Skip to main content

Computational Neural Networks

  • Chapter
Neural Engineering

Abstract

Brain function remains one of the most elusive and fascinating phenomena challenging modem science (Churchland, 1986). Although a lot is already known about the neuron and its functional characteristics, when we address the information-processing capabilities of a neural assembly, called here the mesoscopic description (Freeman, 1975), more often than not we are unable to quantify function and abstract the computation. The reasons can be found in the distributed nature of the system architecture, the lack of appropriate tools and metaphors to describe the communication among neurons (the neural code) (Rao et al, 2002), and also very often due to the absence of a detailed knowledge of the function being implemented (Nicolelis, 2001). Hence, conducting studies in computational neuroscience requires a carefully planned methodology and experimental design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold, V., 1973, Ordinary Differential Equations, MIT Press, Cambridge.

    MATH  Google Scholar 

  • Braun, M., 1993, Differential Equations and Their Applications, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Churchland, P., 1986, Neurophilosophy: Towards a Unified Science of the Mind/Brain, MIT Press, Cambridge.

    Google Scholar 

  • de Vries, B., 1991, Temporal Processing with Neural Networks—The Development of the Gamma Model, Ph.D. Dissertation, University of Florida, Gainesville, Florida.

    Google Scholar 

  • Freeman, W., 1975, Mass Action in the Nervous System, Academic Press, New York.

    Google Scholar 

  • Freeman, W. J., 1988, Pattern learing and recognition device, United States Patent #4,748,674, May 31.

    Google Scholar 

  • Freeman, W., Yao, Y., and Burke, B., 1988, Central pattern generating and recognizing on olfactory bulb: A correlation learning rule, Neural Network 1:277–288.

    Article  Google Scholar 

  • Furth, P. M., and Ommani, H. A., 1997, Low-voltage highly-linear transconductor design in subthreshold CMOS, in: Proceedings of the 40th Midwest Symposium on Circuits and Systems, Sacramento, CA, 1:156–159.

    Google Scholar 

  • Grossberg, S., 1972, Pattern learning by functional-differential neural networks with arbitrary path weights, In: Delay and Functional Differential Equations and Their Applications (Schmitt, ed.), Academic Press, New York, pp. 121–160.

    Google Scholar 

  • Haken, H., 1996, Principles of Brain Function, Springer-Verlag, New York.

    Google Scholar 

  • Hopfield, J., 1982, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl. Acad. Sci. 79:2554–2558.

    Article  MathSciNet  Google Scholar 

  • Hopfield, J., 1984, Neurons with graded response have collective computational properties like those of two-state neurons, Proc. Natl. Acad. Sci. 81:3088–3092.

    Article  Google Scholar 

  • Hoppensteadt, F., 2000, Analysis and Simulation of Chaotic Systems, 2nd ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  • Jordan, D. W., and Smith, P., 1987. Nonlinear Ordinary Differential Equations, 2nd ed., Clarendon Press, Oxford.

    MATH  Google Scholar 

  • Kaplan, D., and Glass, L., 1995, Understanding Nonlinear Dynamics, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Kelso, S., 1995, Dynamic Patterns: The Self-Organization of Brain and Behavior, MIT Press, Cambridge.

    Google Scholar 

  • Kozma, R., and Freeman, W. J., 2001, Chaotic resonance-methods and applications for robust classification of noisy and variable patterns, Int. J. Bifurc. Chao 11(6):1607–1629.

    Article  Google Scholar 

  • Kuznetsov, Y., Kuznetsov, L., and Marsden, J., 1998, Elements of Applied Bifurcation Theory, 2nd ed., Springer-Verlag, New York.

    MATH  Google Scholar 

  • Lambert, J., 1991, Numerical Methods for Ordinary Differential Systems: The Initial Value Problem, Wiley, New York.

    MATH  Google Scholar 

  • Llinas R., 2001, I of the Vortex: From Neurons to Self, MIT Press, Cambridge.

    Google Scholar 

  • Mead, C., 1989, Analog and Neural Systems, Addison-Wesley, MA.

    MATH  Google Scholar 

  • Nicolelis, M. (Ed.), 2001, Advances in Neural Population Coding, Progress in Brain Research, Vol. 130, Elsevier, Amsterdam.

    Google Scholar 

  • Oja, E., 1982, A simplified neuron model as a principal component analyzer, J. Math. Biol. 15:267–273.

    Article  MATH  MathSciNet  Google Scholar 

  • Oppenheim, A. V., and Schafer, R. W., 1989, Discrete Time Signal Processing, Prentice Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Principe, J., Tavares, V., Harris, J., and Freeman, W., 2001, Design and implementation of a biologically realistic olfactory cortex in analog VLSI, Proceedings of the IEEE 89(7):1030–1051.

    Article  Google Scholar 

  • Principe, J., de Vries, B., and Oliveira, P., 1993, The gamma filter: A new class of adaptive IIR filters with restricted feedback, IEEE Trans. Signal Process. 41(2):649–656.

    Article  MATH  Google Scholar 

  • Rao, R., Olshausen, B., and Lewicki, M. (eds.), 2002, Probabilistic Models of the Brain, MIT Press, Cambridge.

    Google Scholar 

  • Tavares, V., 2001, Design and Implementation of a Biologically Realistic Olfactory Cortex Model, Ph.D. Dissertation, University of Florida, Gainesville, FL.

    Google Scholar 

  • Wang, X., and Chen, G., 2003, Complex networks: Small-world, scale-free and beyond, IEEE Circ. Syst. Mag. 3(1):6–20.

    Article  Google Scholar 

  • Xu, D., Deng, L., Harris, J., and Principe, J., 2003, Design of a reduced KII set and network in analog VLSI, Proc. 2003 Int. Symp. Circ. Syst. 5:837–840.

    Google Scholar 

  • Xu, D., and Principe, J., 2003, Dynamical analysis of a reduced KII set in the olfactory system, submitted to IEEE Transactions on Neural Netowrks.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Xu, D. et al. (2005). Computational Neural Networks. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48610-5_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48609-8

  • Online ISBN: 978-0-306-48610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics