Skip to main content

Neurorobotics

  • Chapter
Neural Engineering

Part of the book series: Bioelectric Engineering ((BEEG))

Abstract

Images from Hollywood suggest that by directly communicating with the brain it may be possible to control human behavior (Terminal Man) or provide a new reality far more interesting than what we currently experience (The Matrix). Unfortunately, Hollywood has always been a bit ahead of science and our ability to directly interface with the brain is at its infancy. There are, however, some clear examples of successful neural prosthetic devices that suggest the possibility of restoring function after injury. For example, over 30,000 auditory prostheses have been successfully implanted in patients with sensorineural hearing loss (Rubenstein and Miller, 1999). These devices bypass normal signaling mechanisms in the ear by translating sounds into patterns of stimulation and directly activate nerve cells to improve hearing in a broad range of patients. Another example of successful neural prosthetics is the technique for electrically stimulating either the muscles or nerves that innervate them to restore some function after paralysis. Over 150 functional electrical stimulation (FES) devices have been implanted into patients. These devices have been used to assist in breathing, bladder control, posture, and locomotion. There are now commercially available neural prosthetic devices (Smith et ai, 1987; Peckham et al, 2000) that restore hand grasp function by stimulating muscles through electrodes. The electrodes are controlled by movement of the shoulder or neck and they stimulate nerves in the arm or wrist to restore grasping function in patients who have suffered loss of function in their arms or hands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, 1991, Corticonics, Academic Press, Boston, MA.

    Google Scholar 

  • Bai, Q., and Wise, K. D., 2001, Single-unit neural recording with active microelectrode arrays, IEEE Trans. Biomed. Eng. 48(8):911–920.

    Article  Google Scholar 

  • Bai, Q., Wise, K. D., and Anderson, D. J., 2000, A high-yield microassembly structure for three-dimensional microelectrode arrays, IEEE Trans. Biomed. Eng. 47(3):281–289.

    Article  Google Scholar 

  • Bakoglu, H., Baldwin, G., Li, Z., Tsai, C., and Zhang, J., 1990, Circuits, Interconnections and Packaging for VLSI, Addison-Wesley, Boston, MA.

    Google Scholar 

  • Bar-Gad, I., Ritov, Y., Vaadia, E., and Bergman, H., 2001, Failure in identification of overlapping spikes from multiple neuron activity causes artificial correlations, J. Neurosci. Methods 107(1–2):1–13.

    Article  Google Scholar 

  • Bement, S. L., Wise, K. D., Anderson, D. J., Najafi, K., Drake, K. L., 1986, Solid-state electrodes for multichannel multiplexed intracortical neuronal recording, IEEE Trans. Biomed. Eng. 33(2):230–240.

    Article  Google Scholar 

  • Birbaumer, N., Ghanayim, N., Hinterberger, T., Iversen, I., Kotchoubey, B., Kubler, A., Perelmouter, J., Taub, E., and Flor, H., 1999, A spelling device for the paralysed, Nature 398(6725):297–298.

    Article  Google Scholar 

  • Blum, N. A., Carkhuff, B. G., Charles, H. K., Edwards, R. L., and Meyer, R. A., 1991, Multisite microprobes for neural recordings, IEEE Trans. Biomed. Eng. 38(1):68.

    Article  Google Scholar 

  • Bragin, J., Hetke, C. L., Wilson, D. J., Anderson, J. E., Jr, and Buzsaki, G., 2000, Multiple site silicon-based probes for chronic recordings in freely moving rats: Implantation, recording and histological verification, J. Neurosci. Methods 98:77–82.

    Article  Google Scholar 

  • Carmena, J. M., Lebedev, M. A., Crist, R. E., O’Doherty, E., Scatucci, D. M., Dimitrov, D. F., Patil, P. G., Henriquez, C. S., and Micolelis, M. A. L., 2003, Learning to control a brain-machine interface for reaching and grasping by primates, PLOS Biol. 1(2):1–16.

    Article  Google Scholar 

  • Carter, R., and Houk, J. C., 1993, Multiple single-unit recordings from the CNS using thin-film electrode arrays, IEEE Trans. Rehabil. Eng. 1:3–18.

    Article  Google Scholar 

  • Chapin, J. K., Moxon, K. A., Markowitz, R. S., and Nicolelis, M. A. L., 1999, Realtime control of a robot arm using simultaneously recorded neurons, Nat. Neurosci. 2(7):1–7.

    Article  Google Scholar 

  • Chapin, J. K., and Nicolelis, M. A. L., 2000, Brain control of sensorimotor prosthesis, In: Neural Prostheses for Restoration of Sensory and Motor Function (J. K. Chapin and K. A. Moxon, eds.), CRC Press, Boca Raton, pp. 45–74.

    Google Scholar 

  • Chapin, J. K., and Nicolelis, M. A. L., 1999, Principal component analysis of neuronal ensemble activity reveals multidimensional somatosensory representations, J. Neurosci. Methods 94:121–140.

    Article  Google Scholar 

  • Donoghue, J. P., 2002, Connecting cortex to machines: Recent advances in brain interfaces, Nat. Neurosci. 4(Suppl.):1085–1088.

    Article  Google Scholar 

  • Drake, K. L., Wise, K. D., Farraye, J., Anderson, D. J., and Bement, S. L., 1988, Performance of planar multisite microarrays in recording extracellular single-unit intracortical activity, IEEE Trans. Biomed. Eng. 35:719–732.

    Article  Google Scholar 

  • Eccles, J. C., 1981, The modular operation of the cerebral neocortex considered as the material basis of mental events, Neuroscience 6:1839–1859.

    Article  Google Scholar 

  • Eggermont, J. J., 1993, Functional aspects of synchrony and correlation in the auditory nervous system, Concepts Neurosci. 4:105.

    Google Scholar 

  • Eichman, H., and Kuperstein, M., 1986, Extracellular neural recording with multichannel microelectrodes, J. Electrophysiol. Tech. 13:189.

    Google Scholar 

  • Evarts, E. V., 1974, Precentral and postcentral cortical activity in association with visually triggered movement, J. Neurophysiol. 37(2):373.

    Google Scholar 

  • Foffani, G., and Moxon, K. A., 2004, PSTH-based classification of sensory stimuli, J. Neurosci. Methods 135:107–120.

    Article  Google Scholar 

  • Freeman, W. J., 1983, The physiological basis of mental images, Biol. Psych. 18:1107–1125.

    Google Scholar 

  • Gerstein, G. L., Perkel, D. H., and Subramanian, K. N., 1978, Identification of functionally related neural assemblies, Brain Res. 140:43–62.

    Article  Google Scholar 

  • Gerstein, G. L., and Perkel, D. H., 1969, Simultaneously recorded trains of action potentials: Analysis and functional interpretation, Science 164(881):828.

    Article  Google Scholar 

  • Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E., 1986, Neuronal population coding of movement direction, Science 233:1416–1419.

    Article  Google Scholar 

  • Ghazanfar, A. A., Stambaugh, C. R., and Nicolelis, M. A., 2000, Encoding of tactile stimulus location by somatosensory thalamocortical ensembles, J. Neurosci. 20:3761–3775.

    Google Scholar 

  • Gray, P. R., and Meyer, R. G., 1993, Analysis and Design of Analog Integrated Circuits, John Wiley & Sons, Inc., New York.

    Google Scholar 

  • Guillory, K. S., and Normann, R. A., 1999, A 100-channel system for real time detection and storage of extracellular spike waveforms, J. Neurosci. Methods 91:21–29.

    Article  Google Scholar 

  • Hebb, D. O., 1949, Organization of Behavior, McGraw-Hill, New York.

    Google Scholar 

  • Hoogerwerf, A. C., and Wise, K. D., 1994, A three-dimensional microelectrode array for chronic neural recording, IEEE Trans. Biomed. Eng. 41:1136–1146.

    Article  Google Scholar 

  • Hopfield, J. J., and Herz, A. V., 1995, Rapid local synchronization of action potentials: Toward computation with coupled integrate-and-fire neurons, Proc. Natl. Acad. Sci. U.S.A. 92:6655–6662.

    Article  Google Scholar 

  • Hopfield, J. J., 1995, Pattern recognition computation using action potential timing for stimulus representation, Nature 376:33–36.

    Article  Google Scholar 

  • Hubel, D. H., and Wiesel, T. N., 1959, Receptive fields of single neurones in the cat’s striate cortex, J. Physiol. 148:574–591.

    Google Scholar 

  • Humphrey, D. R., 1970, A chronically implantable multiple micro-electrode system with independent control of electrode position, Electroencephal. Clin. Neurophysiol. 29:616.

    Article  Google Scholar 

  • Humphrey, D. R., Schmidt, E. M., and Thompson, W. D., 1970, Predicting measures of motor performance from multiple cortical spike trains, Science 170(959):759.

    Article  Google Scholar 

  • Hulata, E., Segev, R., and Ben-Jacob, E., 2002, A method for spike sorting and detection based on wavelet packets and Shannon’s mutual information, J. Neurosci. Methods 117(1):1–12.

    Article  Google Scholar 

  • Jack, J. J., Noble, B. D., and Tsien, R. W., 1975, Electric Current Flow in Excitable Cells, Oxford University Press.

    Google Scholar 

  • Jackson, J. E., 1991, A User’s Guide to Principal Components, John Wiley and Sons, Inc., New York, pp. 1–25.

    MATH  Google Scholar 

  • John, E. R., 1972, Switchboard versus statistical theories of learning and memory, Science 177:850–864.

    Article  Google Scholar 

  • Jin, J., and Wise, K. D., 1992, An implantable CMOS circuit interface for multiplexed microelectrode recording arrays, IEEE Trans. Biomed. Eng. 27(3):433–443.

    Google Scholar 

  • Kennedy, P. R., and Bakay, R. A. E., 1998, Restoration of neural output from a paralyzed subject by a direct brain connection, NeuroReport 9:1707.

    Article  Google Scholar 

  • Kennedy, P. R., et al., 2000, Direct control of a computer from the human central nervous system, IEEE Trans. Rehabil. Eng. 8:198–202.

    Article  Google Scholar 

  • Kennedy, P. R., 1989, The cone electrode: A long-term electrode that records from neurites grown onto its recording surface, J. Neurosci. Methods 29:181–193.

    Article  Google Scholar 

  • Kennedy, P. R., Bakay, R. A. E., and Sharpe, S. M., 1992, Behavioral correlates of action potentials recorded chronically inside the cone electrodes, Neuroreport 2:605.

    Article  Google Scholar 

  • Kennedy, P. R., and King, B., 2000, Dynamic interplay of neural signals during the emergence of cursor related cortex in a human implanted with the neurotrophic electrode, In: Neural Prostheses for Restoration of Sensory and Motor Function (J. K. Chapin and K. A. Moxon, eds.), CRC Press, Boca Raton, pp. 45–74.

    Google Scholar 

  • Kim, K. H., and Kim, S. J., 2000, Noise performance design of CMOS preamplifier for the active semiconductor neural probe, IEEE Trans. Biomed. Eng. 47(8):1097–1105.

    Article  Google Scholar 

  • Kim, K. H., and Kim, S. J., 2003, Method for unsupervised classification of multiunit neural signal recording under low signal-to-noise ratio, IEEE Trans. Biomed. Eng. 50(4):421–431.

    Article  Google Scholar 

  • Kralik, J. D., Dimitrov, D. F., Krupa, D. J., Katz, D. B., Cohen, D., and Nicolelis, M. A., 2001, Techniques for long-term multisite neuronal ensemble recordings in behaving animals, Methods 25(2):121–150.

    Article  Google Scholar 

  • Kreiter, A. K., Aertsen, A. M., and Gerstein, G. L., 1989, A low-cost single-board solution for real-time, unsupervised waveform classification of multineuron recordings, J. Neurosci. Methods 30(1):59–69.

    Google Scholar 

  • Kubie, L. S., 1930, A theoretical application to some neurological problems of the properties of excitation waves which move in closed circuits, Brain 53:166–177.

    Article  Google Scholar 

  • Lashley, K. S., 1950, In search of the engram, Symp. Soc. Exp. Biol. 4:454–482.

    Google Scholar 

  • Letelier, J. C., and Weber, P. P., 2000, Spike sorting based on discrete wavelet transform coefficients, J. Neurosci. Methods 101(2):93–106.

    Article  Google Scholar 

  • Lewicki, M. S., 1998, A review of methods for spike sorting: The detection and classification of neural action potentials, Network 9(4):R53–R78.

    MATH  MathSciNet  Google Scholar 

  • Lin, Y., Tsai, C., Huang, H., Chiou, D., and Wu, C., 1999, Preamplifier with a second-order high-pass filtering characteristic, IEEE Trans. Biomed. Eng. 46:609–612.

    Article  Google Scholar 

  • Liu, X., McCreery, D. B., Carter, R. R., Bullara, L. A., Yeun, T. G. H., and Agnew, W. F., 1999, Stability of the interface between neural tissue and chronically implanted intracortical microelectrodes, IEEE Trans. Rehabil. Eng. 7:315.

    Article  Google Scholar 

  • MacGregor, R. J., 1991, Sequential configuration model for firing patterns in local neural networks, Biol. Cyber. 65:339–349.

    Article  Google Scholar 

  • MacGregor, R., 1993, Theoretical Mechanics of Biological Neural Networks, Academic Press, Boston.

    MATH  Google Scholar 

  • Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. S., 2000, Brain-computer interfaces based on steadystate visual evoked response, IEEE Trans. Rehabil. Eng. 8:211–213.

    Article  Google Scholar 

  • Mohseni, P., and Najafi, K., 2004, A fully integrated neural recording amplifier with DC input stabilization, IEEE Trans. Biomed. Eng. 51(5):832–837.

    Article  Google Scholar 

  • Moxon, K. A., 1999, Multichannel electrode design: Considerations for different applications, In: Methods for Simultaneous Neuronal Ensemble Recordings (M. A. L. Nicolelis, eds.), CRC Press, Boca Raton, FL, pp. 25–45.

    Google Scholar 

  • Moxon, K. A., Gerhardt, G. A., Bickford, P. C., Rose, G. M., Woodward, D. J., and Adler, L. E., 1999, Multiple single units and populations responses during inhibitory gating of hippocampal auditory response in freely-moving rats, Brain Res. 825:75–85.

    Article  Google Scholar 

  • Moxon, K. A., Kalkhoran, N. M., Markert, M. A., Sambito, M. A., McKenzie, J. L., and Webster, J. T., 2004b, Nanostructured surface modification of microelectrodes to enhance biocompatibility for a direct brain machine interface, IEEE Trans. Biomed. Eng. 1(6):881–889.

    Article  Google Scholar 

  • Moxon, K. A., Leiser, S. C., Gerhardt, G. A., Barbee, K., and Chapin, J. K., 2004a, Ceramic based multisite electrode arrays for electrode recording, IEEE Trans. Biomed. Eng. 51(4):647–656.

    Article  Google Scholar 

  • Moxon, K. A., Morizio, J., Chapin, J. K., Nicolelis, M. A. L., and Wolf, P. D., 2000, Designing a brain-machine interface for neuroprosthetic control, In: Neural Prostheses for Restoration of Sensory and Motor Function (J. K. Chapin and K. A. Moxon, eds.), CRC Press, Boca Raton, pp. 45–74.

    Google Scholar 

  • Moxon, K. A., Gerhardt, G. A., Gulinello, M., and Adler, L. E., 2003a, Inhibitory control of sensory gating in a computer model of the CA3 region of the hippocampus, Biol. Cyber. 88(4):247–264.

    Article  MATH  Google Scholar 

  • Moxon, K. A., Gerhardt, G. A., and Adler, L. E., 2003b, Dopaminergic modulation of the P50 auditory evoked potential in a computer model of the CA3 region of the hippocampus: Its relationship to sensory gating in schizophrenia, Biol. Cyber. 88(4):265–275.

    Article  MATH  Google Scholar 

  • Moxon, K. A., Leiser, S. C., Gerhardt, G. A., Barbee, K., and Chapin, J. K., 2004, Ceramic based multisite electrode arrays for electrode recording, IEEE Trans. Biomed. Eng. 51(4):647–656.

    Article  Google Scholar 

  • Mountcastle, V. B., 1957, Modularity and topographic properties of single neurons of cat’s somatic sensory cortex, J. Neurophysiol. 20:408–434.

    Google Scholar 

  • Mountcastle, V. B., Lynch, J. C., Georgopoulus, A., Sakata, H., and Acuna, C., 1975, Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space, J. Neurophysiol. 38(4):871.

    Google Scholar 

  • Najafi, K., and Wise, K., 1986, An implantable multielectrode array with on-chip signal processing, IEEE J. Solid-State Circuits 21:1035–1044.

    Article  Google Scholar 

  • Nguyen, D. P., Frank, L. M., and Brown, E. N., 2003, An application of reversible-jump Markov chain Monte Carlo to spike classification of multi-unit extracellular recordings, Network 14(1):61–82.

    Article  Google Scholar 

  • Nicolelis, M. A., 2003, Brain-machine interfaces to restore motor function and probe neural circuits, Nat. Rev. Neurosci. 4(5):417–422.

    Article  Google Scholar 

  • Nicolelis, M. A., and Fanselow, E. E., 2002, Thalamocortical optimization of tactile processing according to behavioral state, Nat. Neurosci. 5(6):517–523.

    Article  Google Scholar 

  • Nicolelis, M. A. L., Lin, R. C. S., Woodward, D. J., and Chapin, J. K., 1993, Dynamic and distributed properties of many-neuron ensembles in the ventral posterior medial thalamus of awake rats, Proc. Natl. Acad. Sci. U.S.A. 90:2212.

    Article  Google Scholar 

  • Nicolelis, M. A. L., Baccala, L. A., Lin, R. C. S., and Chapin, J. K., 1995, Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system, Science 268:1353.

    Article  Google Scholar 

  • Nordhausen, C. T., Maynard, E. M., and Normann, R. A., 1996, Single unit recording capabilities of a 100 microelectrode array, Brain Res. 726:129.

    Article  Google Scholar 

  • Obeid, I. M., Morizio, J. C., Moxon, K. A., Nicolelis, M. A. L., and Wolf, P. D., 2003, Two multichannel integrated circuits for neural recording and signal processing, IEEE Trans. Biomed. Eng. 50(2):255–258.

    Article  Google Scholar 

  • Obeid, I., Nicolelis, M. A., and Wolf, P. D., 2004, A multichannel telemetry system for single unit neural recordings, J. Neurosci. Methods. 133(1–2):33–38.

    Article  Google Scholar 

  • Peckham, P. H., Kilgore, K. L., and Keith, M. W., 2000, Advances in upper extremity functional restoration employing neuroprostheses, In: Neural Prostheses for Restoration of Sensory and Motor Function (J. K. Chapin and K. A. Moxon, eds.), CRC Press, Boca Raton, pp. 45–74.

    Google Scholar 

  • Pochay, P., Wise, K. D., Allard, L. F., and Rutledge, L. T., 1979, A multichannel depth array fabricated using electron-beam lithography, IEEE Trans. Biomed. Eng. 26(4):199–206.

    Article  Google Scholar 

  • Pouzat, C., Mazor, O., and Laurent, G., 2002, Using noise signature to optimize spike-sorting and to assess neuronal classification quality, J. Neurosci. Methods 122(1):43–57.

    Article  Google Scholar 

  • Principe, J. C., Euliano, N. R., and Lefebvre, W. C., 2000, Neural and Adaptive Systems, John Wiley & Sons, New York.

    Google Scholar 

  • Prohaska, O. J., Olcaytug, F., Pfundner, P., and Draguan, H., 1986, “Thin-film multiple electrode probes: Possibilities and limitations,” IEEE Trans. Biomed. Eng. 33(2):223–229.

    Article  Google Scholar 

  • Rolls, E. T., Treves, A., Robertson, R. G., Georges-Francois, P., and Panzeri, S., 1998, Information about spatial view in an ensemble of primate hippocampal cells, J. Neurophysiol. 79:1797–1813.

    Google Scholar 

  • Rolls, E. T., Treves, A., and Tovee, M. J., 1997, The representational capacity of the distributed encoding of information provided by populations of neurons in primate temporal visual cortex, Exp. Brain Res. 114:149–162.

    Article  Google Scholar 

  • Rosenblith, W. A., 1957, Relations between auditory psychophysics and auditory electrophysiology, Trans. N. Y. Acad. Sci. 19(7):650–657.

    Google Scholar 

  • Rousche, R. J., and Norman, R. A., 1998, Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex, J. Neurosci. Methods 82:1–15.

    Article  Google Scholar 

  • Rousche, P. J., Petersen, R. S., Battiston, S., Giannotta, S., and Diamond, M. E., 1999, Examination of the spatial and temporal distribution of sensory cortical activity using a 100-electrode array, J. Neurosci. Methods 90:57.

    Article  Google Scholar 

  • Rubenstein, J. T., and Miller, C. A., 1999, How do cochlear prostheses work? Curr. Opin. Neurobiol. 4:399–404.

    Article  Google Scholar 

  • Schmidt, E. M., 1980, Single neuron recording from motor cortex as a possible source of signals for control of external devices, Ann. Biomed. Eng. 8(4–6):339–349.

    Article  Google Scholar 

  • Schmidt, E. M., 1999, Electrodes for many single neuron recordings, in Methods for Neural Ensemble Recordings (M. A. L. Nicolelis, ed.), CRC Press, New York.

    Google Scholar 

  • Serruya, M. D., Hatsopoulos, N. G., Paninski, L., Fellows, M. R., and Donoghue, J. P., 2002, Instant neural control of a movement signal, Nature 416(6877):141–142.

    Article  Google Scholar 

  • Sherrington, C. S., 1906, The Integrative Activity of the Nervous System, Yale University Press, New Haven.

    Google Scholar 

  • Smith, B., Tang, Z., Johnson, M. W., Pourmehdi, S., Gazdik, M. M., Buckett, J. R., and Peckham, P. H., 1987, An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle, IEEE Trans. Biomed. Eng. 45(4):463–475.

    Article  Google Scholar 

  • Sutter, E. E., 1992, The brain response interface: Communication through visually-induced electrical brain responses, J. Microcomp. Appl. 15:31–45.

    Article  Google Scholar 

  • Szabo, I., and Marczynski, T. J., 1993, A low-noise preamplifier for multisite recording of brain multi-unit activity in freely moving animals, J. Neurosci. Methods 47:33–38.

    Article  Google Scholar 

  • Szentagothai, J., 1975, The “module-concept” in cerebral cortex architecture, Brain Res. 95:475–496.

    Article  Google Scholar 

  • Takahashi, K., and Matsuo, T., 1984, Integration of multi-microelectrode and interface circuits by silicon planar and three-dimensional fabrication technology, Sens. Actuat. 5(1):89–99.

    Article  Google Scholar 

  • Takeuchi, S., and Shimoyama, I., 2004, A radio-telemetry system with a shape memory alloy microelectrode for neural recording of freely moving insects, IEEE Trans. Biomed. Eng. 51(1):133–137.

    Article  Google Scholar 

  • Taylor, D. M., Tillery, S. I. H., and Schwartz, A. B., 2002, Direct cortical control of 3D neuroprosthetic device, Science 296:1829–1832.

    Article  Google Scholar 

  • Towe, B., 1986, Passive biotelemetry by frequency keying, IEEE Trans. Biomed. Eng. 33.

    Google Scholar 

  • Vallabhaneni, A., Wang, T., and He, B., 2005, Brain-Computer Interface, In He (Eds): Neural Engineering, Kluwer Academic Publishers.

    Google Scholar 

  • Vetter, R. J., Williams, J. C., Hetke, J. F., Nunamaker, E. A., Kipke, D. R., 2004, Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex, IEEE Trans. Biomed. Eng. 51(6):896–904.

    Article  Google Scholar 

  • Vittoz, E., Borel, J., Gentil, P., Noblanc, J., Nouailhat, A., and Verdone, M., 1993, Design of low-voltage low-power IC’s, In: Proceedings of the 23rd European Solid State Device Research Conference, p. 927.

    Google Scholar 

  • Wessberg, J., Stambaugh, C. R., Kralik, J. D., Beck, P. D., Laubach, M., Chapin, J. K., Kim, J., Biggs, S. J., Srinivasan, M. A., and Micolelis, M. A. L., 2000, Real-time prediction of hand trajectory by ensembles of cortical neurons in primates, Nature 48:361–365.

    Article  Google Scholar 

  • Wheeler, B. C., 1999, Automatic discrimination of singe units, In: Methods for Neural Ensemble Recordings (M. A. L. Nicolelis, ed.), CRC Press, New York, p. 61.

    Google Scholar 

  • White, R. L., and Gross, T. J., 1974, An evaluation of the resistance to electrolysis of metals for use in biostimulation microprobes, IEEE Trans. Biomed. Eng. 21:487.

    Article  Google Scholar 

  • White, R. L., Roberts, L. A., Cotter, N. E., Kwon, O. H., 1983, Thin-film electrode fabrication techniques, Ann. N.Y. Acad. Sci. 83:183–190.

    Article  Google Scholar 

  • Williams, J. C., Rennaker, R. L., and Kipke, D. R., 1999, Long-term recording characteristics of wire microelectrode arrays implanted in cerebral cortex, Brain Res. Prot. 4:303–313.

    Article  Google Scholar 

  • Wilson, M. A., and McNaughton, B. L., 1996a, Dynamics of the hippocampal ensemble code for space, Science 261:1055.

    Article  Google Scholar 

  • Wilson, M. A., and McNaughton, B. L., 1996b, Reactivation of hippocampal ensemble memories during sleep, Science 265:6761.

    Google Scholar 

  • Wise, K., 1998, Micromachined interfaces to the cellular world, Sens. Mater. 10:385–395.

    Google Scholar 

  • Wise, K., and Angell, J., 1975, A low-capacitance multielectrode probe for use in extracellular neurophysiology, IEEE Trans. Biomed. Eng. 22:212–219.

    Article  Google Scholar 

  • Wise, K. D., Angell, J. B., Starr, A., 1970, Integrated circuit approach to extracellular microelectrodes, IEEE Trans. Biomed. Eng. 17(3):238–246.

    Google Scholar 

  • Wise, K. D., and Najafi, K., 1991, Microfabrication techniques for integrated sensors and microsystems, Science 254:1335–1342.

    Article  Google Scholar 

  • Wise, K. D., Najafi, K., and Drake, K. L., 1994, A multichannel microprobe for intracortical single-unit recordings, Proc. IEEE/NSF Symp. Biosens., 87–89.

    Google Scholar 

  • Wise, K. D., and Weissman, R. H., 1971, Thin films of glass and their application to biomedical sensors, Med. Biol. Eng. 9:339–350.

    Article  Google Scholar 

  • Wolpaw, J. R., McFarland, D. J., and Vaughan, T. M., 2000, Brain-computer interface research at the Wadsworth Center, IEEE Trans. Rehabil. Eng. 8:222–225.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Moxon, K.A. (2005). Neurorobotics. In: He, B. (eds) Neural Engineering. Bioelectric Engineering. Springer, Boston, MA. https://doi.org/10.1007/0-306-48610-5_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48610-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48609-8

  • Online ISBN: 978-0-306-48610-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics