Advertisement

Alternative Processes

  • Thomas F. O’Brien
  • Tilak V. Bommaraju
  • Fumio Hine

Abstract

Chlorine is produced not only by the electrolysis of sodium chloride solutions but also from HC1, KC1, and other metal chlorides, by both chemical and electrochemical methods. The amount of chlorine from alternative processes is about 5.9% of the total world production. In the United States, it was about 4.0% of the total in 2002 [1]. Most of this chlorine was from the electrolysis of KC1 in mercury or membrane cells (Table 15.1) and from HC1. Only small amounts are produced by the electrolysis of other metal chlorides.

Keywords

Current Efficiency Sodium Hypochlorite Alternative Process Anode Compartment Bleach Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blackburn, CMAI, Personal Communication (2002).Google Scholar
  2. 2.
    W.H. Sheltmire, Chlorinated Bleaches and Sanitizing Agents. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties, and Uses, ACS Monograph 154 Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 512.Google Scholar
  3. 3.
    T.F. O’Brien, Regenerating Chlorine from Waste HCl, Chloralkali Industry Update and Forecast, Consulting Resources Corp. conference, Philadelphia, PA (1996).Google Scholar
  4. 4.
    M.F. Fogler, The Salt Process for Chlorine Manufacture. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties, and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 235.Google Scholar
  5. 5.
    C.P. Van Dijk, Chem. Econ. Eng. Rev. 4(12), 42 (1972).Google Scholar
  6. 6.
    O. Lange (ed.), Blüchers Auskunftsbuch für die chemische Industrie, Walter de Gruyter and Co., Berlin (1926).Google Scholar
  7. 7.
    H. Deacon, U.S. Patent 85,370 (1868).Google Scholar
  8. 8.
    A. Redniss, HCl Oxidation Processes. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties, and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 250.Google Scholar
  9. 9.
    C.W. Arnold and K.A. Kobe, Chem. Eng. Progr. 48(6), 293 (1952).Google Scholar
  10. 10.
    H. Klebe, A. Meffert, and A. Longenfield, German Patent 1,963,946 (1974).Google Scholar
  11. 11.
    C.P. Van Dijk and W.C. Schreiner, Chem. Eng. Progr. 69(4), 57 (1973).Google Scholar
  12. 12.
    L.E. Bostwick, Chem. Eng. 83(21), 86 (1976).Google Scholar
  13. 13.
    W.C. Schreiner, A.E. Cover, W.D. Hunter, C.P. Van Dijk, and H.S. Jongenberger, Hydrocarbon Proc. 53(11), 151 (1974).Google Scholar
  14. 14.
    H.Y Pan, R.G. Minet, S.W. Benson, and T.T. Tsotsis, Ind. Eng. Chem. Res. 33, 2996 (1994).CrossRefGoogle Scholar
  15. 15.
    H. Itoh, Y. Kono, M. Aijoka, S. Takesaka, and M. Katzita, US. Patent 4,803,065 (1989).Google Scholar
  16. 16.
    T. Kiyoura, Y. Kogure, T. Nagayama, and K. Kanaya, US. Patent 4,822,589 (1989).Google Scholar
  17. 17.
    R.G. Minet, S.W. Benson, and T.T. Tsotsis, U.S. Patent 4,994,256 (1991).Google Scholar
  18. 18.
    R.G. Minet, T.T. Tsotsis, and M. Mortensen, Economic and Environmental Aspects for a 60,000-ton per Year Plant for Chlorine Recovery from Hydrogen Chloride, Ninth Large Plants Symposium, Antwerp (1995).Google Scholar
  19. 19.
    V. Wong and S.H. Wang, Chlorine from Hydrogen Chloride by the Carrier Catalyst Process, PEP Review 94-1-3, SRI International, Inc., Menlo Park, CA (1995).Google Scholar
  20. 20.
    F.M. Berkey, Electrolysis of Hydrochloric Acid Solutions. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, ACS Monograph 154, Robert E. Krieger Publishing Co., Huntington, NY (1972), p. 200.Google Scholar
  21. 21.
    Chlorine and Hydrogen from Acid by Electrolysis, technical brochure, Krupp Uhde, Dortmund (1993).Google Scholar
  22. 22.
    F.B. Grosseifinger, Chem. Eng. 71(19), 172 (1964).Google Scholar
  23. 23.
    S. Payer and W. Strewe. In T.C. Jeffrey, P.A. Danna, and H.S. Holden (eds) Proceedings, Chlorine Bicentennial Symposium, The Electrochemical Society, Princeton, NJ (1974), p. 257.Google Scholar
  24. 24.
    F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 129.CrossRefGoogle Scholar
  25. 25.
    P. Gallone and G. Messner, Electrochem. Technol. 3, 321 (1965).Google Scholar
  26. 26.
    W.C. Gardiner, Chem. Eng. 54(1), 100 (1947).Google Scholar
  27. 27.
    H. Isfort and W.J. Stockmans. In M.M. Silver and E.M. Spore (eds), Advances in the Chlor-Alkali and Chlorate Industry, Proceedings, vol. 84-111, The Electrochemical Society, Princeton, NJ (1984), p. 259.Google Scholar
  28. 28.
    F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 87.CrossRefGoogle Scholar
  29. 29.
    K. Schneiders and C. Herwig, Recycle of HCl to Chlorine, 38th Chlorine Institute Plant Operations Seminar, Houston, TX (1995).Google Scholar
  30. 30.
    F. Federico, G.N. Martelli, and D. Pinter, Gas-Diffusion Electrodes for Chlorine-Related Technologies. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Blackwell Science, Oxford (2001), p. 114.CrossRefGoogle Scholar
  31. 31.
    Chemical Week, 10 March 2004, p. 22.Google Scholar
  32. 32.
    D.J. Eames and J. Newman, J. Electrochem. Soc. 142, 3619 (1995).CrossRefGoogle Scholar
  33. 33.
    J.A. Trainham and F.J. Freire, Fifth World Congress of Chemical Engineering (1996).Google Scholar
  34. 34.
    S. Motupally, D.T. Mah, F.J. Freire, and J.W. Weidner, Interface 7(2), 32 (1998).Google Scholar
  35. 35.
    J.A. Trainham, CG. Law, Jr., J.S. Newman, K.B. Keating, and D.J. Eames, U.S. Patent 5,411,641 (1995).Google Scholar
  36. 36.
    B.V. Tilak, RW.T. Lu, J.E. Colman, and S. Srinivasan. In J. O’M. Bockris, B.E. Conway, E. Yeager, and R.E. White (eds), Comprehensive Treatise on Electrochemistry, vol. 2, Plenum Press, New York (1981), p. 1.Google Scholar
  37. 37.
    F. Hine, Electrode Processes and Electrochemical Engineering, Plenum Press, New York (1985), p. 87.CrossRefGoogle Scholar
  38. 38.
    F.S. Low, U.S. Patent 2,486,766 (1949).Google Scholar
  39. 39.
    F.S. Low, U.S. Patent 2,470,073 (1949).Google Scholar
  40. 40.
    C.P. Roberts, Chem. Eng. Progr. 46(9), 456 (1950).Google Scholar
  41. 41.
    F. Hine, S. Yoshizawa, K. Yamakawa, and Y. Nakane, Electrochem. Technol. 4, 555 (1966).Google Scholar
  42. 42.
    F. Hine and K. Yamakawa, Electrochim. Acta 13, 2119 (1968).CrossRefGoogle Scholar
  43. 43.
    F. Hine and K. Yamakawa, Electrochim. Acta 15, 769 (1970).CrossRefGoogle Scholar
  44. 44.
    C.L. Mantell, Electrochemical Engineering, McGraw-Hill Book Co., New York (1960).Google Scholar
  45. 45.
    C.H. Lemke and V.H. Markant, Kirk-Othmer Encyclopedia of Chemical Technology, 4th edition, vol. 22, John Wiley & Sons, Inc., New York (1997), p. 134.Google Scholar
  46. 46.
    M. Sittig, Sodium: Its Manufacture, Properties and Uses, Reinhold Publishing Corp., New York (1956).Google Scholar
  47. 47.
    J.C. Downs, Brit. Patent 238,956 (1924).Google Scholar
  48. 48.
    T. Minani and S. Soda, U.S. Patent 4,192,794 (1980).Google Scholar
  49. 49.
    D.W.F. Hardie, Ind. Chemist 30, 161 (1954).Google Scholar
  50. 50.
    D.A. Kramer, Kirk-Othmer Encyclopedia of Chemical Technology, electronic version, John Wiley & Sons, Inc., New York (2003).Google Scholar
  51. 51.
    D.W. Schroeder, Ind. Eng. Chem. Proc. Des. and Devt. 1(2), 141 (1962).CrossRefGoogle Scholar
  52. 52.
    Y. Ding and J. Winnick, J. Appl. Electrochem. 26, 143 (1996).CrossRefGoogle Scholar
  53. 53.
    F. Hine and M. Yasuda, J. Electrochem. Soc. 119, 1057 (1972).CrossRefGoogle Scholar
  54. 54.
    F. Hine, M. Yasuda, and M. Higuchi. In T.C. Jeffrey, P.A. Danna, and H.S. Holden (eds), Proceedings, Chlorine Bicentennial Symposium, The Electrochemical Society, Princeton, NJ (1974), p. 278.Google Scholar
  55. 55.
    Soda Handbook 1998, Japan Soda Industry Association, Tokyo (1998), p. 365.Google Scholar
  56. 56.
    S.A. Michalek and KB. Leitz, J. Water Pollution Control 44, 1697 (1972).Google Scholar
  57. 57.
    C.J. Brockmann, Electrochemistry, D. Van Nostrand, New York (1931), p. 216.Google Scholar
  58. 58.
    C.L. Mantell, Industrial Electrochemistry, McGraw-Hill Book Co., New York (1960), p. 372.Google Scholar
  59. 59.
    C.L. Mantell, Industrial Electrochemistry, McGraw-Hill Book Co., New York (1960), p. 296.Google Scholar
  60. 60.
    E.J. Laubusch, Water Chlorination. In J.S. Sconce (ed.), Chlorine: Its Manufacture, Properties and Uses, ACS Monograph 154, Reinhold Publishing Corp., New York (1972), p. 457.Google Scholar
  61. 61.
    J.E. Bennett, Chem. Eng. Progr. 70(12), 60 (1974).Google Scholar
  62. 62.
    B. Case and W.E. Heaton, Cooling Water Electrolysis at Coastal Power Stations. In Local Generation and Use of Chlorine and Hypochlorite, Society of Chemical Industry, London (1980).Google Scholar
  63. 63.
    N. Krstajic, V. Nakic, and M. Spasojevic, J. Appl. Electrochem. 17, 77 (1987).CrossRefGoogle Scholar
  64. 64.
    M. Rudolf, I. Rousar, and J. Krysa, Electrochim. Acta 40, 169 (1995).CrossRefGoogle Scholar
  65. 65.
    M. Rudolf, I. Rousar, and J. Krysa, J. Appl. Electrochem. 25, 155 (1995).CrossRefGoogle Scholar
  66. 66.
    Package assembled by Powell Fabrication and Manufacturing, Inc. from internal sources and related papers for authors’ use (2003).Google Scholar
  67. 67.
    T.F. O’Brien, Emergency Vent Scrubbing Systems-Design; Operation; Hazard Analysis, Seventh Annual Electrode Corporation Chlorine/Chlorate Seminar, Cleveland, OH (1991).Google Scholar
  68. 68.
    L.J. Updyke, Emergency Vent Scrubbers, 5th Chlorine Plant Operations Workshop, Houston, TX (1990).Google Scholar
  69. 69.
    G. Gordon and L. Adam, Minimizing Chlorate Ion Formation in Drinking Water when Hypochlorite is the Chlorinating Agent, published by AWWA Research Foundation; undated, supplied by Powell Fabrication and Manufacturing, Inc., (2003).Google Scholar
  70. 70.
    G. Gordon, L. Adam, and B. Bubnis, J. AWWA 87(6), 97 (1995).Google Scholar
  71. 71.
    C.E. Redemann, The Chemistry of Hypochlorous Acid and the Hypochlorites with Applications to Bleaching and Bleachmaking, 2nd edition, Purex Corp. (1970).Google Scholar
  72. 72.
    T.V. Bommaraju, Water Quality Res. J. Canada 30, 339 (1995).Google Scholar
  73. 73.
    B. Bubnis, Suspended-Solids Quality Test for Bleach by Vacuum Filtration, Novachem Laboratories, Oxford, OH (2001).Google Scholar
  74. 74.
    J.K. Nelson, Materials of Construction for Alkalies and Hypochlorites. In B.J. Moniz and W.I. Pollock (eds), Process Industries Corrosion, National Association of Corrosion Engineers, Houston, TX (1986), p. 297.Google Scholar
  75. 75.
    FRP Storage Tanks for Sodium Hypochlorite, Powell Fabrication and Manufacturing, Inc., St. Louis, MI (2003).Google Scholar
  76. 76.
    J.J. Gates, AnCor Plastics, Personal Communication (1989).Google Scholar
  77. 77.
    Factors Affecting Performance of FRP in Sodium Hypochlorite Environments, revised and updated from presentation to 25th Annual Technical Conference of the Reinforced Plastics/Composites Division of the Society of the Plastics Industry, Inc., in 1970, Reichhold Chemicals, Inc., Research Triangle Park, NC (1990).Google Scholar
  78. 78.
    H.F. Wachob, F. McGarry, and G.H. Abell, The Effect of Sodium Hypochlorite on the Long-Term Performance of Rotationally Molded XLPE Storage Tanks; undated, supplied by Powell Fabrication and Manufacturing, Inc., (2003).Google Scholar
  79. 79.
    G. Gordon and B. Bubnis, Bleach Stability and Filtration, AWWA Water Technology Conference, Boston, MA (1996).Google Scholar
  80. 80.
    Sodium Hypochlorite Manual, Pamphlet 96, Edition 2, Rev. 1, The Chlorine Institute, Inc., Washington, DC (2000).Google Scholar
  81. 81.
    H.A. Pham, A Comparison of Methods for Determining the Concentration of Transition Metal Ions in Liquid Bleach, thesis, Miami University, Oxford, OH (1997).Google Scholar
  82. 82.
    ANSI/NSF 60/2001, Issue 16, NSF International, Ann Arbor, MI (2001).Google Scholar
  83. 83.
    T.H. Hutchinson and DJ. Van Wijk, Bromate and Chlorate-Evaluation of Potential Effects in Aquatic Organisms and Derivation of Environmental Quality Standards. In S. Sealey (ed.), Modern Chlor-Alkali Technology, vol. 7, Royal Society of Chemistry, Cambridge (1998), p. 26.Google Scholar
  84. 84.
    V.A. Grinberg, A.M. Shundin, E.K. Tuseeva, D.P Aleksandrova, Yu.B. Khokhryakov, V.I. Sergienko, and A.K. Mantynov, Russian J.Electrochem. 33, 577 (1997).Google Scholar
  85. 85.
    VA. Grinberg, A.M. Shundin, and E.K. Tuseeva, Russian J. Electrochem. 34, 1079 (1998).Google Scholar
  86. 86.
    A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, and J. Rennau, J. Appl. Electrochem. 29, 861 (1999).Google Scholar
  87. 87.
    A. Kraft, M. Stadelmann, M. Blaschke, D. Kreysig, B. Sandt, F. Schröder, and J. Rennau, J. Appl Electrochem. 29, 895 (1999).CrossRefGoogle Scholar
  88. 88.
    K. Scott, Electrochemical Processes for Clean Technology, Royal Society of Chemistry, Cambridge (1995), p. 189.Google Scholar
  89. 89.
    VS. Nayak, Ind. Eng. Chem. Res. 35, 3808 (1996).CrossRefGoogle Scholar
  90. 90.
    H.G. Grube, Z Electrochem. 44, 640 (1938).Google Scholar
  91. 91.
    M. Yamashita, F. Hine, and S. Yoshizawa, Denki Kagaku (J. Electrochem. Soc. Japan) 32, 366 (1964).Google Scholar
  92. 92.
    M. Yamashita, F. Hine, and S. Yoshizawa, Denki Kagaku (J. Electrochem. Soc. Japan) 30, 562 (1962).Google Scholar
  93. 93.
    W.N. Brooks, D.A. Denton, and N.M. Sammes. In F. Hine, B.V Tilak, J.M. Fenton, and J.D. Lisius (eds), Process Performance of Electrodes for Industrial Electrochemical Processes, PV 89-110, The Electrochemical Society, Pennington, NJ (1989), p. 39.Google Scholar
  94. 94.
    C.G. Ferron and P.F. Duby. In F. Hine, B.V. Tilak, J.M. Fenton, and J.D. Lisius (eds), Process Performance of Electrodes for Industrial Electrochemical Processes, PV 89-110, The Electrochemical Society, Pennington, NJ (1989), p. 259.Google Scholar
  95. 95.
    G.N. Marteni, R. Ornelas, and G. Faita, Electrochim. Acta 39, 1551 (1994).CrossRefGoogle Scholar
  96. 96.
    M.J. Niksa, Acid/Base Recovery from Sodium Sulfate, Fifth International Forum on Electrolysis, Clearwater, FL(1990).Google Scholar
  97. 97.
    A.D. Martin, Electrodialysis-A Means for Recovery of Sodium Hydroxide from Sodium-Containing Process Streams, Fifth International Forum on Electrolysis, Clearwater, FL (1990).Google Scholar
  98. 98.
    J. Jörissen and K.H. Simmrock, J. Appl. Electrochem. 21, 869 (1991).CrossRefGoogle Scholar
  99. 99.
    G. Faita, Caustic Soda without Chlorine Production, Seventh International Forum on Electrolysis, Clearwater, FL (1993).Google Scholar
  100. 100.
    A.D. Martin. In T.C. Jeffrey, K. Ota, J. Fenton, and H. Kawamoto (eds), Chlor-Alkali and Chlorate Production, and New Mathematical and Computational Methods in Electrochemical Engineering, PV 93-114, The Electrochemical Society, Princeton, NJ (1993), p. 65.Google Scholar
  101. 101.
    A.D. Martin and D.H. Mann, Electrohydrolysis of Sodium Sulfate, Special publication, Royal Society of Chemistry, Cambridge (1995), p. 274.Google Scholar
  102. 102.
    J.P. Gender, D. Hartsough, and J. Thompson. In J. Newman and R.C. White (eds), Proceedings, Douglas N. Bennion Memorial Symposium, Topics in Electrochemical Engineering, PV 94-122, The Electrochemical Society, Pennington, NJ (1994), p. 457.Google Scholar
  103. 103.
    M. Rakib, Ph. Mocotaguy, Ph. Viers, E. Petit, and G. Durand, J. Appl. Electrochem. 39, 1439 (1999).CrossRefGoogle Scholar
  104. 104.
    S. Holze, J. Jörissen, C. Pischen, and H. Kalvelege, Chem. Eng. Technol. 17, 382 (1994).CrossRefGoogle Scholar
  105. 105.
    Hydrinatm Membrane Electrolyzers, Brochure, DeNora Permelec S.p.A., Milan (1993).Google Scholar
  106. 106.
    D. Pletcher, D. Genders, N.L. Weinberg, and E.F. Spiegel, U.S. Patent 5,246,551 (1993).Google Scholar
  107. 107.
    J.S. Thompson and D. Genders, U.S. Patent 5,098,332 (1992).Google Scholar
  108. 108.
    K.N. Mani, Aquatech Systems, Inc., Personal Communication (1995).Google Scholar
  109. 109.
    T.V. Bommaraju, Unpublished Results (1998).Google Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  • Thomas F. O’Brien
    • 1
  • Tilak V. Bommaraju
    • 2
  • Fumio Hine
    • 3
  1. 1.Independent Consultant MediaUSA
  2. 2.Independent Consultant Grand IslandNew YorkUSA
  3. 3.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations