    • 2
  • Fumio Hine
    • 3
  1. 1.Independent Consultant MediaUSA
  2. 2.Independent Consultant Grand IslandNew YorkUSA
  3. 3.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations