Skip to main content

Electrophysiological Neuroimaging

  • Chapter
Neural Engineering

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

Although electrical activity recorded from the exposed cerebral cortex of a monkey was reported in 1875 (Caton, 1875), it was not until 1929 that Hans Berger, a psychiatrist in Jena, Germany, first recorded rhythmic electrical activity from the human head (Berger, 1929). Since then, the electroencephalogram (EEG) has become one of the most prominent methods for noninvasive examination of brain activity. Tremendous effort has been made in order to describe the phenomena of the EEG in normal individuals and in those with various diseases. In particular, the EEG has been demonstrated to be a valuable tool for both researchers and clinicians in the fields of sleep physiology and epilepsy, although other applications are also promising, such as in the fields of psychiatry and psychophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahlfors, S. P., Simpson, G. V., Dale, A. M., Belliveau, J. W., Liu, A. K., Korvenoja, A., Virtanen, J., Huotilainen, M., Tootell, R. B., Aronen, H. J., and Ilmoniemi, R. J., 1999, Spatiotemporal activity of a cortical network for processing visual motion revealed by MEG and fMRI, J. Neurophysiol. 82:2545–2555.

    Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Onorati, P., and Urbano, A., 1996, Spline Laplacian estimate of EEG potentials over a realistic magnetic resonance-constructed scalp surface model, Electroencephalogr. Clin. Neurophysiol. 98:363–373.

    Article  Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Fattorini, L., Anello, C., Onorati, P., and Urbano, A., 1997, High resolution EEG: A new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model, Electroencephalogr. Clin. Neurophysiol. 102:69–80.

    Article  Google Scholar 

  • Babiloni, F., Carducci, F., Babiloni. C., and Urbano, A., 1998, Improved realistic Laplacian estimate of highly-sampled EEG potentials by regularization techniques, Electroencephalogr. Clin. Neurophysiol. 106:336–343.

    Article  Google Scholar 

  • Babiloni, F., Carducci, F., Cincotti, F., Del Gratta, C., Roberti, G. M., Romani, G. L., Rossini, P. M., and Babiloni, C., 2000, Integration of high resolution EEG and functional magnetic resonance in the study of human movement-related potentials, Methods Inf. Med. 39:179–182.

    Google Scholar 

  • Babiloni, F., Carducci, F., Cincotti, F., Gratta, C. D., Pizzella, V., Romani, G. L., Rossini, P. M., Tecchio, F., and Babiloni, C., 2001, Linear inverse source estimate of combined EEG and MEG data related to voluntary movements, Hum. Brain Mapp. 14:197–209.

    Article  Google Scholar 

  • Babiloni, F., Babiloni, C., Carducci, F., Cincotti, F., Astolfi, L., Basilisco, A., Rossini, P. M., Ding, L., Ni, Y., Cheng, J., Christine, K., Sweeney, J., and He, B., in press, Assessing time-varying cortical functional connectivity with the multimodel integration of high resolution EEG and fMRI data by Directed Transfer Function, NeuroImage.

    Google Scholar 

  • Backus, G. E., and Gilbert, J. F., 1968, The resolving power of gross earth data, Geophys. J. R. Astronom. Soc. 16:169–205.

    MATH  Google Scholar 

  • Baillet, S., and Garnero, L., 1997, A Bayesian approach to introducing anatomo-functional priors in the EEG/MEG inverse problem, IEEE Trans. Biomed. Eng. 44:374–385.

    Article  Google Scholar 

  • Baillet, S., Garnero, L., Marin, C., and Hugonin, J. P., 1999, Combined MEG and EEG source imaging by minimization of mutual information, IEEE Trans. Biomed. Eng. 46:522–534.

    Article  Google Scholar 

  • Barr, R. C., Ramsey, M., III, and Spach, M. S., 1977, Relating epicardial to body surface potential distributions by means of transfer coefficients based on geometry measurements, IEEE Trans. Biomed. Eng. 24:1–11.

    Article  Google Scholar 

  • Benar, C. G., and Gotman, J., 2002, Modeling of post-surgical brain and skull defects in the EEG inverse problem with the boundary element method, Clin. Neurophysiol. 113:48–56.

    Article  Google Scholar 

  • Berger, H., 1929, Ãœber das Elektrenkephalogramm des Menschen I, Arch. Psychiatr. 87:527–570.

    Article  Google Scholar 

  • Biglieri, E., and Yao, K., 1989, Some properties of SVD and their application to digital signal processing, Signal Process. 18:227–289.

    Article  MathSciNet  Google Scholar 

  • Bonmassar, G., Schwartz, D. P., Liu, A. K., Kwong, K. K., Dale, A. M., and Belliveau, J. W., 2001, Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings, NeuroImage 13:1035–1043.

    Article  Google Scholar 

  • Cakmur, R., Towle, V. L., Mullan, J. F., Suarez, D., and Spire, J. P., 1997, Intra-operative localization of sensorimotor cortex by cortical somatosensory evoked potentials: From analysis of waveforms to dipole source modeling, Acta Neurochir. (Wien) 139:1117–1124.

    Article  Google Scholar 

  • Caton, R., 1875, The electrical currents of the brain, Br. Med. J. 2:278.

    Google Scholar 

  • Cincotti, F., Babiloni, C., Carducci, F., Rossini, P. M., Del Gratta, C., Romani, G. L., Angelone, L., and Babiloni, F., 2001, fMRI priors for the linear inverse estimation of EEG cortical sources, Electromagnetics 21:579–592.

    Article  Google Scholar 

  • Colli Franzone, P., Guerri, L., Taccardi, B., and Viganotti, C., 1985, Finite element approximation of regularized solutions of the inverse potential problem of electrocardiography and applications to experimental data, Calcolo XXII:I, 91–186.

    Article  MathSciNet  Google Scholar 

  • Crouzeix, A., Yvert, B., Bertrand, O., and Pernier, J., 1999, An evaluation of dipole reconstruction accuracy with spherical and realistic head models in MEG, Clin. Neurophysiol. 110:2176–2188.

    Article  Google Scholar 

  • Cuffin, B. N., 1995, A method for localizing EEG sources in realistic head models, IEEE Trans. Biomed. Eng. 42:68–71.

    Article  Google Scholar 

  • Cuffin, B. N., 1996, EEG localization accuracy improvements using realistically shaped head models, IEEE Trans. Biomed. Eng. 43:299–303.

    Article  Google Scholar 

  • Cuffin, B. N., 1998, EEG dipole source localization, IEEE Eng. Med. Biol. Mag. 17:118–122.

    Article  Google Scholar 

  • Dale, A. M., and Sereno, M. I., 1993, Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach, J. Cog. Neurosci. 5:162–176.

    Article  Google Scholar 

  • Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., and Halgren, E., 2000, Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity, Neuron 26:55–67.

    Article  Google Scholar 

  • Diekmann, V., Becker, W., Jurgens, R., Grozinger, B., Kleiser, B., Richter, H. P., and Wollinsky, K. H., 1998, Localisation of epileptic foci with electric, magnetic, and combined electromagnetic models, Electroencephalogr. Clin. Neurophysiol. 106:297–313.

    Article  Google Scholar 

  • Edlinger, G., Wach, P., and Pfurtscheller, G., 1998, On the realization of an analytic high-resolution EEG, IEEE Trans. Biomed. Eng. 45:736–745.

    Article  Google Scholar 

  • Finke, S., and Gulrajani, R. M., 2001, Conventional and reciprocal approaches to the forward problem of electroencephalography, Electromagnetics 21:513–530.

    Article  Google Scholar 

  • Fisch, B. J., 1991, Spehlmann’s EEG Primer, 2nd ed., Elsevier, New York.

    Google Scholar 

  • Fletcher, D. J., Amir, A., Jewett, D. L., and Fein, G., 1995, Improved method for computation of potentials in a realistic head shape model, IEEE Trans. Biomed. Eng. 42:1094–1104.

    Article  Google Scholar 

  • Fuchs, M., Wagner, M., Kohler, T., and Wischmann, H. A., 1999, Linear and nonlinear current density reconstructions, J. Clin. Neurophysiol. 16:267–295.

    Article  Google Scholar 

  • Fuchs, M., Wagner, M., Wischmann, H. A., Kohler, T., Theiben, A., Drenckhahn, R., and Buchner, H., 1998, Improving source reconstructions by combining bioelectric and biomagnetic data, Electroencephalogr. Clin. Neurophysiol. 107:93–111.

    Article  Google Scholar 

  • Gavit, L., Baillet, S., Mangin, J. F., Pescatore, J., and Garnero, L., 2001, A multiresolution framework to MEG/EEG source imaging, IEEE Trans. Biomed. Eng. 48:1080–1087.

    Article  Google Scholar 

  • Gencer, N. G., Ider, Y. Z., and Williamson, S. J., 1996, Electrical impedance tomography: Induced-current imaging achieved with a multiple coil system, IEEE Trans. Biomed. Eng. 43:139–149.

    Article  Google Scholar 

  • Gencer, N. G., and Williamson, S. J., 1998, Differential characterization of neural sources with the bimodal truncated SVD pseudo-inverse for EEG and MEG measurements, IEEE Trans. Biomed. Eng. 45:827–837.

    Article  Google Scholar 

  • George, J. S., Aine, C. J., Mosher, J. C., Schmidt, D. M., Ranken, D. M., Schlitt, H. A., Wood, C. C., Lewine, J. D., Sanders, J. A., and Belliveau, J. W., 1995, Mapping function in the human brain with magnetoencephalography, anatomical magnetic resonance imaging, and functional magnetic resonance imaging, J. Clin. Neurophysiol. 12:406–431.

    Article  Google Scholar 

  • Geselowitz, D. B., 1960, Multiple representation for an equivalent cardiac generator, Proc. IRE 48:75–79.

    Article  Google Scholar 

  • Gevins, A., Le, J., Martin, N. K., Brickett, P., Desmond, J., and Reutter, B., 1994, High resolution EEG: 124-channel recording, spatial deblurring and MRI integration methods, Electroencephalogr. Clin. Neurophysiol. 90:337–358.

    Article  Google Scholar 

  • Golub, G. H., Heath, M., and Wahba, G., 1979, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics 21:215–223.

    Article  MATH  MathSciNet  Google Scholar 

  • Gorodnitsky, I. F., George, J. S., and Rao, B. D., 1995, Neuromagnetic source imaging with FOCUSS: A recursive weighted minimum norm algorithm, Electroencephalogr. Clin. Neurophysiol. 95:231–251.

    Article  Google Scholar 

  • Gorodnitsky, I. F., and Rao, B. D., 1997, Sparse signal reconstruction from limited data using FOCUSS: A reweighted minimum norm algorithm, IEEE Trans. Signal Process. 45:600–616.

    Article  Google Scholar 

  • Grave de Peralta-Menendez, R., and Gonzalez-Andino, S., 1998a, A critical analysis of linear inverse solutions to the neuroelectromagnetic inverse problem, IEEE Trans. Biomed. Eng. 45:440–448.

    Article  Google Scholar 

  • Grave de Peralta Menendez, R., and Gonzalez-Andino, S., 1998b, Distributed source models: Standard solutions and new developments. In: Analysis of Neurophysiological Brain Functioning (C. Uhl, ed.), Springer Verlag, pp. 176–201.

    Google Scholar 

  • Grave de Peralta-Menendez, R., Gonzalez-Andino, S., and Lutkenhonner, B., 1996, Figures of merit to compare linear distributed inverse solutions, Brain Topogr. 9:117–124.

    Article  Google Scholar 

  • Grave de Peralta-Menendez, R., Gonzalez-Andino, S., Morand, S., Michel, C. M., and Landis, T., 2000, Imaging the electrical activity of the brain: ELECTRA, Hum. Brain Mapp. 9:1–12.

    Article  Google Scholar 

  • Grave de Peralta-Menendez, R., Hauk, O., Gonzalez-Andino, S., Vogt, H., and Michel, C., 1997, Linear inverse solutions with optimal resolution kernels applied to electromagnetic tomography, Hum. Brain Mapp. 5:454–467.

    Article  Google Scholar 

  • Gulrajani, R. M., 1998, Bioelectricity and Biomagnetism, John Wiley & Sons, New York.

    Google Scholar 

  • Gulrajani, R. M., Finke, S., and Gotman, J., 2001, Reciprocal transfer-coefficient matrices and the inverse problem of electroencephalography, Biomedizinische Technik 46(Suppl. 2):13–15.

    Google Scholar 

  • Hamalainen, M., and Ilmoniemi, R. J., 1984, Interpreting measured magnetic fields of the brain: Estimates of current distributions, Technical Report TKF-F-A559, Helsinki University of Technology.

    Google Scholar 

  • Hamalainen, M. S., and Ilmoniemi, R. J., 1994, Interpreting magnetic fields of the brain: Minimum norm estimates, Med. Biol. Eng. Comput. 32:35–42.

    Article  Google Scholar 

  • Hamalainen, M., and Sarvas, J., 1989, Realistic conductor geometry model of the human head for interpretation of neuromagnetic data, IEEE Trans. Biomed. Eng. 36:165–171.

    Article  Google Scholar 

  • Hansen, P. C., 1990, Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank, SIAM J. Sci. Stat. Comput. 11:503–518.

    Article  MATH  Google Scholar 

  • Hansen, P. C., 1992, Analysis of discrete ill-posed problems by means of the L-curve, SIAM Rev. 34:561–580.

    Article  MATH  MathSciNet  Google Scholar 

  • Hansen, P. C., and O’leary, D. P., 1993, The use of the L-curve in the regularization of discrete ill-posed problems, SIAM J. Sci. Comput. 14:1487–1503.

    Article  MATH  MathSciNet  Google Scholar 

  • He, B., 1998, High resolution source imaging of brain electrical activity, IEEE Eng. Med. Biol. Mag. 17:123–129.

    Article  Google Scholar 

  • He, B., 1999, Brain electric source imaging: Scalp Laplacian mapping and cortical imaging, Crit. Rev. Biomed. Eng. 27:149–188.

    Google Scholar 

  • He, B. (ed.), 2004, Modeling and Imaging of Bioelectrical Activity—Principles and Applications, Kluwer Academic Publishers.

    Google Scholar 

  • He, B., and Cohen, R. J., 1992, Body surface Laplacian ECG mapping, IEEE Trans. Biomed. Eng. 39:1179–1191.

    Article  Google Scholar 

  • He, B., and Lian, J., 2004, Body surface Laplacian mapping of bioelectric sources, In: Modeling and Imaging of Bioelectrical Activity–Principles and Applications (B. He, ed.), Kluwer Academic Publishers, pp. 183–212.

    Google Scholar 

  • He, B., Lian, J., and Li, G., 2001, High-resolution EEG: a new realistic geometry spline Laplacian estimation technique, Clin. Neurophysiol. 112:845–852.

    Article  Google Scholar 

  • He, B., Lian, J., Spencer, K. M., Dien, J., and Donchin, E., 2001a, A cortical potential imaging analysis of the P300 and novelty P3 components, Hum. Brain Mapp. 12:120–130.

    Article  Google Scholar 

  • He, B., and Musha, T., 1992, Equivalent dipole estimation of spontaneous EEG alpha activity: Two-moving dipole approach, Med. Biol. Eng. Comput. 30:324–332.

    Article  Google Scholar 

  • He, B., Musha, T., Okamoto, Y., Homma, S., Nakajima, Y., and Sato, T., 1987, Electrical dipole tracing in the brain by means of the boundary element method and its accuracy, IEEE Trans. Biomed. Eng. 34:406–414.

    Article  Google Scholar 

  • He, B., Wang, Y., Pak, S., and Ling, Y., 1996, Cortical source imaging from scalp electroencephalograms, Med. Biol. Eng. Comput. 34:257–258.

    Article  Google Scholar 

  • He, B., Wang, Y., and Wu, D., 1999, Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model, IEEE Trans. Biomed. Eng. 46:1264–1268.

    Article  Google Scholar 

  • He, B., Yao, D., Lian, J., and Wu, D., 2002a, An equivalent current source model and Laplacian weighted minimum norm current estimates of brain electrical activity, IEEE Trans. Biomed. Eng. 49:277–288.

    Article  Google Scholar 

  • He, B., Zhang, X., Lian, J., Sasaki, H., Wu, D., and Towle, V. L., 2002b, Boundary element method based cortical potential imaging of somatosensory evoked potentials using subjects’ magnetic resonance images, NeuroImage 16:564–576.

    Article  Google Scholar 

  • He, B., Yao, D., and Lian, J., 2002c, High resolution EEG: On the cortical equivalent dipole layer imaging, Clin. Neurophysiol. 113:227–235.

    Article  Google Scholar 

  • Heinze, H. J., Mangun, G. R., Burchert, W., Hinrichs, H., Scholz, M., Munte, T. F., Gos, A., Scherg, M., Johannes, S., Hundeshagen, H., Gazzaniga, M. S., and Hillyard, S. A., 1994, Combined spatial and temporal imaging of brain activity during visual selective attention in humans, Nature 372:543–546.

    Article  Google Scholar 

  • Hess, A., Stiller, D., Kaulisch, T., Heil, P., and Scheich, H., 2000, New insights into the hemodynamic blood oxygenation level-dependent response through combination of functional magnetic resonance imaging and optical recording in gerbil barrel cortex, J. Neurosci. 20:3328–3338.

    Google Scholar 

  • Homma, S., Musha, T., Nakajima, Y., Okamoto, Y., Blom, S., Flink, R., Hagbarth, K. E., and Mostrom, U., 1994, Location of electric current sources in the human brain estimated by the dipole tracing method of the scalp-skull-brain (SSB) head model, Electroencephalogr. Clin. Neurophysiol. 91:374–382.

    Article  Google Scholar 

  • Hori, J., Aiba, M., and He, B., 2004, Spatio-temporal cortical source imaging of brain electrical activity by means of time-varying parametric projection filter, IEEE Trans. Biomed. Eng. 51:768–777.

    Article  Google Scholar 

  • Hori, J., and He, B., 2001, Equivalent dipole source imaging of brain electric activity by means of parametric projection filter, Ann. Biomed. Eng. 29:436–445

    Article  Google Scholar 

  • Hori, J., Lian, J., and He, B., 2004, Cortical potential imaging of brain electrical activity by means of parametric projection filter, Methods Info. Med. 43(1):66–69.

    Google Scholar 

  • Hjorth, B., 1975, An on-line transformation of EEG scalp potentials into orthogonal source derivations, Electroencephalogr. Clin. Neurophysiol. 39:526–530.

    Article  Google Scholar 

  • Huppertz, H. J., Hof, E., Klisch, J., Wagner, M., Lucking, C. H., and Kristeva-Feige, R., 2001, Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions, NeuroImage 13:15–28.

    Article  Google Scholar 

  • Jackson, J. D., 1975, Classical Electrodynamics, 2nd ed., John Wiley & Sons, New York.

    MATH  Google Scholar 

  • Jeffs, B., Leahy, R., and Singh, M., 1987, An evaluation of methods for neuromagnetic image reconstruction, IEEE Trans. Biomed. Eng. 34:713–723.

    Article  Google Scholar 

  • Jerbi, K., Mosher, J. C., Baillet, S., and Leahy, R. M., 2002, On MEG forward modelling using multipolar expansions, Phys. Med. Biol. 47(4):523–555.

    Article  Google Scholar 

  • Johnston, P. R., and Gulrajani, R. M., 1997, A new method for regularization parameter determination in the inverse problem of electrocardiography, IEEE Trans. Biomed. Eng. 44:19–39.

    Article  Google Scholar 

  • Johnston, P.R., and Gulrajani, R. M., 2000, Selecting the corner in the L-curve approach to Tikhonov regularization, IEEE Trans. Biomed. Eng. 47(9):1293–1296.

    Article  Google Scholar 

  • Kavanagh, R. N., Darcey, T. M., Lehmann, D., and Fender, D. H., 1978, Evaluation of methods for three-dimensional localization of electrical sources in the human brain, IEEE Trans. Biomed. Eng. 25:421–429.

    Article  Google Scholar 

  • Korvenoja, A., Huttunen, J., Salli, E., Pohjonen, H., Martinkauppi, S., Palva, J. M., Lauronen, L., Virtanen, J., Ilmoniemi, R. J., and Aronen, H. J., 1999, Activation of multiple cortical areas in response to somatosensory stimulation: Combined magnetoencephalographic and functional magnetic resonance imaging, Hum. Brain Mapp. 8:13–27.

    Article  Google Scholar 

  • Lantz, G., Michel, C. M., Pascual-Marqui, R. D., Spinelli, L., Seeck, M., Seri, S., Landis, T., and Rosen, I., 1997, Extracranial localization of intracranial interictal epileptiform activity using LORETA (low resolution electromagnetic tomography), Electroencephalogr. Clin. Neurophysiol. 102:414–422.

    Article  Google Scholar 

  • Law, S. K., Nunez, P. L., and Wijesinghe, R. S., 1993, High-resolution EEG using spline generated surface on spherical and ellipsoidal surfaces, IEEE Trans. Biomed. Eng. 40:145–153.

    Article  Google Scholar 

  • Lawson, C. L., and Hanson, R. J., 1974, Solving Least Squares Problems, Prentice-Hall, Englewood Cliffs, NJ.

    MATH  Google Scholar 

  • Le, J., and Gevins, A., 1993, Method to reduce blur distortion from EEG’s using a realistic head model, IEEE Trans. Biomed. Eng. 40:517–528.

    Article  Google Scholar 

  • Lian, J., and He, B., 2001, A minimal product method and its application to cortical imaging, Brain Topogr. 13:209–217.

    Article  Google Scholar 

  • Lian, J., Yao, D., and He, B., 1998, A new method for implementation of regularization in cortical potential imaging, Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2155–2158.

    Google Scholar 

  • Liu, A. K., Belliveau, J. W., and Dale, A. M., 1998, Spatiotemporal imaging of human brain activity using fMRI constrained MEG data: Monte Carlo simulations, Proc. Natl. Acad. Sci. USA 95:8945–8950.

    Article  Google Scholar 

  • Magistretti, P. J., Pellerin, L., Rothman, D. L., and Shulman, R. G., 1999, Energy on demand, Science 283:496–497.

    Article  Google Scholar 

  • Malmivuo, J., and Plonsey, R., 1995, Bioelectromagnetism, Oxford University Press, New York.

    Google Scholar 

  • Mangun, G. R., Hinrichs, H., Scholz, M., Mueller-Gaertner, H. W., Herzog, H., Krause, B. J., Tellman, L., Kemma, L., and Heinze, H. J., 2001, Integrating electrophysiology and neuroimaging of spatial selective attention to simple isolated visual stimuli, Vision Res. 41:1423–1435.

    Article  Google Scholar 

  • Martinez, A., Anllo-Vento, L., Sereno, M. I., Frank, L. R., Buxton, R. B., Dubowitz, D. J., Wong, E. C., Hinrichs, H., Heinze, H. J., and Hillyard, S. A., 1999, Involvement of striate and extrastriate visual cortical areas in spatial attention, Nat. Neurosci. 2:364–369.

    Article  Google Scholar 

  • Matsuura, K., and Okabe, Y., 1995, Selective minimum-norm solution of the biomagnetic inverse problem, IEEE Trans. Biomed. Eng. 42:608–615.

    Article  Google Scholar 

  • Matsuura, K., and Okabe, Y., 1997, A robust reconstruction of sparse biomagnetic sources, IEEE Trans. Biomed. Eng. 44:720–726.

    Article  Google Scholar 

  • Meijs, J. W. H., Weier, O. W., Peters, M. J., and Van Oosterom, A., 1989, On the numerical accuracy of the boundary element method, IEEE Trans. Biomed. Eng. 36:1038–1049.

    Article  Google Scholar 

  • Menke, W., 1984, Geophysical Data Analysis: Discrete Inverse Theory, Academic Press, New York.

    Google Scholar 

  • Menon, V., Ford, J. M., Lim, K. O., Glover, G. H., and Pfefferbaum, A., 1997, Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection, Neuroreport 8:3029–3037.

    Article  Google Scholar 

  • Miller, K., 1970, Least squares methods for ill-posed problems with a prescribed bound, SIAM J. Math. Anal. 1:52–74.

    Article  MATH  MathSciNet  Google Scholar 

  • Mine, S., Oka, N., Yamaura, A., and Nakajima, Y., 1998, Presurgical functional localization of primary somatosensory cortex by dipole tracing method of scalp-skull-brain head model applied to somatosory evoked potential, Electroencephalogr. Clin. Neurophysiol. 108:226–233.

    Article  Google Scholar 

  • Mitzdorf, U., 1985, Current source-density method and application in cat cerebral cortex: investigation of evoked potentials and EEG phenomena, Physiol. Rev. 65:37–100.

    Google Scholar 

  • Morozov, V. A., 1984, Methods for Solving Incorrectly Posed Problems, Springer-Verlag, Berlin.

    Google Scholar 

  • Mosher, J. C., and Leahy, R. M., 1998, Recursive MUSIC: A framework for EEG and MEG source localization, IEEE Trans. Biomed. Eng. 45:1342–1354.

    Article  Google Scholar 

  • Mosher, J. C., Lewis, P. S., and Leahy, R. M., 1992, Multiple dipole modeling and localization from spatiotemporal MEG data, IEEE Trans. Biomed. Eng. 39:541–557.

    Article  Google Scholar 

  • Mulert, C., Gallinat, J., Pascual-Marqui, R., Dorn, H., Frick, K., Schlattmann, P., Mientus, S., Herrmann, W. M., and Winterer, G., 2001, Reduced event-related current density in the anterior cingulate cortex in schizophrenia, NeuroImage 13:589–600.

    Article  Google Scholar 

  • Musha, T., and Okamoto, Y., 1999, Forward and inverse problems of EEG dipole localization, Crit. Rev. Biomed. Eng. 27:189–239.

    Google Scholar 

  • Nelder, J. A., and Mead, R., 1965, A Simplex method for function minimization, Comput. J. 7:308–313.

    MATH  Google Scholar 

  • Northoff, G., Richter, A., Gessner, M., Schlagenhauf, F., Fell, J., Baumgart, F., Kaulisch, T., Kotter, R., Stephan, K. E., Leschinger, A., Hagner, T., Bargel, B., Witzel, T., Hinrichs, H., Bogerts, B., Scheich, H., and Heinze, H. J., 2000, Functional dissociation between medial and lateral prefrontal cortical spatiotemporal activation in negative and positive emotions: A combined fMRI/MEG study, Cereb. Cortex 10:93–107.

    Article  Google Scholar 

  • Nunez, P. L., 1981, Electric Field of the Brain, Oxford University Press, London.

    Google Scholar 

  • Nunez, P. L., 1995, Neocortical Dynamics and Human EEG Rhythms, Oxford University Press, New York.

    Google Scholar 

  • Nunez, P. L., and Silberstein, R. B., 2000, On the relationship of synaptic activity to macroscopic measurements: Does co-registration of EEG with fMRI make sense? Brain Topogr. 13:79–96.

    Article  Google Scholar 

  • Nunez, P. L., Silberstein, R. B., Cdush, P. J., Wijesinghe, R. S., Westdrop, A. F., and Srinivasan, R., 1994, A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging, Electroencephalogr. Clin. Neurophysiol. 90:40–57.

    Article  Google Scholar 

  • Ogawa, S., Lee, T. M., Stepnoski, R., Chen, W., Zhu, X. H., and Ugurbil, K., 2000, An approach to probe some neural systems interaction by functional MRI at neural time scale down to milliseconds, Proc. Natl. Acad. Sci. USA 97:11026–11031.

    Article  Google Scholar 

  • Ogawa, H., and Oja, E., 1987, Projection filter, Weiner filter, and Kahunen-Loeve subspaces in digital image processing, J. Math. Anal. Appl. 114:37–51.

    MathSciNet  Google Scholar 

  • Oja, E., and Ogawa, H., 1986, Parametric projection filter for image and signal restoration, IEEE Trans. Acoust. Speech, Signal Process. 34:1643–1653.

    Article  Google Scholar 

  • Ollikainen, J. O., Vauhkonen, M., Karjalainen, P. A., and Kaipio, J. P., 1999, Effects of local skull inhomogeneties on EEG source estimation, Med. Eng. Phys. 21:143–154.

    Article  Google Scholar 

  • Ollikainen, J. O., Vauhkonen, M., Karjalainen, P. A., and Kaipio, J. P., 2001, A new computational approach for cortical imaging, IEEE Trans. Med. Imag. 20:325–332.

    Article  Google Scholar 

  • Opitz, B., Mecklinger, A., Von Cramon, D. Y., and Kruggel, F., 1999, Combining electrophysiological and hemodynamic measures of the auditory oddball, Psychophysiology 36:142–147.

    Article  Google Scholar 

  • Pascual-Marqui, R. D., and Michel, C. M., 1994, LORETA (low resolution brain electromagnetic tomography): New authentic 3D functional images of the brain, ISBET Newslett. 5:4–8.

    Google Scholar 

  • Pascual-Marqui, R. D., Michel, C. M., and Lehmann, D., 1994, Low resolution electromagnetic tomography: A new method for localizing electrical activity in the brain, Int. J. Psychophysiol. 18:49–65.

    Article  Google Scholar 

  • Perrin, F., Bertrand, O., and Pernier, J., 1987, Scalp current density mapping: Value and estimation from potential data, IEEE Trans. Biomed. Eng. 34:283–288.

    Article  Google Scholar 

  • Phillips, J. W., Leahy, R., and Mosher, J. C., 1997b, Imaging neural activity using MEG and EEG, IEEE Eng. Med. Biol. Mag. 16:34–41.

    Article  Google Scholar 

  • Phillips, J. W., Leahy, R. M., Mosher, J. C., and Timsari, B., 1997a, Imaging neural electrical activity from MEG and EEG, IEEE Trans. Med. Imag. 16:338–348.

    Article  Google Scholar 

  • Plonsey, R., 1969, Bioelectric Phenomena, McGraw-Hill, New York.

    Google Scholar 

  • Roth, B. J., Ko, D., von Albertini-Carletti, I. R., Scaffidi, D., and Sato, S., 1997, Dipole localization in patients with epilepsy using the realistically shaped head model, Electroencephalogr. Clin. Neurophysiol. 102:159–166.

    Article  Google Scholar 

  • Rush, S., and Driscoll, D. A., 1969, EEG electrode sensitivity — an application of reciprocity, IEEE Trans. Biomed. Eng. 16:15–22.

    Google Scholar 

  • Scherg, M., and Von Cramon, D., 1985, Two bilateral sources of the AEP as identified by a spatio-temporal dipole model, Electroencephalogr. Clin. Neurophysiol. 62:32–44.

    Article  Google Scholar 

  • Sekihara, K., Nagarajan, S. S., Poeppel, D., Marantz, A., and Miyashita, Y., 2001, Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique, IEEE Trans. Biomed. Eng. 48:760–771.

    Article  Google Scholar 

  • Sekihara, K., Poeppel, D., Marantz, A., Koizumi, H., and Miyashita, Y., 1997, Noise covariance incorporated MEG-MUSIC algorithm: A method for multiple-dipole estimation tolerant of the influence of background brain activity, IEEE Trans. Biomed. Eng. 44:839–847.

    Article  Google Scholar 

  • Sekihara, K., and Scholz, B., 1995, Average-intensity reconstruction and Wiener reconstruction of bioelectric current distribution based on its estimated covariance matrix, IEEE Trans. Biomed. Eng. 42:149–157.

    Article  Google Scholar 

  • Sekihara, K., and Scholz, B., 1996, Generalized Wiener estimation of three-dimensional current distribution from magnetic measurements, IEEE Trans. Biomed. Eng. 43:281–291.

    Article  Google Scholar 

  • Shim, Y. S., and Cho, Z. H., 1981, SVD pseudoinversion image reconstruction, IEEE Trans. Acoust. Speech. Process. 29:904–909.

    Article  Google Scholar 

  • Sidman, R., Ford, M., Ramsey, G., and Schlichting, C., 1990, Age-related features of the resting and P300 auditory evoked responses using the dipole localization method and cortical imaging technique, J. Neurosci. Methods 33:22–32.

    Article  Google Scholar 

  • Snyder, A. Z., 1991, Dipole source localization in the study of EP generators: A critique, Electroencephalogr. Clin. Neurophysiol. 80:321–325.

    Article  Google Scholar 

  • Snyder, A. Z., Abdullaev, Y., Posner, M. I., and Raichle, M. E., 1995, Scalp electrical potentials reflect regional cerebral blood flow responses during processing of written words, Proc. Natl. Acad. Sci. USA 92:1689–1693.

    Article  Google Scholar 

  • Soong, A. C., and Koles, Z. J., 1995, Principal-component localization of the sources of the background EEG, IEEE Trans. Biomed. Eng. 42:59–67.

    Article  Google Scholar 

  • Spencer, K. M., Dien, J., and Donchin, E., 1999, A componential analysis of the ERP elicited by novel events using a dense electrode array, Psychophysiology 36:409–414.

    Article  Google Scholar 

  • Srebro, R., 1996, Iterative refinement of the minimum norm solution of the bioelectric inverse problem, IEEE Trans. Biomed. Eng. 43:547–552.

    Article  Google Scholar 

  • Srebro, R., and Oguz, R. M., 1997, Estimating cortical activity from VEPs with the shrinking ellipsoid inverse, Electroencephalogr. Clin. Neurophysiol. 102:343–355.

    Article  Google Scholar 

  • Srebro, R., Oguz, R. M., Hughlett, K., and Purdy, P. D., 1993, Estimating regional brain activity from evoked potential field on the scalp, IEEE Trans. Biomed. Eng. 40:509–516.

    Article  Google Scholar 

  • Stratton, J. A., 1941, Electromagnetic Theory, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Tikhonov, A. N., and Arsenin, V. Y., 1977, Solutions of Ill-Posed Problems, Wiley, New York.

    MATH  Google Scholar 

  • Towle, V. L., Cohen, S., Alperin, N., Hoffmann, K., Cogen, P., Milton, J., Grzeszczuk, R., Pelizzari, C., Syed, I., and Spire, J. P., 1995, Displaying electrocorticographic findings on gyral anatomy, Electroencephalogr. Clin. Neurophysiol. 94:221–228.

    Article  Google Scholar 

  • Uutela, K., Hamalainen, M., and Somersalo, E., 1999, Visualization of magnetoencephalographic data using minimum current estimates, NeuroImage 10(2):173–180.

    Article  Google Scholar 

  • Van Veen, B. D., van Drongelen, W., Yuchtman, M., and Suzuki, A., 1997, Localization of brain electrical activity via linearly constrained minimum variance spatial filtering, IEEE Trans. Biomed. Eng. 44:867–880.

    Article  Google Scholar 

  • Vieth, J. B., Kober, H., and Grummich, P., 1996, Sources of spontaneous slow waves associated with brain lesions, localized by using the MEG, Brain Topogr. 8:215–221.

    Article  Google Scholar 

  • Von Helmholtz, H., 1853, Uber einige Gesetzeder Verbeitung elektrischer Strome in Koperlichen Leitern mit Anwendung auf die theorischelektrischen Versuche, Ann. Physik. U. Chem. 89:211–233, 353–377.

    Article  Google Scholar 

  • Waberski, T. D., Buchner, H., Lehnertz, K., Hufnagel, A., Fuchs, M., Beckmann, R., and Rienacker, A., 1998, Properties of advanced headmodelling and source reconstruction for the localization of epileptiform activity, Brain Topogr. 10:283–290.

    Article  Google Scholar 

  • Wang, Y., and He, B., 1998, A computer simulation study of cortical imaging from scalp potentials, IEEE Trans. Biomed. Eng. 45:724–735.

    Article  Google Scholar 

  • Wang, J., Zhou, T., Qiu, M., Du, A., Cai, K., Wang, Z., Zhou, C., Meng, M., Zhuo, Y., Fan, S., and Chen, L., 1999, Relationship between ventral stream for object vision and dorsal stream for spatial vision: An fMRI + ERP study, Hum. Brain Mapp. 8:170–181.

    Article  Google Scholar 

  • Woldorff, M. G., Fox, P. T., Matzke, M., Lancaster, J. L., Veeraswamy, S., Zamarripa, F., Seabolt, M., Glass, T., Gao, J. H., Martin, C. C., and Jerabek, P., 1997, Retinotopic organization of early visual spatial attention effects as revealed by PET and ERPs, Hum. Brain Mapp. 5:280–286.

    Article  Google Scholar 

  • Wong, P. K., 1991, Source modeling of the rolandic focus, Brain Topogr. 4:105–112.

    Article  Google Scholar 

  • Xu, X. L., Xu, B., and He, B., 2004, An alternative subspace approach to EEG dipole source localization, Phys. Med. Biol. 49(2):327–343.

    Article  MathSciNet  Google Scholar 

  • Yao, D., and He, B., 2001, A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs, Ann. Biomed. Eng. 29:1019–1027.

    Article  Google Scholar 

  • Zhang, X., van Drongelen, W., Hecox, K., Towle, V. L., Frim, D. M., McGee, A., and He, B., 2003, High resolution EEG: Cortical potential mapping of interictal spikes, Clin. Neurophysiol. 114:1963–1973.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

He, B., Lian, J. (2005). Electrophysiological Neuroimaging. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-48610-5_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48609-8

  • Online ISBN: 978-0-306-48610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics