Advertisement

Corrosion

  • Thomas F. O’Brien
  • Tilak V. Bommaraju
  • Fumio Hine

Abstract

Corrosion is a multibillion dollar worldwide problem. In the United States, corrosion is estimated [1] to occur at a rate of 14,000 kg min-1, costing about $200 billion per year. Incidents from corrosion may force shutdowns of chemical plants, the associated penalties in serious situations being financial loss, loss of human life, and damage to the environment. It is for these reasons that all chemical plants emphasize safety and implement safe operations by training plant personnel. Safety management extends into ensuring proper selection of materials of construction, quality control during manufacturing, fabrication, and construction, and routine maintenance during normal plant operations.

Keywords

Corrosion Rate Carbon Steel Stress Corrosion Crack Corrosion Fatigue Ferritic Stainless Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Gileadi, Electrode Kinetics for Chemists, Chemical Engineers and Material Scientists, VCH publishers, New York (1993).Google Scholar
  2. 2.
    M.G. Fontana, Process Industries Corrosion, National Association of Corrosion Engineers, Houston (1975), p. 1.Google Scholar
  3. 3.
    D.H. Declerck and A.J. Patarcity, Chem. Eng. 93(24), 46 (1986).Google Scholar
  4. 4.
    F. Hine, Zairyo (J. Soc. of Mater. Sci. Japan) 26, 1124 (1977).CrossRefGoogle Scholar
  5. 5.
    J.A. Collins and M.L. Monack, Materials Performance. 12(6), 11 (1973).Google Scholar
  6. 6.
    H. Uhlig, Corrosion Handbook, John Wiley & Sons, Inc., New York (1949).Google Scholar
  7. 7.
    U.R. Evans, An Introduction to Metallic Corrosion, Edward Arnold Publishers, London (1963).Google Scholar
  8. 8.
    J. O’M. Bockris and A.K.N. Reddy, Modern Electrochemistry, Vol. 2, Plenum Press, New York (1970).CrossRefGoogle Scholar
  9. 9.
    M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, New York (1966).Google Scholar
  10. 10.
    S. Papavinasan, Corrosion Inhibitors. In R.W. Revie (ed.) Uhlig’s Corrosion Handbook, 2nd Edition, John Wiley & Sons, Inc., New York (2000), p. 1089.Google Scholar
  11. 11.
    G. Wranglen, An Introduction to Corrosion and Protection of Metals, Institut For Metallskydd, Stockholm (1972).Google Scholar
  12. 12.
    H.H. Uhlig (ed.) Corrosion Handbook, John Wiley & Sons, Inc., New York (1969).Google Scholar
  13. 13.
    Corrosion Data Survey, Metals Section, 6th Edition, National Association of Corrosion Engineers, Houston (1985).Google Scholar
  14. 14.
    P.A. Schweitzer (ed.), Corrosion Resistance Tables, 4th Edition, Marcel Dekker, New York (1995).Google Scholar
  15. 15.
    F. Hine, Fushoku-Kogaku No Gaiyou (Introduction to Corrosion Engineering), Kagaku Dojin, Kyoto (1977), p. 113.Google Scholar
  16. 16.
    F. Hine and K. Nishiyama, Zairyo (J. Soc. of Mater. Sci., Japan) 25, 777 (1975).CrossRefGoogle Scholar
  17. 17.
    M. Okubo, Sumitomo Kagaku 2127, 135 (1971).Google Scholar
  18. 18.
    M. Kowaka and H. Nagano, Corrosion 24, 427 (1968).CrossRefGoogle Scholar
  19. 19.
    M. Kowaka and H. Nagano, Corrosion 32, 395 (1976).CrossRefGoogle Scholar
  20. 20.
    C. Wagner, Z Physik. Chem. 21B, 25 (1933).Google Scholar
  21. 21.
    Simplifying Stainless Steel Selection with Carpenter’s SelectaloyTM Method, Brochure published by Carpenter Technology Corporation (1969).Google Scholar
  22. 22.
    B.V. Tilak and C-P. Chen, Bull. Electrochem. 13(b), 245 (1997).Google Scholar
  23. 23.
    R.W. Herbert, Selection of Appropriate Materials of Construction in the Chlor-Alkali Plant, Fourth Annual Electrode Corporation Chlorine/Chlorate Seminar, Chardon, OH (1987).Google Scholar
  24. 24.
    S. Krishnamurty, S. Muthukumaraswamy, and R. Thangappan, Chlor-Alkali Plant, Materials of Construction. In J.J. McKetta and W.A. Cunningham (eds), Encyclopedia of Chemical Engineering and Design, Marcel Dekker, New York (1987), p. 450.Google Scholar
  25. 25.
    P. Kohl and K. Lohrberg, J. Appl. Electrochem. 19, 589 (1989).CrossRefGoogle Scholar
  26. 26.
    A. Ullman, Cost Saving in Chlorine Plants by Benefiting from the Unique Properties of Titanium. In J. Moorhouse (ed.), Modern Chlor-Alkali Technology, vol. 8, Society of Chemical Industry, London (2001), p. 282.CrossRefGoogle Scholar
  27. 27.
    Chlorine-A Brochure of Olin Matheson Corporation (1959).Google Scholar
  28. 28.
    Titanium Design Data Book for the Chemical Processor, Titanium Metal Corporation of America, New York (1974).Google Scholar
  29. 29.
    N.C. Horowitz, Chem. Eng. 88(7), 105 (1981).Google Scholar
  30. 30.
    TV. Bommaraju, Water Quality Res. J. Canada 30, 339 (1995).Google Scholar
  31. 31.
    V. Ashworth and P.J. Borden, Corrosion Sci. 10, 709 (1970).CrossRefGoogle Scholar
  32. 32.
    R.L. Cowan and R.W. Staehle, J. Electrochem. Soc. 118, 557 (1971).CrossRefGoogle Scholar
  33. 33.
    F. Hine and M. Okubo, Boshoku Gijutsu (Corrosion Engineering) 25, 509 (1976).Google Scholar
  34. 34.
    M. Okubo and S. Tokunaga, Soda to Enso (Soda and Chlorine) 26, 313 (1975).Google Scholar
  35. 35.
    M. Pourbaix, Corrosion 25, 267 (1969).CrossRefGoogle Scholar
  36. 36.
    T. Ohashi and H. Kajiyama, Soda to Enso (Soda and Chlorine) 26, 307 (1975).Google Scholar
  37. 37.
    M. Yasuda, S. Tokunaga, T. Taga, and F. Hine, Corrosion 41, 720 (1985).CrossRefGoogle Scholar
  38. 38.
    Y.S. Park, A.K. Agarwal, and R.W. Staehle, Corrosion 35, 333 (1979).CrossRefGoogle Scholar
  39. 39.
    M. Yasuda, K. Fukumoto, H. Koizumi, Y Ogata, and F. Hine, Corrosion 43, 497 (1987).CrossRefGoogle Scholar
  40. 40.
    K.H. Lee, G. Gragnoline, and D.D. MacDonald, Corrosion 41, 540 (1985).CrossRefGoogle Scholar
  41. 41.
    N.S. McIntyre, T.E. Rummery, M.G. Cook, and D. Owen, J. Electrochem. Soc. 123, 1164 (1976).CrossRefGoogle Scholar
  42. 42.
    R.D.K. Mishra, Electrochim. Acta 31, 51 (1986).CrossRefGoogle Scholar
  43. 43.
    F.K. Kies, I.A. Fromsen, and B. Coad, Chem. Eng. 77(6), 150 (1970).Google Scholar
  44. 44.
    M. A. Streicher, Austenitic and Ferritic Stainless Steels. In R.W. Revie (ed.) Uhlig’s Corrosion Handbook, John Wiley & Sons, Inc., New York (2000), p. 601.Google Scholar
  45. 45.
    E-Brite 26-1, ASTM Grade XM-27, Brochure of Airco Vacuum Metals, Revised 1975.Google Scholar
  46. 46.
    J.R. Crum and W.G. Lipscomb, Materials Perform. 25(4), 9 (1986).Google Scholar
  47. 47.
    A.B. Misercola, R.P. Tracy, I.A. Franson, and R.J. Knoth, The Use of E-Brite 26-1TM Ferritic Stainless Steel in the Production of Caustic Soda, Brochure of Airco Vacuum Metals (1976).Google Scholar
  48. 48.
    T.V. Bommaraju and P.J. Orosz, Caustic Evaporator Corrosion: Causes and Remedy. In T.C. Wellington (ed.), Modern Chlor-Alkali Technology, vol. 5, Elsevier Appl. Science, New York (1992), p. 307.CrossRefGoogle Scholar
  49. 49.
    D.J. Pye, U.S. Patent 2,610,105 (1952).Google Scholar
  50. 50.
    T.V. Bommaraju, W.V. Hauck, and V.J. Lloyd, U.S. Patent 4,585,579 (1986).Google Scholar

Copyright information

© Springer Science+Business Media, Inc 2005

Authors and Affiliations

  • Thomas F. O’Brien
    • 1
  • Tilak V. Bommaraju
    • 2
  • Fumio Hine
    • 3
  1. 1.Independent Consultant MediaUSA
  2. 2.Independent Consultant Grand IslandNew YorkUSA
  3. 3.Nagoya Institute of TechnologyNagoyaJapan

Personalised recommendations